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Closed-Form Green’s Functions for Cylindrically
Stratified Media

Cajatay Tokgdz Student Member, IEEEBNd Gilbin DuralMember, IEEE

Abstract—A numerically efficient technique is developed to ob- of the spectral-domain Green’s functions, which are derived
tain the spatial-domain closed-form Green’s functions of the elec- recursively for layered geometries. Therefore, the idea of
tric and magnetic fields due toz- and ¢-oriented electric and mag- closed-form spatial-domain Green’s functions was proposed

netic sources embedded in an arbitrary layer of a cylindrical strat-
ified medium. First, the electric- and >|/11aénetic-ﬁe)lld components [19] @nd then extended to planarly layered structures [20]-[22]

representing the coupled TM and TE modes are derived in the t0 avoid such an integration. In the analysis of spherically
spectral domain for an arbitrary observation layer. The spectral- layered media, a significant amount of work has also been done
domain Green's functions are then obtained and approximated in  and reported in [23]-[25].

terms of complex exponentials in two consecutive steps by using There are a number of publications in which dispersion

the generalized pencil of function method. For the Green'’s func- h for th ided al lindrical stratified
tions approximated in the first step, the large argument behavior PENoMEna ior the waves guided aiong a cylindrical suatiiie

of the zeroth-order Hankel functions is used for the transforma- Medium are presented [25]—[32]. Unlike those in planarly and
tion into the spatial domain with the use of the Sommerfeld iden- spherically layered media, TM and TE waves are coupled
tity. In the second step, the remaining part of the Green’s functions  together at an interface in cylindrically layered media. This
are approximated on two complementary parts of a proposed de- o jires simultaneous solution of the fields corresponding to

formed path and transformed into the spatial domain, analytically. - - -
The results obtained in the two consecutive steps are combined toT'VI and TE cases, the only exceptions being the rotationally

yield the spatial-domain Green’s functions in closed forms. symmetric(n = 0) andz-invariant(k. = 0) cases for which
. _ separate analyses of TM and TE modes are possible. The cou-
Index Terms—Closed forms, cylinders, cylindrical antennas, . . L .
Green’s function, Hankel transforms, nonhomogeneous media, pled'mOde analysis r(?qu.'red for ?yl'ndr'cal structures re§ults In
spectral-domain analysis. reflection and transmission matrices rather than reflection and
transmission coefficients. Some researchers have represented
the reflection and transmission of waves at an interface be-
tween two adjacent cylindrical strata by 4 x 4 matrices in their
UE TO THE advantages of microstrip antennas, such psblications [30], [31]. A simpler and less redundant algorithm
their low weight, low cost, and flexibility, microstrip ge- using 2 x 2 matrices in field analysis has also been presented in
ometries mounted on layered structures have become very pi&®] and [26], where only the components of fields are used
ular in various applications ranging from satellite and vehiculd® represent the modes guided through layers.
communications, and remote sensing to radiators in biomedicaAlthough several forms of Green’s functions for multilayer
applications [1], [2]. cylindrical geometries are present in the literature [24], [25],
Multilayer cylindrical structures can be used as practicé®3], [34], closed-form expressions have not yet been reported
models in a wide variety of applications. A typical examplén the spatial domain. The major contribution of this paper is
of such a modeling is the representation of a graded-ind&xdevelop a two-step technique for obtaining the spatial-do-
optical fiber with many piecewise homogeneous layers. Radagin Green’s functions in closed forms for a cylindrically lay-
cross section for the scattering by the inlets of aircrafts caied medium, shown in Fig. 1. Closed-form expressions for the
be reduced by coating the inlets with multilayer materialspectral-domain Green’s functions of the electric and magnetic
Importance of cylindrically layered structures have led to tHeelds due toz- and ¢-oriented electric and magnetic sources
investigation of the scattering from conducting, dielectric, g#mbedded in an arbitrary layer are derived for an arbitrary obser-
dielectric-coated conducting cylinders, as well as the radiatigation layer, analytically, by using a recursive algorithm for the
from cylindrical-rectangular and wraparound microstrip anebupled TM and TE modes. These Green’s functions are sam-
patch antennas [3]-[18]. pled and approximated in two regions in terms of complex ex-
Computation of the spatial-domain Green’s functions rggonentials by using the generalized pencil of function (GPOF)
quires a tedious and time-consuming numerical integratiohethod [35]. In the first region, where the large argument be-
havior of the zeroth-order Hankel functions enables complex ex-
ponentials of;, to be represented in terms of Hankel functions,
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1) Derivation of the spectral-domain Green’s functions.

