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Generalized Multilayer Anisotropic Dielectric
Resonators
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Abstract—Modeling of the generalized multilayer cylin-
drical anisotropic dielectric loaded resonator by a rigorous
mode-matching method is presented in this paper. Eigenmodes
of the multilayer two parallel-plate waveguides are obtained. By
cascading the radial discontinuities of the structure, resonant
frequency, field distribution, unloaded , and the frequency sen-
sitivity of the resonator are obtained. The method can be used to
analyze and design resonators and filters of multilayer structure.
The computed results are compared with the results in [13] and
with experimental data, and is shown to be in good agreement.

I. INTRODUCTION

W ITH THE breakthrough of the ceramic technology, a
number of new high dielectric-constant materials with

a high-quality factor low- temperature coefficient were devel-
oped. Tremendous progress on stabilization and miniaturization
of resonators and filters has been achieved over the past three
decades. Dielectric loaded resonators and filters with high un-
loaded have been widely used in communication systems and
other microwave applications [1]–[5].

Cooled ultra-high high- stability sapphire dielectric res-
onators operating at a whispering-gallery mode (WGM) (a hy-
brid mode with a large number of azimuthal variations ) found
important applications in the construction of ultra-stable low-
noise microwave oscillators [5]–[12], [14]. Since single crys-
talline sapphire is a dielectric with uniaxial anisotropy, the in-
fluence of the anisotropic dielectric constants on the resonant
modes of the resonator needs to be considered [12]. The sup-
port of the dielectric loaded resonator is needed to improve the
reliability of the resonator. Thus, the effects of the support struc-
ture on the resonant frequencies and unloadedof the resonator
should be taken into account in the resonator design [14].

Recently, there has been increasing interest in the design of
tunable dielectric loaded resonators and filters. Some applica-
tions require the use of a dielectric loaded resonator of very
complicated structure. An accurate and efficient computer simu-
lation tool to compute the resonant-frequency, unloaded, and
field distribution is essential in the resonator design. It is nei-
ther efficient nor convenient to develop a dedicated computer
program for each configuration of dielectric loaded resonator.
A generalized structure that can fit as many configurations as
possible would be very desirable to satisfy the need of future
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Fig. 1. Configuration of the generalized multilayer cylindrical
uniaxial-anisotropic dielectric loaded resonator.

work. Thus, a modeling method for analysis of the generalized
isotropic and uniaxial anisotropic multilayer dielectric loaded
resonator structure needs to be developed for design of the sap-
phire and other multilayer dielectric loaded resonators and fil-
ters.

In this paper, the modeling of the generalized multilayer
cylindrical uniaxial anisotropic dielectric loaded resonator
by a rigorous radial mode-matching method is presented.
Resonant-frequency field distribution and the unloadedfor
all resonant modes of the resonator of arbitrary dimension can
be accurately determined. The resonant-frequency sensitivity
to the enclosure dimension changes is computed by using
the perturbation theory. The configuration of the resonator is
general, which allows many types of the isotropic and uniaxial
anisotropic resonators to be analyzed and designed. The
correctness of the method is verified by comparing its results
with the computed results in [13] and the measured data, and is
shown to be in good agreement.

II. CONFIGURATION AND THEORY

The configuration of a generalized multilayer cylindrical uni-
axial-anisotropic dielectric loaded resonator under considera-
tion is shown in Fig. 1 in a cylindrical coordinate system (,

, ). There are layers in the -direction and layers in
the -direction. Therefore, the structure can be partitioned into

regions to be analyzed by the mode-matching method.
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Each region can be filled with a uniaxial-anisotropic dielectric
material with the relative permittivity tensor , loss tangent

, and relative isotropic permeability . The enclo-
sure’s top wall, bottom wall, and sidewalls can be either perfect
electric conductor (PEC) or perfect magnetic conductor (PMC).

The permittivity tensor is given by

(1)

For the isotropic case, the dielectric constantsand are
equal. Since the number of layers , of the resonator are
arbitrary and the dielectric constant in each region can also be
chosen arbitrarily, the configuration is very general and allows
almost unlimited types of structures to be analyzed.

