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Closed-Form Green’s Functions for Cylindrically
Stratified Media

Çăgatay Tokgöz, Student Member, IEEE,and Gülbin Dural, Member, IEEE

Abstract—A numerically efficient technique is developed to ob-
tain the spatial-domain closed-form Green’s functions of the elec-
tric and magnetic fields due to - and -oriented electric and mag-
netic sources embedded in an arbitrary layer of a cylindrical strat-
ified medium. First, the electric- and magnetic-field components
representing the coupled TM and TE modes are derived in the
spectral domain for an arbitrary observation layer. The spectral-
domain Green’s functions are then obtained and approximated in
terms of complex exponentials in two consecutive steps by using
the generalized pencil of function method. For the Green’s func-
tions approximated in the first step, the large argument behavior
of the zeroth-order Hankel functions is used for the transforma-
tion into the spatial domain with the use of the Sommerfeld iden-
tity. In the second step, the remaining part of the Green’s functions
are approximated on two complementary parts of a proposed de-
formed path and transformed into the spatial domain, analytically.
The results obtained in the two consecutive steps are combined to
yield the spatial-domain Green’s functions in closed forms.

Index Terms—Closed forms, cylinders, cylindrical antennas,
Green’s function, Hankel transforms, nonhomogeneous media,
spectral-domain analysis.

I. INTRODUCTION

DUE TO THE advantages of microstrip antennas, such as
their low weight, low cost, and flexibility, microstrip ge-

ometries mounted on layered structures have become very pop-
ular in various applications ranging from satellite and vehicular
communications, and remote sensing to radiators in biomedical
applications [1], [2].

Multilayer cylindrical structures can be used as practical
models in a wide variety of applications. A typical example
of such a modeling is the representation of a graded-index
optical fiber with many piecewise homogeneous layers. Radar
cross section for the scattering by the inlets of aircrafts can
be reduced by coating the inlets with multilayer materials.
Importance of cylindrically layered structures have led to the
investigation of the scattering from conducting, dielectric, or
dielectric-coated conducting cylinders, as well as the radiation
from cylindrical–rectangular and wraparound microstrip and
patch antennas [3]–[18].

Computation of the spatial-domain Green’s functions re-
quires a tedious and time-consuming numerical integration
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of the spectral-domain Green’s functions, which are derived
recursively for layered geometries. Therefore, the idea of
closed-form spatial-domain Green’s functions was proposed
[19] and then extended to planarly layered structures [20]–[22]
to avoid such an integration. In the analysis of spherically
layered media, a significant amount of work has also been done
and reported in [23]–[25].

There are a number of publications in which dispersion
phenomena for the waves guided along a cylindrical stratified
medium are presented [25]–[32]. Unlike those in planarly and
spherically layered media, TM and TE waves are coupled
together at an interface in cylindrically layered media. This
requires simultaneous solution of the fields corresponding to
TM and TE cases, the only exceptions being the rotationally
symmetric and -invariant cases for which
separate analyses of TM and TE modes are possible. The cou-
pled-mode analysis required for cylindrical structures results in
reflection and transmission matrices rather than reflection and
transmission coefficients. Some researchers have represented
the reflection and transmission of waves at an interface be-
tween two adjacent cylindrical strata by 4 × 4 matrices in their
publications [30], [31]. A simpler and less redundant algorithm
using 2 × 2 matrices in field analysis has also been presented in
[25] and [26], where only the components of fields are used
to represent the modes guided through layers.

Although several forms of Green’s functions for multilayer
cylindrical geometries are present in the literature [24], [25],
[33], [34], closed-form expressions have not yet been reported
in the spatial domain. The major contribution of this paper is
to develop a two-step technique for obtaining the spatial-do-
main Green’s functions in closed forms for a cylindrically lay-
ered medium, shown in Fig. 1. Closed-form expressions for the
spectral-domain Green’s functions of the electric and magnetic
fields due to - and -oriented electric and magnetic sources
embedded in an arbitrary layer are derived for an arbitrary obser-
vation layer, analytically, by using a recursive algorithm for the
coupled TM and TE modes. These Green’s functions are sam-
pled and approximated in two regions in terms of complex ex-
ponentials by using the generalized pencil of function (GPOF)
method [35]. In the first region, where the large argument be-
havior of the zeroth-order Hankel functions enables complex ex-
ponentials of to be represented in terms of Hankel functions,
the Sommerfeld integral identity is used to transform Green’s
functions into the spatial domain. Hankel function represen-
tation obtained for this region is subtracted from the original
Green’s functions in the full domain, resulting in Green’s func-
tions vanishing outside a limited region. These Green’s func-
tions are then approximated in terms of complex exponentials
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Fig. 1. Multiple interface geometry.