z
a) Thez components of fields are derived for the cou-
\ pled TM and TE modes in the source layer.
_\ b) These field components are then transferred, recur-

Y
\\\&./// / sively, into the observation layer where Green's
\\\ 1 functions are obtained.
I E— | 2) Derivation of the closed-form Green’s functions in the
G| f2 Eni | Ex spatial domain.
Ny 253 HN-1 IoN . ", .
0 a) Due to the pole singularities on the real axis and
a4y |ans | ang the branch-point singularities &t = Fky where
Region|Region Region|Region ky is the Wayenumb_er of t_he outermost layer, the
N P L2 N-1 N Sommerfeld integral is not integrable along the real
B B e S axis on the complex. plane [25], [36]. Therefore,
//’ Al PP it IR NE RN this original path is folded and deformed into the
4 ) ) ) path shown in Fig. 2.

&\—/__/_/ b) Green’s functions are sampled and approximated in
terms of complex exponentials along the new path.

c) The approximated Green’s functions are trans-
formed into the spatial domain in two steps,
analytically.

The spectral-domain Green'’s functions are derived, recur-

Im{k,} sively, following a similar procedure as in [25] and [37]. Hence,

k, =k (1+T}) they are presented in Section II-A without giving the details of
‘ the derivation.

Fig. 1. Multiple interface geometry.

s ol

i D A. Green’s Functions in the Spectral Domain
E Re{k,} In general, a point electric or magnetic source of unit strength
. ‘ is represented by a current element
TN _oacl=
k, =k, 1+T2 J = 0‘6(7 ! ) (@)

whered is the unit vector in the current direction and it is as-
sumed to be either or ¢ in the analysis, depending on whether

a source of: or ¢ orientation is considered, respectively. The
along the two contouis; andl'; of a new path, which is shown components of the electric and magnetic fields can be written as
in Fig. 2, and obtained by the deformation of the folded original sum of the direct term due to the source, and the standing and
integration path to avoid the branch-point singularity associatedtgoing waves which are, respectively, formed by the multiple
with a branch-cut and pole singularities encountered along tieflections from the outer and inner boundaries of the source
real axis on the complek. plane [36]. In this second region,layer and represented by the first-kind Bessel and second-kind
transformation into the spatial domain turns out to be the antdankel functions. Thus, the components of the fields can be
lytical evaluation of two simple contour integrals of exponermbtained in the source layer as

tial functions. Finally, addition of the contributions of each step
gives the spatial-domain Green'’s functions in closed forms. [Eé }

H,

Fig. 2. Deformed path.

= {Illen, 0 B (R, )T + i, ) A,

+HP (), } Su ()
Il. FORMULATION

A cylindrical multilayer geometry is shown in Fig. 1. An eIec-WhereEZ” andf.., represent thath harmonics for the electric

tric or magnetic source can be embeddebate, »') in layer and magnetic fields, respectively, in the spectral domain. In (2),

j and an observation point can be locatedmte, =) in an ar- P< aﬂd?> are, respect?vely, the smaller and Iargequndp’, .
bitrary layeri. Layers may vary in their electric and magneti ndS, is a 2x1 ma".'x operator that acts on functions to its
properties {;, 1;), as well as their thicknesses. Moreover, ft-hand side and is given by

perfect electric conductor (PEC) or perfect magnetic conductor 1 .

(PMC) can be considered as the innermost or outermost layer. _ — (kfa,, +ijV’) e

The following are the important steps carried out in the deriva- Sp=1 9 . )
tion of the closed-form Green'’s functions. —jwé - (&Z X V’)
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for the fields due to an electric source and
jwé - (a x 6’)

1 =
- (kf&; +jkzv’) G
i

for the fields due to a magnetic source.

