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Mode-Transformation and Mode-Continuation
Regimes on Waveguiding Structures

Alexander B. YakovleyMember, IEEEand George W. Hansoenior Member, IEEE

Abstract—n this paper, modal-interaction phenomena on A different mathematical model of the mode-coupling
guided-wave structures are investigated using the theory of critical phenomena is provided by the theory of Morse critical points

and singular points. It has been previously shown that classical ) _ N
mode coupling is controlled by the functional characteristics of the (MCP’s) [14]-{19], [22]-{[24]. It has been found that a Morse

dispersion equation in the vicinity of a Morse critical point (MCP), p_OI_nt. always occurs in the region of que Coupll.ng. .In the Ipcal
which is real valued for typical structures in the lossless case. The Vicinity of the Morse point, the dispersion equation is obtained
purpose of this study is to demonstrate that two distinct regimes of exactly as a quadratic form, which leads to the hyperbolic

modal behavior exist in the vicinity of the mode-coupling region, pehavior of the dispersion function in the mode-transformation

which arise due to the presence of frequency-plane branch points region. This view of mode transformation was initiated in
of the dispersion function. These branch-point singularities are 14 d 115 d it tical i ith traditi |
intimately associated with the MCP. It is further noted that which [14] and [15], and its analytical connection wi raaiiona

of the two regimes governs modal behavior depends on the path of coupled-mode theory was presented in [19].
frequency variation or on the presence of loss for time-harmonic ~ While the role of the Morse point in mode-coupling prob-
problems. Specifically, classical mode coupling is associated with|ems has been established, there is another critical point

frequency variation between these branch points leading to mode 45gqciated with the Morse point, which plays an important
transformation. This traditional mode-transformation behavior '

is eliminated for the path of frequency variation lying outside role in gxplglnlng mOde"meraCt'gn phenomena. It is demon-
of this region resulting in mode continuation (no exchange of Strated in this paper that in the vicinity of the nondegenerated
physical meaning between modes). The presence of these branchiMorse point associated with mode coupling, there are always

points completely explains the observed phenomena and allowsfold-type critical points of the dispersion equation, which
for the co_nceptue_llization of the dispersion function in the vicinity define frequency-plane branch points of the dispersion function
of modal interactions. [21]. These branch points reside off of the real axis in the
Index Terms—Branch points, critical points, mode coupling, complex frequency plane for codirectional coupling on lossless
transmission lines, waveguides. structures and, thus, are not encountered in time—harmonic
analyses. In the event of material loss, these branch points

|. INTRODUCTION migrate in the complex frequency plane. As loss is varied,

. these branch points may cross the real frequency axis, at which
LECTROMAGNETIC waveguiding structures are funda- P y ; y

: . . ppint the dispersion behavior is changed in a fundamental
mental components of electronic, photonic, and optlcﬁf

n Ath h understandi fthe ch teristics of anner. It is the purpose of this paper to demonstrate that two
Systems. orough understanding of the characteristics o tilﬂgtinct propagation regimes exist in the mode-coupling region,

discrete propaganon modes supportt_ad by_ these structures IS4We associated with frequency variation between these branch
portant to obtain proper system functionality. Unfortunately, t oints leading to traditional mode coupling (mode transforma-

dispersion characteristics 'of all but the simple;t waveguidi n), and one associated with passing outside of this region
structures mus_t be deter_mmed_numenc_ally, which obscures‘ Sding to mode continuation. These ideas allow one to fully
general behavior of the dispersion function. As such, the matrz: )nceptualize the behavior of the dispersion function in the

matical cause of modal interaction is not always clear, althou ion of mode interaction, and to predict the modal behavior

its physical cause may often be attributed to a perturbationé) various physical parameters of the structure are changed.

some symmetry class. The paper is organized as follows. In Section Il, the general