Fig. 2. Deformed path.

along the two contours and of a new path, which is shown
in Fig. 2, and obtained by the deformation of the folded original
integration path to avoid the branch-point singularity associated
with a branch-cut and pole singularities encountered along the
real axis on the complex plane [36]. In this second region,
transformation into the spatial domain turns out to be the ana-
lytical evaluation of two simple contour integrals of exponen-
tial functions. Finally, addition of the contributions of each step
gives the spatial-domain Green’s functions in closed forms.

II. FORMULATION

A cylindrical multilayer geometry is shown in Fig. 1. An elec-
tric or magnetic source can be embedded at in layer

and an observation point can be located at in an ar-
bitrary layer . Layers may vary in their electric and magnetic
properties ( ), as well as their thicknesses. Moreover, a
perfect electric conductor (PEC) or perfect magnetic conductor
(PMC) can be considered as the innermost or outermost layer.
The following are the important steps carried out in the deriva-
tion of the closed-form Green’s functions.

1) Derivation of the spectral-domain Green’s functions.

a) The components of fields are derived for the cou-
pled TM and TE modes in the source layer.

b) These field components are then transferred, recur-
sively, into the observation layer where Green’s
functions are obtained.

2) Derivation of the closed-form Green’s functions in the
spatial domain.

a) Due to the pole singularities on the real axis and
the branch-point singularities at where

is the wavenumber of the outermost layer, the
Sommerfeld integral is not integrable along the real
axis on the complex plane [25], [36]. Therefore,
this original path is folded and deformed into the
path shown in Fig. 2.

b) Green’s functions are sampled and approximated in
terms of complex exponentials along the new path.

c) The approximated Green’s functions are trans-
formed into the spatial domain in two steps,
analytically.

The spectral-domain Green’s functions are derived, recur-
sively, following a similar procedure as in [25] and [37]. Hence,
they are presented in Section II-A without giving the details of
the derivation.

A. Green’s Functions in the Spectral Domain

In general, a point electric or magnetic source of unit strength
is represented by a current element

(1)

where is the unit vector in the current direction and it is as-
sumed to be either or in the analysis, depending on whether
a source of or orientation is considered, respectively. The
components of the electric and magnetic fields can be written as
a sum of the direct term due to the source, and the standing and
outgoing waves which are, respectively, formed by the multiple
reflections from the outer and inner boundaries of the source
layer and represented by the first-kind Bessel and second-kind
Hankel functions. Thus, the components of the fields can be
obtained in the source layer as

(2)

where and represent theth harmonics for the electric
and magnetic fields, respectively, in the spectral domain. In (2),

and are, respectively, the smaller and larger ofand ,
and is a 2 × 1 matrix operator that acts on functions to its
left-hand side and is given by

(3)
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for the fields due to an electric source and

(4)

for the fields due to a magnetic source.
Amplitudes for the th harmonics of the reflected waves are

represented by 2 × 2 matrices and , which can be de-
termined by applying the boundary conditions at the inner and
outer interfaces of the source layer to yield

(5)

where is a 2 × 1 amplitude matrix for theth harmonic
of the standing and outgoing waves for and ,
respectively, in the source layer. The amplitudes of the standing
waves in a layer different from the source layer are related to
those in the adjacent layers by

(6)

where and are the amplitude matrices for theth har-
monics of the standing waves in layers and , respectively.
Similarly, the amplitudes of the outgoing waves can be related
as

(7)

where and are the amplitude matrices for theth har-
monics of the outgoing waves in layers and , respectively.

, , and are 2 × 2 local transmission, local reflec-
tion and generalized reflection matrices for the waves incident
from layer into layer , respectively. Hence, the field expres-
sions for any layer can be derived, iteratively, from those of the
source layer [25], [37].

Depending on the field expressions of the observation layer,
the spectral-domain Green’s functions are derived as

(8)

where is obtained for the- and -oriented electric and
magnetic sources as follows.