Amplitudes for thenth harmonics of the reflected waves are
represented by 2 x 2 matricel,, and A,,, which can be de-
termined by applying the boundary conditions at the inner and
outer interfaces of the source layer to yield

| [T+ HE e, )R 1Ay o<
(HD g, T+ Tl 0B i | Ay 9> 0
(%)

Wherean is a 2 x 1 amplitude matrix for theth harmonic
of the standing and outgoing waves fer< p' andp > o/,

respectively, in the source layer. The amplitudes of the standing

waves in a layer different from the source layer are related to
those in the adjacent layers by

A, (I R, 7R7 1,i— 2)_1771,71—127“- (6)

where4,,._, andA,,, are the amplitude matrices for théh har-
monics of the standing waves in layérs 1 andi, respectively.
Similarly, the amplitudes of the outgoing waves can be related
as

S -1
Ap = (I - Ri+1,iRi+l,i+2) T; iv14n, (7)

where4,,,,, andA,,, are the amplitude matrices for théh har-
monics of the outgoing waves in layers 1 and:, respectively.
T, 4 Ry 4 andR, , are 2 x 2 local transmission, local reflec-
tion and generalized reflection matrices for the waves incident
from layerp into layerq, respectively. Hence, the field expres-
sions for any layer can be derived, iteratively, from those of the
source layer [25], [37].

Depending on the field expressions of the observation layer,
the spectral-domain Green'’s functions are derived as

oo

. 1 , A

E,H _ jn(o—e") (yEn, Hy

Cri = > MG ®)
n=—oo

where@f(;’ Hw is obtained for the- andg-oriented electric and
magnetic sources as follows.

1) z-oriented electric dipole:

- k2
GZ = ifll ()]
€
/{}4 (:j /{}Z
GEn k2 Jwis O
bz ;i n JWig f21
— 11 =
P <k§ipfll+kzk§i ap> 1) 7
~ k2. jwe; Af nk.
Gt — s _Jwe dj11 2 ' 12
L (e gim). @

2) ¢-oriented electric dipole:

~E,, .
Gb _n Jw df12
k. €p! k. 9o
5 k. . Ofx
G ==,
z¢ Gjp/ Jw ap’
nkz nkz quz af21
Gl = < S+
WG \RZp T R, dp
d ([ nk. Jwpi O fa2
IS0 <k2 fet T,
~H, .
Gob _ n (_jweidfn  nk :
k. e\ k2 9p k2 2L
i O [ Jwe afm g
Top \“ k2, ap K2 p'P
3) z-oriented magnetic dipole:
k‘z Hj k‘z
N 2
Gf{ =2 for
j
X k- Jwpii O f22
goe = o <” fio+
Py \KZp T k2 9p

_ ch7 8f12
kK2 Op

~H 2
G¢Z _ k/’j <
kz Hj

n
+ f22)
kZ.p

4) ¢-oriented magnetic dipole:

% . afll ﬂ/%
GFJH —
zZ¢ Jw ap
Gf; _ Jwifxn "y
k. k. 9p oy
Gl
i g n e me 8f21
T ap \BZ " Tz
k. ;0
4 n/<n2 s qu f22>
wip' \kz.p
GHn — 0 Jwez afll nk
b “Jlugﬁ; K2 9p
nk. we; O nkz
4 Ik J ! J12 LN
i kz. Op  kip

[Jn(km o) + H? (kp, p)§7 7‘,—1} Ap,

2

[H,(f) (ko )T + Ju(kp, p)R; i+1} Ans

2

— |:f11 f12:| gn

f21 f22

(13)

(14)

(15)

(16)

17

(18)

(19)

(20)

(21)

(22)

(23)

(24)
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In (9)—(24),GE» H denotes thexth harmonic of the spectral-
domain Green’s function for the electric and magnetic fields
in directionp due to a unitg-oriented current eIemen)t:,2

k2 + k2, k] = k2 + k2, the subscriptg and: indicate the
source and observanon layers, and the superschptsd H
represent the electric and magnetic fields, respectively.

Note that, in (10), (11), (13), (16), (17), (20), (22), and (23),
GEx M /L is given instead o7 H» jtself to represent the
Green s functions as even functionsigffor the proper use in
the approximation procedure explained in Section II-B. Since
the division byk. corresponds to integration with respectto
in the spatial domain, the integral of the spatial-domain Green’s
function is approximated from which the spatial-domain
Green’s function itself can easily be obtained [21], [22].