Starting from Maxwell’s equations, the wave equations in the
charge-free uniaxial anisotropic medium can be obtained as [13]

(2)

(3)

Since the components of and are not all independent, it
is not necessary to solve all six scalar wave equations for the six
field components at the same time. To simplify the analysis, it is
usual to decompose the normal mode fields into two orthogonal
sets of solutions, i.e., modes ( ) and modes
( ) by solving the component wave equations only. The
total electromagnetic fields are, therefore, the summation of the
eigenmode fields of both sets. The transverse electromagnetic
fields in each region can then be expressed as

(4)

(5)

where and are the number of TE and TM modes used
in region , , respectively, , are
the field coefficients in each region, , , , and
are the first- and second-kind Bessel functions, and, , or
associated Bessel functions, . , are the transverse
eigenfields of the TE mode ( ) or TM mode ( ) of the

Fig. 2. Configuration of the multilayer uniaxial anisotropic two parallel-plate
radial waveguide.

multilayer uniaxial anisotropic dielectric loaded two parallel-
plate radial waveguide bounded in the-direction, and are given
as

(6)

(7)

(8)

(9)

(10)

(11)

where , are the wavenumbers of the TE and TM modes in
the corresponding region, and are the
and mode’s eigenfunctions of the multilayer two parallel-
plate radial waveguide in each of the layers shown in Fig. 2, and
relating the and by the differential equations as

(12)

and

(13)
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The general solutions of (12) and (13) in each layer are given as

(14)
where can be set as , , ( to ), and

; , are coefficients of the eigenfunction in each
layer, and one of the coefficients of the top and bottom layers is
zero due to the boundary condition of the plates.

The boundary conditions at the interfaces between the layers
require that the tangential electromagnetic fields to be contin-
uous, and are relating to the normal fields as follows.

For mode:

(15)

(16)

For mode:

(17)

(18)

The field coefficients of the layers can be related to each
other by substituting the field expressions of each layer into
the boundary-condition equations. Eliminating the coefficient

or of the last layer’s field continuity equations, a
characteristic equation for the radial propagation constantof
the eigenmodes containing the field coefficients , and

of the layer can finally be obtained.
For a given frequency, the value satisfying the character-

istic equation gives the propagation constant of the two par-
allel-plate waveguide’s eigenmode, where can be obtained
from , , or . The field coefficients and
can be obtained by repeatedly computing theand of the
previous layers from the boundary-condition equations. By as-
signing a nonzero value to or , all the field coefficients
of the two parallel-plate waveguide’s eigenfunction can be de-
termined.

Having obtained the eigenfunctions in the-direction and
all the field components of the eigenmodes of the multilayer
uniaxial-anisotropic dielectric loaded two parallel-plate radial
waveguides, a rigorous radial mode-matching method is then
applied to solve the discontinuity between the multilayer struc-
ture in the radial direction. There are radial regions in the
resonator, and each radial region haslayer dielectrics in the
-direction. Fig. 3 shows the radial discontinuity between the

and layer of the resonator. Solving the generalizedand
layer radial discontinuity, the total of discontinu-

ities in the resonator can then be obtained. As a result, all the
field coefficients of the eigenmodes can be determined.

The boundary conditions at the interface between two multi-
layer radial waveguide regions at gives

(19)

Fig. 3. Configuration of the radial discontinuity in the dielectric loaded
resonator.

and

(20)

where is the inner region and is the outer region. The inner
product of two fields at the interface of the regions is defined as
[4]

(21)

Taking the inner product of the electric-field boundary condition
(19) with the magnetic transverse eigenfield in the outer
region, and the inner product to the magnetic field boundary
condition (20) with the electric transverse eigenfieldin the
inner region, the equations relating the field coefficients of the
two regions due to the discontinuity can be obtained as follows:

(22)

and

(23)

Consider the discontinuity between the radial regionand re-
gion . Assume that the field coefficient matrix of the
inner region is known from solving the discontinuity of the
previous region as