1) -oriented electric dipole:

(9)

(10)

(11)

(12)

2) -oriented electric dipole:

(13)

(14)

(15)

(16)

3) -oriented magnetic dipole:

(17)

(18)

(19)

(20)

4) -oriented magnetic dipole:

(21)

(22)

(23)

(24)

with

(25)
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In (9)–(24), denotes the th harmonic of the spectral-
domain Green’s function for the electric and magnetic fields
in direction due to a unit -oriented current element,

, , the subscripts and indicate the
source and observation layers, and the superscriptsand
represent the electric and magnetic fields, respectively.

Note that, in (10), (11), (13), (16), (17), (20), (22), and (23),
is given instead of itself to represent the

Green’s functions as even functions of for the proper use in
the approximation procedure explained in Section II-B. Since
the division by corresponds to integration with respect to
in the spatial domain, the integral of the spatial-domain Green’s
function is approximated from which the spatial-domain
Green’s function itself can easily be obtained [21], [22].

B. Closed-Form Green’s Functions in the Spatial Domain

The spectral-domain Green’s functions can be transformed
into the spatial domain by

(26)

where is the spatial-domain Green’s functions andis either
or depending on whether is an even or

odd function of , respectively. Since is chosen to be an even
function of , the inverse Fourier integral (26) can be folded as

(27)

Along the original path of integration, branch-point singulari-
ties at and pole singularities are encountered,
being the wavenumber of the outermost layer [25], [36]. Due to
these singularities, the inverse Fourier integral (26) is not inte-
grable along the real axis on the complexplane in a lossless
medium. Therefore, a new path obtained by the deformation of
the folded original integration path, and shown in Fig. 2, is intro-
duced to avoid the pole and branch-point singularities. The spec-
tral-domain Green’s functions are sampled and approximated in
terms of complex exponentials on this deformed path using the
GPOF method and then transformed into the spatial domain by
applying a two-step approximation technique outlined as fol-
lows [22].

1) Transformation by the Sommerfeld identity using the
large argument behavior of the zeroth-order Hankel
functions.

a) The spectral-domain Green’s functions are sampled
uniformly along the path

(28)

where and are the wavenumbers of the sam-
pling region that is chosen as the source layer. With
this step, the original integration path is mapped
into an equivalent path in the plane.

b) The value of should be large enough to avoid
the pole and branch-point singularities and in order
for the large argument approximation of the ze-
roth-order Hankel functions to be valid. Hence, a
choice of such that is greater than

the wavenumbers of all layers should be appro-
priate. Once is chosen, the value of
is sufficient to capture the behavior of the Green’s
functions in the sampling interval.

c) The sampled Green’s functions are multiplied by
and approximated in terms of complex

exponentials of by the GPOF method as

(29)

where represents the spectral-domain Green’s
functions approximated in this region.

d) The resulting exponential functions are represented
by the zeroth-order Hankel functions using the
large argument approximation as

(30)

e) Then, by using the Sommerfeld identity

(31)

where , the spa-
tial-domain Green’s functions are obtained as

(32)

where .

2) Analytical transformation.

a) The spectral-domain Green’s functions ap-
proximated in the first step are subtracted from the
original Green’s functions to yield the Green’s
functions vanishing for .

b) The resulting Green’s functions are sampled
uniformly along the two contours and , which
are shown in Fig. 2 and given, respectively, as

(33)

and

(34)

c) Along the paths (33) and (34), the imaginary part
of has a maximum value of at
and , respectively, where maximum de-
viation from the original path occurs. Therefore,
the deformation of the path can be controlled by
choosing properly. This parameter should be
sufficiently large to overcome the effects of the pole
and branch-point singularities and small enough to
avoid numerical difficulties. For a robust and safe
approximation, should be so chosen that

, where is the wavenumber of free space.
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Fig. 3. log (jHj) for ~H = a H (k � ). k = 59:2788, a =
3:86, a = 7:13, a = 2:95, � = 0:42, � = 0:25, � = 0:58.

d) The sampled Green’s functions are approximated in
terms of and complex exponentials of by
the GPOF method, respectively, on the paths (33)
and (34) as

(35)

e) Transformation of the approximated Green’s func-
tions into the spatial domain turns out to be a simple
contour integral of exponential functions as

(36)

Addition of the contributions of the two steps yields the spa-
tial-domain Green’s functions in closed forms.