Smtieta rlnatherrgtlcarl] m9de|' 'z often needt(;d to Ered;)ct afﬁ%ory of MCP’s is applied to determine the behavior of the dis-
quantitatively explain pnysical pneénomena, there has DN, dion function in the mode-interaction region. The existence

con5|dera_bl_e amount .Of research on methOds to model mo o requency-domain branch points associated with the Morse
characteristics, especially mode coupling. The general are nt is demonstrated, and their significance is discussed. In

coupled-mode theory [1] has been developed and refined &ction 111, numerical results are shown for two different phys-

a large number of authors [2]-{5], and applied to a variety %al waveguiding structures. The role of the complex frequency-

structures [6]-[13]. plane branch points in affecting dispersion behavior is accessed,
and two distinct mode-interaction regimes are identified.
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satisfy thedispersion equatiod (x, f) = 0, wherex and f in the mode-coupling region) is completely determined by (2)
represent the guided-wave normalized propagation constand (3).
k./ko and frequency, respectively, ari@ is the free-space In [19], we started with (2) and investigated mode coupling
wavenumber. In this paper, the dispersion equation is generabgdestablishing a connection between (3) and the traditional
from a rigorous integral-equation formulation, which is brieflyheory of coupled modes. It was shown that (3) leads to a thor-
described in Section Ill. Theispersion functiorfor discrete ough understanding of mode coupling for both the codirectional
modes is obtained from (x, ) = 0 as«(f). The dispersion and contradirectional cases, completely from the standpoint of
function is usually determined implicitly by numerical comMCP’s via the Morse lemma. In this paper, we again start with
putation, except for the simplest closed-boundary waveguid@y, but our goal now is to demonstrate that the frequency-do-
where an explicit relationship can be found. The purpose wfain branch points associated with the square root in (3) and,
this paper is to conceptualize the implicit dispersion functiatherefore, intrinsically associated with the Morse point, provide
#(f) and its associated modal behavior in the vicinity of thiwvo distinct modal-interaction regimes. The presence of these
mode-coupling region by identifying singularities @f( f) branch points was not investigated in [19], where the emphasis
using concepts of critical points (i.e., behavior of derivativesyas on traditional mode coupling. Subsequent to completion of
of the dispersion equatiod = 0. this study, we found similar results concerning the association
We have recently discussed mode-coupling mechanismsadfrbranch points singularities with the Morse point in [18] for a
open and shielded perturbed guided-wave structures [19]slktielded resonator problem, for which the dispersion function is
has been shown that hyperbolic-type behavior of characteristicailable in closed form. It should also be noted that we investi-
modes is controlled by the presence of a nondegenerate igated mode interactions due to the presence of frequency-plane
lated MCP in the mode-transformation region. The functionlranch points in [20] as well. The branch points investigated in
characteristics of the dispersion equatiéf{r, f) obtained that study are not associated with a Morse point. They are of a
in the vicinity of the MCP qualitatively and quantitativelycompletely different origin and possess a different physical sig-
reconstruct the modal behavior. These critical (Morse) poimgficance than those investigated here.
are determined as the solution péit,,, f,.) of the system of  To investigate the influence of the branch points on the mode-
nonlinear differential equations interaction behavior, consider the term indicated in (3)

H,//V(Ii, f)|(Km7fm) = H}(’@ f)|(:<m,fm) =0
5 |:H// H// H// H// :|| # 0 )\(f) = \/((Hilqlf)Q_HI{”VIHH‘;"/J">(f_fnl)2_2H,/./v/HH(l{nl7 frn)
= wettff T | (R frn)

) 4)

where the Hessian determinafitassociated with hyperbolic Which defines a two-valued analytical function in the complex

modal behavior offf (, f) is strictly negative in the losslessA-plane. Complex frequency-plane branch points separating

case. branches of the\(f) function and, consequently, the branches
To obtain modal characteristics in the vicinity of the Mors@f the 1 »(f) function, are determined from (4) as

point, we use the Morse lemma [25], [26], which proves that the

function H in the vicinity of the MCP can be exactly represented — 2H}, H (Km, fm)