B. Closed-Form Green’s Functions in the Spatial Domain

The spectral-domain Green’s functions can be transformed G, = bek

into the spatial domain by

whereG is the spatial-domain Green’s functions a®dk either
~E,H ~E, H ; GE, H

G, or qu Jk- depengllng on' thelthefr?pq is an even or

odd function ofk_, respectively. Sincé&' is chosen to be an even

function ofk._, the inverse Fourier integral (26) can be folded as

Gz-2")= %/000 dk. cos |:/€Z(Z - z’)} G(k).  (27)

Along the original path of integration, branch-point singulari-
ties atk, = Fkx and pole singularities are encounteréeg,
being the wavenumber of the outermost layer [25], [36]. Due to
these singularities, the inverse Fourier integral (26) is not inte-

43

the wavenumbers of all layers should be appro-
priate. Oncel; is chosen, the value af; = 1.175

is sufficient to capture the behavior of the Green'’s
functions in the sampling interval.

¢) The sampled Green’s functions are multiplied by

Vk,, and approximated in terms @¥; complex
exponentials of;,, by the GPOF method as

Ns N
VEp.Gi, 23 et = by et (29)
=1 =1

whereékp represents the spectral-domain Green'’s
functions approximated in this region.

d) The resulting exponential functions are represented

by the zeroth-order Hankel functions using the
large argument approximation as
N3 Ck/—’ssfk

N3
= Z be, H(SQ)(]CPS 50,)- (30)

=1 \% prs a =1

1 oo ’ ) e) Then, by using the Sommerfeld identity
G(z—z’)zg/ dk,e =G G(k,)  (26) ikl

|7 — 7
= /Ooo dk., cos [kz(z - z’)}HéQ) (k,,s 17— ﬁ|) (31)

where|7 — 7| = \/(z — /)2 + |7 — 7|2, the spa-
tial-domain Green’s function§', are obtained as

e dkslrel

jZ& - (32)

wherer, = /(z — 2')2 + s .

|I2

grable along the real axis on the complexplane in a lossless  2) Analytical transformation.

medium. Therefore, a new path obtained by the deformation of
the folded original integration path, and shown in Fig. 2, is intro-
duced to avoid the pole and branch-point singularities. The spec-
tral-domain Green'’s functions are sampled and approximated in
terms of complex exponentials on this deformed path using the
GPOF method and then transformed into the spatial domain by
applying a two-step approximation technique outlined as fol-
lows [22].

1) Transformation by the Sommerfeld identity using the
large argument behavior of the zeroth-order Hankel
functions.

a) The spectral-domain Green’s functions are sampléd = %,

uniformly along the path
kp, = — jks(ts + 12)

s

k. =k, 1+(t3+T2)2}0 Sfe<tmi (29)
wherek, andk,_ are the wavenumbers of the sam-
pling region that is chosen as the source layer. With
this step, the original integration path is mapped
into an equivalent path in thg, plane.

b) The value ofl; should be large enough to avoid
the pole and branch-point singularities and in order
for the large argument approximation of the ze-
roth-order Hankel functions to be valid. Hence, a
choice ofT; such thatks\/1 + T3 is greater than

a) The spectral-domain Green’s functioﬁap ap-

proximated in the first step are subtracted from the
original Green'’s functiongr to yield the Green’s
functionsGy, vanishing fork. > k,/1+173.

b) The resulting Green’s functionS;_ are sampled

uniformly along the two contouds; andI’s, which

are shown in Fig. 2 and given, respectively, as
t

k. = k(1 +jT1)Tl, 0<t <Ty (33)
1

and

. . to
1+'T+<\/1+T2—1—'T> }
{ J41 2 J41 T, -1,

0<ta <1y —11. (34)