III. N UMERICAL RESULTS AND DISCUSSIONS

In this paper, a numerically efficient technique is developed
to represent Green’s functions in closed forms. The spec-
tral-domain Green’s functions are sampled on a path obtained
by folding and deforming the original Sommerfeld integration
path. This deformed path should be constructed by choosing
the deformation parameters, , and , appropriately. The
value of should be sufficiently large to overcome the effects
of the pole and branch-point singularities on sampling. On the
other hand, it should be chosen small enough to avoid numerical
difficulties. Moreover, the value of should be large enough
so that is greater than the wavenumbers of all
layers to ensure that the deformed path does not pass through
any one of the pole and branch-point singularities and the large
argument approximation of the zeroth-order Hankel functions

Fig. 4. Dielectric-coated conducting cylinder. Region 0: PEC. Region 1:
� = 2:3, � = 1. Region 2: free space,a = 20 mm,a = � = 21 mm,
� = 40 mm,� � � = �=6 rad, f = 4:7 GHz.

Fig. 5. Magnitude of the Green’s functionG . Region 0: PEC. Region 1:
� = 2:3, � = 1. Region 2: free space,a = 20 mm,a = � = 21 mm,
� = 40 mm,� � � = �=6 rad, f = 4:7 GHz.

can be used. Once the value of is determined, can be
safely chosen around . A total number of approximately
200 samples can be sufficient for sampling in the spectral
domain to obtain satisfactory results in the spatial domain.

To investigate the effect of path deformation on the approxi-
mation procedure, a function formed as a sum of three Hankel
functions in the spectral domain is sampled on a deformed path
for several values of and transformed into the spatial domain
in closed forms for each value of individually. The results ob-
tained by these transformations are compared with those com-
puted by the analytical transformation using the Sommerfeld
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Fig. 6. Magnitude of the Green’s functionG dz. Region 0: PEC. Region 1:
� = 2:3, � = 1. Region 2: free space,a = 20 mm,a = � = 21 mm,
� = 40 mm,� � � = �=6 rad, f = 4:7 GHz.

Fig. 7. Magnitude of the Green’s function G dz. Region 0: PEC.
Region 1:� = 2:3, � = 1. Region 2: free space,a = 20 mm,
a = � = 21 mm,� = 40 mm,�� � = �=6 rad, f = 4:7 GHz.

identity. It is observed in Fig. 3 that is too small
and is too large to provide a good approximation on
the deformed path, which deviates too much from the original
path. The other approximate results obtained for the values of

, , and are in good agreement with
the exact values, as shown in Fig. 3. Experiences on numerical
computations indicate that , which is the maximum devia-
tion from the original path, should be around for a robust
and safe approximation.

Fig. 8. Magnitude of the Green’s functionG . Region 0: PEC, Region 1:
� = 2:3, � = 1. Region 2: free space,a = 20 mm,a = � = 21 mm,
� = 40 mm,� � � = �=6 rad, f = 4:7 GHz.

Fig. 9. Magnitude of the Green’s function G dz. Region 0: PEC.
Region 1:� = 2:3, � = 1. Region 2: free space,a = 20 mm,
a = � = 21 mm,� = 40 mm,�� � = �=6 rad, f = 4:7 GHz.

In this section, layered cylindrical geometries with various
source excitations are also investigated. Approximate results ob-
tained by the closed-form approximation technique are com-
pared with the exact values computed by the numerical eval-
uation of the inverse Fourier integral (27).

The Green’s functions that are divided by in the spectral
domain to obtain even functions of are given as
rather than in the spatial domain. These Green’s
functions can be recovered by operating the derivative on
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Fig. 10. Magnitude of the Green’s functionG . Region 0: PEC. Region 1:
� = 2:3, � = 1. Region 2: free space,a = 20 mm,a = � = 21 mm,
� = 40 mm,� � � = �=6 rad, f = 4:7 GHz.

Fig. 11. Magnitude of the Green’s functionG . Region 0: PEC. Region 1:
� = 2:3, � = 1. Region 2: free space,a = 20 mm,a = � = 21 mm,
� = 40 mm,� � � = �=6 rad, f = 4:7 GHz.

them. In the method-of-moments applications, this derivative
can be alternatively operated on expansion functions.