(24)

Substitute (24) into (22) and (23), the field coefficient relation
matrix of the outer region can then be obtained as follows:

(25)

where

(26)
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(27)

(28)

(29)

Since all the elements of the field coefficient matrix of
the inner most region that contains the point are zero, the
coefficient matrix can then be obtained. Repeated cas-
cading of the coefficient matrices from inside to outside of the
dielectric loaded resonator results in an equation relating the
field coefficients of the outer most region

(30)

Applying the boundary conditions at the side enclosure wall
, the characteristic equation for the resonant frequency of

the resonator can finally be obtained. The determinant of the
equation must be zero for nontrivial solutions

(31)

(32)

Searching for the frequencies that are zeros of the determinant
of the characteristic equation give the resonant frequencies of
the modes of the uniaxial anisotropic dielectric loaded resonator.
Solving the characteristic equation and the field continuity equa-
tions at the interfaces of the dielectric layers, the field coeffi-
cients in each layer of the whole resonator can be obtained.

The computation of the unloaded involves the calculation
of the stored energy of the resonant mode in the struc-
ture, dielectric loss , and conductor losses at the enclosure.
Since all the eigenmode functions and their field coefficients
are known, the above computation can be achieved analytically,
which yields high computational efficiency and accuracy, espe-
cially for WGM resonators. The total unloadedof the res-
onator is computed from

(33)

The separation of and helps to understand the loss mech-
anism of the structure and to optimize the dimensions of the res-
onator.

For the WGM resonator, the resonant frequency is highly in-
sensitive to the enclosure dimension of the resonator. To com-
pute frequency dependence on resonator enclosure dimensions,
it is possible to compare the changes of the resonant frequencies
at two different enclosure dimensions. However, this method is
quite unreliable and sometimes incorrect because it introduces
large numerical errors. The accuracy of the results can be signif-

TABLE I
COMPARISON OF COMPUTED RESONANT

FREQUENCIES(IN GIGAHERTZ) WITH THE NUMERICAL RESULTS AND

MEASUREMENT OF ASOLID SAPPHIRERESONATOR WITHr = 5:001 mm,
r = 7:775 mm,b = 5:002 mm,b = 13:00 mm,� = � = 1:031,

� = 9:399, and� = 11:553

icantly improved by using the perturbation theory, which relates
the changes in the resonant frequencyto the perturbation of
the stored energy in the enclosure volume as

(34)

where is the perturbed volume of the resonator andis the
stored energy of the resonant mode.

For the resonator configuration considered, the frequency
sensitivity problem can be divided into computation of the top
and bottom plane sensitivity and sidewall sensitivity. Since
there are neither tangential electric fields nor normal magnetic
fields on the surface of the conductor, the frequency sensitivity
of the resonator on height change and radius change of
the enclosure can be expressed as

(35)

(36)

where is the perturbed area of top, bottom plane, or sidewall
of the sapphire resonator. All the integrations needed for the
frequency sensitivity computation can be evaluated analytically.

III. N UMERICAL RESULTS

A computer program has been developed to compute the res-
onant frequency, field distribution, unloaded, and frequency
sensitivity of the cylindrical multilayer uniaxial anisotropic di-
electric loaded resonators.

The convergence test of the computed results was first made
to determine how many modes are required to achieve a certain
accuracy. Extensive tests show that the results converge rapidly
with the increase of the number of eigenmodes used, and the
accuracy of the results within 0.05% can be achieved when the
number of and modes is larger than eight for most of
the dielectric resonator dimensions.

The accuracy of the results was verified by comparing with
computed and measured data of a solid type resonator published
by Kobayashi [13] and shown in Table I. It is shown that the
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Fig. 4. Typical field distributions of the low-order mode and WGM. (a)HE

mode. (b)HE mode.

computed results by the present method are in excellent agree-
ment with the numerical and experimental data, except the mea-
sured frequency of . This is due to the inaccuracy of the
measured value, as explained in [13].