) ) ) . fbl,? fm + m /" (5)

by a quadratic form using a smooth change of coordinates. This (H;)? — HJ HY,

leads us to represent the functiéh local to the Morse point

exactly as the Taylor polynomial of order two

where H(k,,, ) # 0 for the nondegenerate MCP. In the
1 lossless case, the coordinates of the M@R,, f..) and the
H(k, f)= H(km, fm)+ QH,’;K(m—Iim)Q functional characteristics in the local neighborhood of the
1 Morse point (H(km, fm), Hiu(fms fm), Hp(Fm, fm),
+H, j (5 = m)(f = fm) + §H}’f(f — fm)? H(km, fm), Hf(km, fm)) are obtained as real-valued
@) guantities.
. N We have shown in [19] that mode coupling of codirectional
where all parthl denv.atlves are gvaluatec{/atl, % "?)' waves is related to the cadK x,,,, fm)/H/,, < 0. The location
The local dl_spersmn behawo_r of pr op:_:lgatlon constants panch pointsf, 1 » can be immediately obtained from (5)
r1,2 = riy2(f) in the m_ode-couplmg region is represented by complex-conjugate pair of frequency-plane branch points
the local structure obtained from (2) as centered about the real-valued Morse frequency phint

el 2Hy, H (5, fn)
H” - KK Rm, Jm
_ wf =fm=E 6
= tm = (/= fm) fu2= 7 j\/(Hgf)‘z — HJ HY, ©)
H' V2 H' H" £ V2 _9H! H(k, . fon which is illustrated in the insert of Fig. 1. The corresponding
n \/(( <) s ff)(f Jm) o (i fm) values of the propagation constaris. at those branch points
H!. " are easily determined using the form (3)
3
. . . . . ( ) . . . H;/@/f _2H,/¢/KH("3ma fm)
Note that the qualitative and quantitative functional behavior Kbl 2 = Km F 7 7 TN H J @)
(H(k, f) andk1.2(f)) in the local vicinity of the MCP (i.e., w \| (H5p)? = HY HY
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1.455 ) foplame due to the addition of material loss, as will be described in Sec-
g n—mode tion Ill. We will also show how the location of branch points
1450 1 qualitatively affects the mode-coupling behavior.
2 L445 Although the focus in this paper is on coupling between codi-
g rectional waves, a brief description of the role of branch points
G 1.440 for contradirectional wave coupling is in order. Mode coupling
e between forward and backward traveling waves is related to the
1435 | case whe (k,, fm)/H,. > 0[19]. This condition allows
) for the occurrence of complex modes in the mode-coupling re-
1430 - a-mode ] gion within the frequency range bounded by the real-valued
branch points represented by (5). These branch pdints are
1.425 . . . . . associated with leaky-wave cutoff frequencies separating com-
35 40 45 50 55 60 65 plex and complex conjugate solutions of the dispersion func-
Frequency (GHz) tion k1, 2(f) [21]. The expression (5) in conjunction with the

normal form representation (3) gives the location of the prop-

ation constants; , in the x-plane at the frequency-plane
Fig. 1. Dispersion behavior for dominant modes of symmetrical argg 1,2 P q y-p

nonsymmetrical conductor-backed coplanar strip line with infinit ranch points
superstrate. Degeneracy occurs for the symmetric structure (dashed line:

wi/hy = wz/hy = 0.25), and is broken by the perturbation of symmetry _ H,’.!f 2H! H(Km, fm) 10
due to unequal strip widths (solid lines; /hy = 0.25, we/hy = 0.27), RKp1,2 = Km F H (H” )2 —_Hr g7 (10)
d/hl = 0.25,hy = 1cm,hy = 0.1hy, €, = 2.25,55/@ = 1.15. Insert KK wf ke ff

shows the path of frequency variation. . . .
The real-valued pointéx,, f,) defined by expressions (5)

- o o ~and (10) in the lossless case are associated with fold points in
In add|t|orj to the explicit identification of the branph pointhe (x, f) plane governed by (8) and (9). The characteristic be-
f» from (4), it can also be observed [22] that the pair of conhavior in the vicinity of (s, f;) is locally determined by the

plex conjugate pointéxs, f) defined by (6) and (7) representnormal form of the fold point [21], [22]
complex conjugate critical points in the compléx f) plane