As the first example, a dielectric-coated conducting cylinder
with a point electric source at the interface between the dielec-
tric material and free space is investigated and modeled as a
multilayer structure with the parameters: Region 0: PEC, Re-

Fig. 12. Magnitude of the Green’s functionG dz. Region 0: PEC.
Region 1:� = 2:3, � = 1. Region 2: free space,a = 20 mm,
a = � = 21 mm,� = 40 mm,�� � = �=6 rad, f = 4:7 GHz.

Fig. 13. Dielectric-coated conducting cylinder with a superstrate. Region 0:
PEC. Region 1:� = 2:3, � = 1. Region 2:� = 4, � = 1. Region 3:
free spacea = 50 mm, a = � = 51 mm, a = 52 mm, � = 70 mm,
� � � = �=6 rad, f = 6:8 GHz.

gion 1: , , Region 2: free space, mm,
mm, mm, at

GHz, as shown in Fig. 4. It is observed that the spec-
tral-domain Green’s functions of the electric field are in good
agreement with those given in [7] for this geometry. The exact
and approximate results for the spatial-domain Green’s func-
tions are consistent with each other, as shown in Figs. 5–12.

The second example geometry consists of a dielectric-coated
conducting cylinder with a superstrate, as shown in Fig. 13,



TOKGÖZ AND DURAL: CLOSED-FORM GREEN’S FUNCTIONS 47

Fig. 14. Magnitude of the Green’s functionG dz. Region 0: PEC.
Region 1:� = 2:3, � = 1. Region 2:� = 4, � = 1. Region 3:
free space,a = 50 mm, a = � = 51 mm, a = 52 mm, � = 70 mm,
� � � = �=6 rad, f = 6:8 GHz.

Fig. 15. Magnitude of the Green’s functionG . Region 0: PEC. Region 1:
� = 2:3,� = 1. Region 2:� = 4,� = 1. Region 3: free space,a =

50 mm,a = � = 51 mm,a = 52 mm,� = 70 mm,� � � = �=6 rad,
f = 6:8 GHz.

which has the parameters: Region 0: PEC, Region 1: ,
, Region 2: , , Region 3: free spaces
mm, mm, mm, mm,

. The geometry is excited by a-oriented point
electric source at GHz. The spatial-domain Green’s
functions are shown in Figs. 14–17.

Fig. 16. Magnitude of the Green’s functionG . Region 0: PEC. Region 1:
� = 2:3,� = 1. Region 2:� = 4,� = 1. Region 3: free space,a =

50 mm,a = � = 51 mm,a = 52 mm,� = 70 mm,� � � = �=6 rad,
f = 6:8 GHz.

Fig. 17. Magnitude of the Green’s functionG dz. Region 0: PEC.
Region 1:� = 2:3, � = 1. Region 2:� = 4, � = 1. Region 3:
free space,a = 50 mm, a = � = 51 mm, a = 52 mm, � = 70 mm,
� � � = �=6 rad, f = 6:8 GHz.

If the source and observation layers are the same, the direct
term in (2) can be transformed into the spatial domain in closed
form by using the Sommerfeld identity, and the approximation
technique should be applied to the remaining terms. In the anal-
ysis by the method of moments, expansion and testing functions
can be properly chosen and the approximation technique may be
modified to improve the computational efficiency [21], [38].
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The numerical examples presented in this section show that
the approximation technique yields accurate results in the anal-
ysis of cylindrical structures. Therefore, this technique can be
conveniently used to improve the computational efficiency in
the numerical approach to the problems involving multilayer
cylindrical geometries.

IV. CONCLUSION

A numerically efficient technique is developed to obtain
closed-form spatial-domain Green’s functions in an arbitrary
layer for the electric and magnetic fields due to the electric
and magnetic sources embedded in an arbitrary layer of a
cylindrically stratified medium. This technique is based on the
approximation of the spectral-domain Green’s functions in
terms of complex exponentials in two steps, where the large
argument behavior of the zeroth-order Hankel functions is
used for the transformation using the Sommerfeld identity in
the first step and a simple contour integration is applied in
the second step. The approximate results obtained by the use
of the technique in the analysis of multilayer geometries are
compared with the exact values computed by the numerical
evaluation of the folded inverse Fourier integral (27). These
results are found to be in good agreement.
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