Fig. 4 shows the typical field distribution of the mode
and mode of a sapphire resonator. It is shown that the
electromagnetic field outside the sapphire resonator is relatively
high for the lower order modes, As a result, the resonator’s
will degrade due to the enclosure wall loss. The electromagnetic
energy in sapphire resonators operating with WGM is almost
entirely confined in the dielectric region and, therefore, the
degradation from the enclosure wall loss is minimized.

Fig. 5 shows the mode chart of an optimized solid sap-
phire resonator with support as a function of the support radius.
It is seen that the resonant frequencies of the mode is nearly
invariable to the change of the support radius, which implies
that the resonator is highly stable. The optimized post radius
is at , which gives 305-MHz spurious free window. The
measured results of the resonant frequency and the spurious-free
window of the resonator with supporting post is shown
in Fig. 6. Marker 1 shows the resonant frequency of the
mode, and markers 2 and 3 indicate the resonant frequencies of

and modes, corresponding to the resonant modes in
Fig. 5 at , respectively. The excellent agreement
between the computed and measured results again shows the
correctness of the theory and accuracy of the results.

Fig. 7 shows the typical contributions of the dielectric loss
and conductive losses of a ring type WGM sapphire resonator
operating at , , and modes as a function of
temperature from 50 to 100K. The resonant frequencies of the
WGM modes are 8.1, 9.6, and 13.0 GHz, respectively [12].
The unloaded ’s of the and modes are mostly

Fig. 5. Mode chart of a solid typeHE sapphire resonator as a function of the
radius of support.

Fig. 6. Measured resonant frequency and spurious free window of theHE

resonator.

determined by the dielectric loss of the resonator, while the
conductive loss is dominant for mode. The computed
unloaded ’s are compared with the measured results by Flory
[12]. The unloaded ’s of the mode are close to that by
the experiment. However, the measured’s of the mode
are too low, which is probably due to the strong influence of
some extrinsic loss factors [12], such as poor contact of the
enclosure.

The dependence of the unloadedof the sapphire resonator
on the size of the enclosure (, ) to the size of sapphire (,

) is presented in Fig. 8. The dielectric losses of the resonator
is nearly independent on the size of the enclosure. When the
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Fig. 7. Contributions of the dielectric and conductor unloadedQ of a sapphire
resonator as a function of temperature.

Fig. 8. Effect of the enclosure size on the unloadedQ of a sapphire resonator
at 77K.

size of the enclosure is small, the conductive losses are domi-
nant for both and modes. As the size of the enclosure
increases, the metallic loss of the mode decreases rapidly,
and the dielectric loss is the main factor that determines the un-
loaded of the mode. The unloaded of the mode
is always strongly affected by the conductive losses of the res-
onator. The conductive losses of the approaches minimum
value at certain size of cavity because of the field strength at the
enclosure and surface area of the cavity.

Fig. 9(a) presents the computed frequency sensitivity
of a solid-type sapphire resonator versus the height

of the enclosure of both low- and high-order modes. The
computed results by conventional method of computing the
resonant frequencies (, ) at different enclosure height (,

) are also shown in the figure. It is seen that the computed
results of the low-order modes by the two methods are in
good agreement, which verify the correctness of the results by
perturbation theory. When the order of the mode gets higher,
the frequency sensitivity of the mode becomes smaller. The

Fig. 9. Perturbation results of a sapphire resonator by changing the height of
the enclosure. (a) Both low - and high-order modes. (b) Enlarged curve of the
high-order modes.

enlarged figure [see Fig. 9(b)] shows that the conventional
method is incapable of computing the frequency sensitivity of
the higher order modes, and the perturbation method gives the
correct and reliable results of both low- and high-order modes.

IV. CONCLUSIONS

A generalized multilayer cylindrical anisotropic dielectric
loaded resonator is modeled by a rigorous mode-matching
method. Resonant frequency, field distribution, and unloaded
of the resonant mode are obtained. The frequency sensitivity of
the higher order mode is accurately computed by incorporating
the perturbation theory. The correctness of the theory and
accuracy of the results are verified by comparison with other
computed and measured results.
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