satisfying (k—r)?+(f = fp),  forx>0,

2
H(k, iy, 5y = Hilks Plesg, ) =0 8 (s =m)f == f), forx <0 ()
. i In the presence of dielectric-loss MCP(s,,,, f.) migrate
with the nonzero condition in the complexx, f) plane, and the funct(ional ch?aracteristics
x = H (ky PYHY 8, Plsy, 5 £ 0 (9) inthe local neighborhood of the MCP become complex-valued
guantities. It can be seen that, in this case, the formula (5) cor-
which is sufficient to guarantee th#f is a branch point [21].  responds to the complex frequency-plane branch pdints
It can be noted from (6) that a decrease in mode couplingcated above and below the complex Morse frequency point
related to a decrease in thé(r,,, f,) value [19], results in f,.. Also note that the branch points in the mode-coupling re-
the migration of the complex-conjugate branch points towagflon between codirectional waves in the presence of loss are no
the Morse frequency poinf,,, (equivalently,(xs, f;) points longer complex conjugates.
approach théx,,, f») point). The degeneracy of modes (no
mode coupling) corresponds to the case WhER,.,, f..) =
0 [19] and to the collapse of branch points at the Morse fre-
quency point. We have pointed out in [21] that the Morse pointis To investigate the connection of frequency-plane branch
never a branch point of the dispersion function. Therefore, in tpeints with mode-coupling behavior, examples of a con-
case of mode degeneracy, there are no frequency-plane brashattor-backed coplanar strip line with infinite superstrate and
points associated with the MCP. Branch points occur only & grounded dielectric slab with anisotropic chirality will be
the presence of mode coupling, wherein the mode degeneracyaasidered [19]. In each case, a rigorous full-wave solution has
broken with the formation of the characteristic hyperbolic-typeeen used to generate the dispersion equati¢n, /) = 0.
behavior. In the first example (geometry shown in the inset of Fig. 1),
It can be seen from the preceding discussion and from the @ electric-field integral equation similar to [22] and [27] is
merical results in Section lll that interesting features of modérmed by enforcing the boundary condition for the tangential
coupling behavior are associated with branch-point singularitieemponents of the electric field on the surface of the conducting
of the dispersion functior( f), which are, in turn, predicted by strips. The correctness of the full-wave code has been checked
the existence of critical (Morse) points of the dispersion equeaxtensively by comparison to results in the literature (e.g.,
tion H = 0. Characteristic hyperbolic-type behavior in thg27], [28], among others). In the second example, dispersion
mode-coupling region iglwaysassociated with the presence obehavior of guided surface-wave modes on lossy grounded
a nondegenerate MCP, moreover, two frequency-plane bramtidlectric slabs with anisotropic chirality has been investigated
points alwaysaccompany the nondegenerate Morse point. @fa the volume equivalence principle for bianisotropic media
primary importance here is the migration of the branch poinf89]. The numerical code was checked by comparison to

I1l. NUMERICAL RESULTS AND DISCUSSION
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Fig. 2. Propagation constant characteristics for dominant modes ffyy 3. Propagation constant characteristics for dominant modes in

nonsymmetrical conductor-backed coplanar strip line versus complg¥nsymmetrical conductor-backed coplanar strip line versus complex

frequency withTm{f} = 0.1 GHz. Insert shows the path of frequencyfrequency withim{ f} = 0.2083 GHz. A bifurcation of characteristic curves

variation. occurs at the,; point when the path of frequency variation crosses the branch
point f;, in the complexf-plane.