c) Along the paths (33) and (34), the imaginary part

of k. has a maximum value of, 77 att; = 1y
andt; = 0, respectively, where maximum de-
viation from the original path occurs. Therefore,
the deformation of the path can be controlled by
choosing7} properly. This parameter should be
sufficiently large to overcome the effects of the pole
and branch-point singularities and small enough to
avoid numerical difficulties. For a robust and safe
approximation; should be so chosen thiatl; =
0.1kq, wherekg is the wavenumber of free space.
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logio(|H])
1.45 T T v T T
1.40% © <
g e = . observation
| point point
electric
source *
1.35 |- y.4
free space
= —
ay
1.30 |- .
Region
o Exact
L o T,=0.01 2
A T,=0.08
1.25 |- T,=0.1
---- T,=0.5
. - - T,=1
1.20 . L . L
-3 -2 -1
loguo(|ko(2 — 2)I) Fig. 4. Dielectric-coated conducting cylinder. Region 0: PEC. Region 1:
€, = 2.3, 1, = 1. Region 2: free spaca, = 20 mm,a; = p’ = 21 mm,
Fig. 3. log,,(|H|) for H = Y5_, axHP (kpi). k = 59.2788,ay = # =40 mMM,& —¢" = /6 rad, f = 4.7 GHz.

3.86, a5 = 7.13, a5 = 2.95, p1 = 0.42, ps = 0.25. ps = 0.58.
logi(IGE))

d) The sampled Green'’s functions are approximated in 4-55 y T y T T T
terms of Ny and N, complex exponentials df, by
the GPOF method, respectively, on the paths (33)
and (34) as 420F
Ny Ny
Gr. =D b, 4 by et i
1 n=1

m=

3.85 |-

Ny
Dy €7 Y " by oo (35) I
1 n=1

N1

(1

e) Transformation of the approximated Green’s func- 3-5° [
tions into the spatial domain turns out to be a simple
contour integral of exponential functions as

1 ~ 3.15 |-
G, = — / dk., cos |:]ﬂ}Z(Z — z/)} Gy, (36) © Exact
T Jri+T2 i Approximate
Addition of the contributions of the two steps yields the spa-
tial-domain Green’s functions in closed forms. 2.80 — . > : » . 5 . 4

logio(|ko(z — 2)])
I1l. NUMERICAL RESULTS AND DISCUSSIONS

. . - . . Fig. 5. Magnitude of the Green’s functidi®,. Region 0: PEC. Region 1:
In this paper, a numerically efficient technique is developed = 2.3,,, = 1.Region 2: free space, = 20 mm,a; = p’ = 21 mm,

to represent Green’s functions in closed forms. The spec= 40 mm,¢ — ¢’ = 7/6 rad, f = 4.7 GHz.

tral-domain Green’s functions are sampled on a path obtained

by folding and deforming the original Sommerfeld integratioosan be used. Once the value Bf is determined;I3 can be
path. This deformed path should be constructed by choosisgfely chosen arountl175. A total number of approximately
the deformation parametefs, 15, and73, appropriately. The 200 samples can be sufficient for sampling in the spectral
value of13 should be sufficiently large to overcome the effectdomain to obtain satisfactory results in the spatial domain.

of the pole and branch-point singularities on sampling. On theTo investigate the effect of path deformation on the approxi-
other hand, it should be chosen small enough to avoid numerin@tion procedure, a function formed as a sum of three Hankel
difficulties. Moreover, the value df; should be large enoughfunctions in the spectral domain is sampled on a deformed path
so thatk,\/1+ 73 is greater than the wavenumbers of alfor several values df; and transformed into the spatial domain
layers to ensure that the deformed path does not pass throimgtiosed forms for each value @f individually. The results ob-
any one of the pole and branch-point singularities and the largéned by these transformations are compared with those com-
argument approximation of the zeroth-order Hankel functiomaited by the analytical transformation using the Sommerfeld



TOKGOZ AND DURAL: CLOSED-FORM GREEN'S FUNCTIONS 45

logio(| f GEdz]) loguo(IGg.)
-0.35 T T T T T T v 1.65 T T T

<- 1 L
-0.70 |- 1.50 |-
-1.05 |- 1.35 |
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© Exact © Exact
| Approximate g | Approximate g

-2.10 1 1 L 1 * l L . 1 . 1 . ! .