isotropic chiral slab results [30] and anisotropic dielectric
slab results [31]. Note that chirality is used here simply to It has been discussed in [19] for the example of conductor-
induce mode coupling in the slab waveguide. In both cases, thecked coplanar strips that changes in strip width of one con-
full-wave results were used to generdié, f); the various ductor(uw; # wq) perturb the symmetry of the structure (inset
derivatives orH, introduced in (1), (8), and (9), were calculatedn Fig. 1), leading to the transformation of uncoupled odd and
via finite-difference methods. The characteristic determinaaten modes (which possess a degeneracy) into coupled nonde-
H(x, f) is obtained implicitly (no closed-form solution existsgeneratec and = modes, as shown in Fig. 1. The nondegen-
for these particular problems) and it is calculated numericallgrate MCP with coordinate§:,,,, fn,) = (1.4403, 4.638) is
Note that coordinates of MCP'&:,,,, f».) and branch-point obtained in the mode-coupling region of the perturbed struc-
pairs (3, fi) are determined as the numerical solution dfre. A numerical root search has been performed for the branch-
(1), (8), and (9), respectively, using a numerical root searghoint pair(r,, f;) associated with the MCP, satisfying (8) and
In this procedureH is given numerically at each step of thg9). Numerically determined values were found to(bg; »,
iteration algorithm of the root search and in the calculation ¢g; 2) = (1.4403 £ 30.001 08, 4.6338 £ 30.2083). Coordi-
finite-difference approximations. nates of the propagation constant and frequency-plane branch
In the first part of the discussion, a conductor-backeabints f,; o have been also calculated using (6) and (7), re-
coplanar-strip line is considered in the absence of dielectgalting in (ky1,2, fi1,2) = (1.4403 £ 30.001075, 4.638 +
loss. It is shown that the path of frequency variation with0.2081), showing good agreement with the numerical results
respect to the location of the complex branch points affects tbkthe root search. The, values are not shown in Fig. 1 since
mode-coupling behavior. In the second part, we will discud¥e{x,,} of the Morse point an®e{r;} of the branch points
the migration of branch points in the complex frequency plarse practically identical for small coupling. The inset in Fig. 1
versus dielectric loss for the above-mentioned structures, asitbws the path of frequency variation along the real axis in the
the influence of these branch points on the mode-couplisgmplex frequency plane, with thfg values denoted by;,; and
behavior for time—harmonic (real-valued) frequencies. So2-
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Fig. 4. Propagation constant characteristics for dominant modes in Imag(e,)
nonsymmetrical conductor-backed coplanar strips versus complex frequency
with Im{ f} = 0.25 GHz. No mode transformation occurs when the frequen

variation path is deformed above the branch pgintin the complexf-plane. C¥|g. 6. Evolution of complex frequency-plane branch points parameterized by

dielectric loss in nonsymmetrical conductor-backed coplanar strip line (see inset
in Fig. 1).d/h, = 0.25, wi/hy = 0.253, w2/hy = 0.27,hy = 1 cm,
To investigate the role of the branch poirfisthe path of fre- "2 = %1 ande,/Re{e} = 1.15.
quency variation has been deformed into the complex frequency
plane. Fig. 2 demonstrates the dispersion behavior of dominaniversal unfolding of the MCP associated with the mode-cou-
modes in the mode-coupling region versus complex frequenayng behavior [19], [24]. Similar qualitative behavior of domi-
with Im{f} = 0.1 GHz. It can be seen that the qualitative hynant modes occurs if the path of frequency variation crosses the
perbolic-type behavior is not affected by the deformation of tHeurth quadrant branch poirft, in the complexf-plane.
frequency variation path into the first quadrant of the complex If the path of frequency variation is deformed abgiye in
f-plane. It turns out that this is true for any path passing bt#ie complexf-plane, as shown in Fig. 4, or below the fourth
tween the conjugate branch points. For any frequency path lpeiadrant branch poinf,., the mode transformation character-
tween these branch points, transformation of ¢tte = mode istic hyperbolic behavior no longer occurs, resulting in the con-
and ther to ¢ mode occurs as it does for real-frequency vartinuation of the modes to = ande to ¢. We call this themode
ation. We call this thenode transformation regimgnce phys- continuation regimesince physical meaning of each dispersion
ical attributes of the mode (e.g., thenode is quasi-odd while curve ¢ or 7) remains unchanged in passing through this region.
thewr-mode is quasi-even) are interchanged between dispers@peration in this regime will significantly effect the operation
curves in passing through this region. of devices that rely on the exchange of modes for correct oper-
The dispersion behavior of dominant modes is qualitativeltion.
changed if the path of frequency variation crosses the branchAs we continue to deform the frequency path in the first or
point (Fig. 3). This type of bifurcation has been discussed fourth quadrant of the complex-plane even further above
[21] in connection with the analysis of leaky-wave cutoff freer below the branch points, the characteristic curves of the
quencies in open-boundary waveguides. Note that no conallominant modes approach those obtained for the symmetrical
sions can be made in this case regarding transformation or cetructure (which has a degenerate rather than a nondegenerate
tinuation among modes. It is important to emphasize that, Morse point, and which does not exhibit frequency-plane
passing through the branch point, we break the hyperbolic-typeinch points).
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Fig. 7. Dispersion behavior of dominant modes in lossy nonsymmetricailg. 8. Dispersion behavior of dominant modes in lossy nonsymmetrical

conductor-backed coplanar strip line withn{e,.} = —0.01. The path of conductor-backed coplanar strip line with{e,.} = —0.015. The path of
frequency variation lies between branch poitfits and f... Critical points frequency variation lies below the branch points due to migratiofi,efinto
(K1, Kb2, K ) are shown in the complee, f) plane. the first quadrant of the complefplane.

The above illustrative analysis leads to the conclusion that thde coupling behavior for time—harmonic (real-valued) fre-
characteristic hyperbolic-type mode-coupling behavior assoguencies in the following. The example of a nonsymmetrical
ated with mode transformation occurs only if the path of freeonductor-backed coplanar strip line with infinite superstrate
guency variation lies within the strip between complex-conjus considered in the presence of a lossy substrate ayitk=
gate frequency-plane branch points. Mode continuation occ@&5 — jlm{e, }.
if the path is deformed abovg; or below f». It is noted here that complex frequency-plane branch points

The evolution of complex-conjugate frequency-plane branghairs (complex conjugate in lossless structures) migrate versus
points parameterized by strip width is demonstrated in Fig. 5 fdielectric loss, such that at some critical value of loss one of the
the example of a conductor-backed coplanar strip line. The fitstanch points crosses the real frequency afis ih this par-
guadrant branch poinf,; and the fourth quadrant branch pointicular example, as shown in Fig. 6). It can be seen from Fig. 6
fu2 approach the degenerate Morse frequency pbinas strip  that for any value of loss greater than the critical vdlue ¢},
width w, approachess; (w2 > wi). In the symmetrical case the path of frequency variation along the real frequency axis lies
(w1 = wq, H(km, fm) = 0), those branch points collapse duéelow both branch pointf,; andf,». Passing below (above) or
to the absence of mode coupling. They continue to migrate ietween the branch point pair while varying frequency along the
opposite quadrants as strip widih is decreased with respectreal axis has the same effect as that noted for the lossless case
to wy . for complex-valued frequency paths. Therefore, a critical value

While frequency variations in the complex plane are nomwf loss separates two qualitatively different states of the struc-
physical for time—harmonic problems, the above analysis is iture associated with mode transformation and mode continua-
tended to demonstrate that two distinct regimes exist (motien. Any path of frequency variation (along the real axis for
transformation or mode continuation) depending on the paime—harmonic problems) that lies betwegnand f;2 guaran-
of frequency variation relative to the branch-point locationsees the formation of hyperbolic-type mode-transformation be-
We will investigate the migration of complex frequency-planbavior. Frequency variation along the real axis that passes above
branch points versus dielectric loss, and their influence on tlfig (i.e., fy1 andf,. lie in the fourth quadrant of the frequency
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. . . . . ig. 10. Dispersion behavior of guided surface-wave modes on lossy grounded
Fig. 9. Dispersion behavior of guided surface-wave modes on lossy groun&;‘%ectric slaé)waveguide with ar?isotropic chirality fon{e,.} = —0.45y(?0r
dielectric slab waveguide with anisotropic chirality., = 9co, ¢, =c.. = permittivity components). Branch points migrate into the fourth quadrant of

3€0, Pow = flyy = Hzz = 10, Eap = —Cap = JKagy/€ollo, Koo = 0.05, - P e B :
Kyy = Koo = 0,Im{e,} = —0.09 (for all permittivity components). The the f-plane, resulting in a qualitative change in the modal behavior.