-3 -2 -1 o 1 0'90_3 -2 -1 [o] 1

logio(lko(z — 2')|) logio(lke(z — 2)])

Fig.6. Magnitude of the Green’s functighG 22 d=. Region 0: PEC. Region 1: Fig. 8. Magnitude of the Green’s functiafiZ_ . Region 0: PEC, Region 1:

bz

€ry = 2.3,y = 1. Region 2: free spaca, = 20 mm,ay = p’ =21 mm, ¢ =23 4, =1.Region 2: free space, = 20 mm,a; = p’ = 21 mm,

p=40mm,¢ — ¢’ = 7/6 rad, f = 4.7 GHz. p=40mm,é — ¢ = x/6 rad, f = 4.7 GHz.
logio(| f G§.dz]) logio(| f GE,dz|)
2.00 T T T T T T T 2.25 . T . r ' T
L E q
q
1.75 |- 1.80 |
1.50 |- 1.35 |
1.25 | 0.90 |
1.00 |- 0.45 |-
© Exact [ Exact
| Approximate J | Approximate
0.75 . L L 1 L L L N i N L N 1 .
-3 -2 -1 o 1 000 3 -2 -1 o 1
logio(|ko(z — 2)) logio(Jko(z — 2)))

Region 1:¢,, = 2.3, i, = 1. Region 2: free spacey, = 20 mm, Region lie, = 2.3, u,, = 1. Region 2: fret—?“wspace;0 = 20 mm,
a1 =p =21 mm,p=40mm,¢ — ¢’ = 7/6 rad, f = 4.7 GHz. ay =p’ =21 mm,p=40mm,¢ — ¢’ = /6 rad, f = 4.7 GHz.

Fig. 7. Magnitude of the Green's functioff GJ.dz. Region 0: PEC. Fig. 9. Magnitude of the Green's functioff GZ,d=. Region 0: PEC.

identity. It is observed in Fig. 3 thaf; = 0.01 is too small In this section, layered cylindrical geometries with various
and7; = 1 is too large to provide a good approximation orsource excitations are also investigated. Approximate results ob-
the deformed path, which deviates too much from the origintdined by the closed-form approximation technique are com-
path. The other approximate results obtained for the valuespafred with the exact values computed by the numerical eval-
Ty = 0.05, 71 = 0.1, andT; = 0.5 are in good agreement with uation of the inverse Fourier integral (27).

the exact values, as shown in Fig. 3. Experiences on numerical’he Green's functions that are divided by in the spectral
computations indicate that 77, which is the maximum devia- domain to obtain even functions bf are given a$f Gf(; Hqy
tion from the original path, should be aroudd %, for a robust rather than |qu7 H|in the spatial domain. These Green’s
and safe approximation. functions can be recovered by operating the derivajz on
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l0y10(|Ggp|)
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logio(] J Giydz)

T v T T -1.05 v T T T T T
| e q
q
1.40 |- -1.20 =
1.05 | -1.35 |-
0.70 |- -1.50 |~
0.35 |- -1.65 [~
© Exact © Exact
L Approximate | Approximate
0.00 L L [ 1 -1.80 L [ A L i 1 A
-3 -2 -1 (o] 1 -3 -2 -1 o] 1
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Fig. 10. Magnitude of the Green's functi@i’y,. Region 0: PEC. Region 1: Fig. 12. Magnitude of the Green's functiofi G, d=. Region 0: PEC.

€, = 2.3, n; = 1. Region 2: free space, = 20 mm,a; = p’ = 21 mm,
p=40mm,¢ — ¢’ = x/6 rad, f = 4.7 GHz.

logio(|Ggyl)

Region 1:e,, = 2.3, n,, = 1. Region 2: free space;, = 20 mm,
a; =p =21 mm,p =40 mm,¢ — ¢’ = x/6 rad, f = 4.7 GHz.

4.55 T n T T T v
[« /
a.20 |-
observation
point
y 4 )
3.85 |- ic [dielectric| free space
a, as
Region|Region
3.50 |- 3
3.15 |-
[=) Exact
5 Approximate
2.80 ) R . , ) , . Fig. 13. I_:)ielectric-coated conducting _cylinder with a superstrate._Region 0:
-3 . -9 o 1 PEC. Region 1¢,, = 2.3, u,, = 1. Region 2., = 4, i, = 1. Region 3:
logio(|ko(z — 2)}) free spacei, = 50 mm,a; = p’ = 51 mm,a; = 52 mm,p = 70 mm,
¢ — ¢’ = w/6 rad, f = 6.8 GHz.
Fig. 11. Magnitude of the Green’s functi@®’, . Region 0: PEC. Region 1:

€~ = 2.3, -, = 1. Region 2: free space, = 20 mm,a, = p’ = 21 mm,
p =40 mm,¢ — ¢’ = 7/6 rad, f = 4.7 GHz. . .
gion l:e,, = 2.3, u,., = 1, Region 2: free spacey = 20 mm,

ap = p = 21mm,p = 40 mm, ¢ — ¢ = x/6rad at

f = 4.7 GHz, as shown in Fig. 4. It is observed that the spec-
them. In the method-of-moments applications, this derivatiteal-domain Green’s functions of the electric field are in good
can be alternatively operated on expansion functions. agreement with those given in [7] for this geometry. The exact

As the first example, a dielectric-coated conducting cylindand approximate results for the spatial-domain Green'’s func-

with a point electric source at the interface between the dieldmns are consistent with each other, as shown in Figs. 5-12.
tric material and free space is investigated and modeled as dhe second example geometry consists of a dielectric-coated
multilayer structure with the parameters: Region 0: PEC, Reenducting cylinder with a superstrate, as shown in Fig. 13,
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Fig. 14. Magnitude of the Green's functiofi GZ, dz. Region 0: PEC. Fig. 16. Magnitude of t_he Green'’s functidiy, . Region 0: PEC. Region 1:
Region L, = 2.3, 4, = 1.Region 2e,, = 4, pu,, = 1. Region3: 1 = 2.3, iy = 1. Region 2., =4, ., = 1. Region 3:f/r,ee space, =
free spacegs = 50 mm,a, = p' = 51 MM.az = 52 mm,p = 70 mm, 20 MM a1 = p’ =51 mm,a; =52 mm,p =70 mm, ¢ — ¢" = /6 rad,
6—¢ = /6 1ad, f = 6.8 GHz. f =6.8GHz.
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Fig. 17. Magnitude of the Green’'s functioﬁGﬁ,,dz. Region 0: PEC.
Fig. 15. Magnitude of the Green’s functi@i?, . Region 0: PEC. Region 1: Region 1., = 2.3, u., = 1.Region 2:¢,, = 4, u,, = 1. Region 3:

€ = 2-3”“7“1 =1. Region 2:67‘2 — 4'117“2 =1. Region 3: free space, = free space¢q, = 50 mm,(l,l = p’ = 51l mm,a; = 52 mm,p = 70 mm,
50 mm,a; = p’ = 51 mm,ax = 52mm,p = 70 mm, — ¢’ = /6 rad, ¢ — ¢ =7/6rad, f=6.8GCHz
f = 6.8 GHz.

If the source and observation layers are the same, the direct
which has the parameters: Region 0: PEC, Regien 1= 2.3, termin (2) can be transformed into the spatial domain in closed
ur, = 1, Region 2¢,, = 4, 4., = 1, Region 3: free spacesform by using the Sommerfeld identity, and the approximation
ap = 50 mm,a; = p/ = 51 mm,az = 52 mm, p = 70 mm, technique should be applied to the remaining terms. In the anal-
¢—¢' = w/6rad. The geometry is excited bygaoriented point ysis by the method of moments, expansion and testing functions
electric source af = 6.8 GHz. The spatial-domain Green’scan be properly chosen and the approximation technique may be
functions are shown in Figs. 14-17. modified to improve the computational efficiency [21], [38].



48

The numerical examples presented in this section show that2]
the approximation technique yields accurate results in the anal-
ysis of cylindrical structures. Therefore, this technique can b?l3]
conveniently used to improve the computational efficiency in
the numerical approach to the problems involving muItiIayer[14]
cylindrical geometries.

(18]

IV. CONCLUSION [16]

A numerically efficient technique is developed to obtain
closed-form spatial-domain Green'’s functions in an arbitrary
layer for the electric and magnetic fields due to the electric™]
and magnetic sources embedded in an arbitrary layer of a
cylindrically stratified medium. This technique is based on thd18l
approximation of the spectral-domain Green’s functions in
terms of complex exponentials in two steps, where the large
argument behavior of the zeroth-order Hankel functions i!®!
used for the transformation using the Sommerfeld identity in
the first step and a simple contour integration is applied ir20]
the second step. The approximate results obtained by the use
of the technique in the analysis of multilayer geometries arg1;
compared with the exact values computed by the numerical
evaluation of the folded inverse Fourier integral (27). Thes%z]
results are found to be in good agreement.

(23]
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