path of frequency variation is between branch pofiatsandf. in the complex

J-plane. fo1 = 4.612 + 50.432, f,2 = 4.637 + 70.017. The qualitative

behavior of the dispersion function is dramatically changed, as

plane) or belowfy; (i.e., f»1 andfyo lie in the first quadrant) re- shown in Fig. 8. The mode transformation shown in Fig. 7 is
sults in mode continuation, as indicated in Fig. 6. Under whiathanged into mode continuation (Fig. 8). As such, for physical
regime the structure operates depends on the value of loss. time—harmonic frequencies, a smooth change of dielectric loss

To illustrate the occurrence of mode transformation for thmay result in significant qualitative changes in the mode cou-
lossy case, a value of dielectric loBa{¢,.} = —0.01 is exam- pling behavior, which is associated with migration of complex
ined, which provides the location of branch poiifts and f,>  frequency-plane branch points across the real frequency axis.
in opposite quadrants with respect to the path of time—harmonicTo provide another example, dispersion behavior of guided
frequencies (Fig. 7). The coordinates of the Morse frequensyrface-wave modes on a lossy grounded dielectric slab
point and branch points have been calculated numerically as tteveguide with anisotropic chirality [see inset in Fig. 9(a)]
solution of nonlinear equations given by (1), (8), and (9), respds- investigated in connection with complex frequency-plane
tively, resulting inf,,, = 4.634+470.1503, f,1 = 4.619+470.356, branch points. Fig. 9 demonstrates the hyperbolic type behavior
andf,» = 4.638— 50.058. The characteristic mode coupling be-of hybrid EH, andHE3; modes in the lossy anisotropic chiral
havior and the transformation of tkeand= modes is shown in slab withlm{¢,.} = —0.09 (dielectric loss for all permittivity
Fig. 7 for time—harmonic frequencies. components) and their mutual transformations. The path of

To demonstrate that modal interchange ceases when strorigee—harmonic frequencies lies between complex branch points
losses are introduced, consider an increase of the dielectric I¢gsand f,» with coordinatesf,; = 97.0227 + 70.5863 GHz
to Imm{¢,.} = —0.015, which results in the migration of all crit- and f;2 = 96.995 — ;0.9199 GHz, respectively. The
ical and branch points, especially the branch pgiat across MCP has been found in the mode-coupling region with
the real frequency axis into the first quadrant of the compleft, = 97.0512 — 70.1678 GHz. These special points of interest
f-plane. The coordinates of the Morse frequency point amtigrate into the fourth quadrant of the compléxplane as
branch points at this value of loss becofje= 4.629+50.225, loss is increased, as shown in Fig. 10. At some critical value
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of Im{e,.}, the branch pointf,; crosses the real frequency [16] I. E. Pochanina and N. P. Yashina, “Electromagnetic properties of open
axis resulting in mode bifurcation. For the case demonstrated__ Waveguide resonatorsZlectromag. vol. 13, pp. 289-300, 1993.

in Fig. 10 (in{e,.} = —0.45), the path of frequency variation

[17] V. P. Shestopalov, “Morse critical points of dispersion equations of open
resonators,Electromag. vol. 13, pp. 239-253, 1993.

is above the branch points and the Morse point with coordif18] ——, Physical Foundations of the Millimeter and Submillimeter Waves
natesfbl = 97.1152 — 30.07557 be — 96.9781 — 31-5922, Technique, Vol..I Utrecht, The Netherlands: VSP, 1997.

fm = 97.0883 — 70.8387. A migration of thef,; in the fourth

[19] A. B. Yakovlev and G. W. Hanson, “Analysis of mode coupling on
guided-wave structures using Morse critical poil&EE Trans. Mi-

guadrant across the real frequency axis leads to the formation of  crowave Theory Techvol. 46, pp. 966-974, July 1998.
the modal continuation behavior with no mode transformation[20] G- W Hanson and A. B. Yakovlev, “Investigation of mode interaction

on planar dielectric waveguides with loss and gaRetio Sci, vol. 34,
no. 6, pp. 1349-1359, Nov.—Dec. 1999.
[21] ——, “An analysis of leaky-wave dispersion phenomena in the vicinity
of cutoff using complex frequency plane singularitieRddio Sci, vol.
IV. CONCLUSION 33, no. 4, pp. 803-819, July/Aug. 1998.
[22] A. B. Yakovlev and G. W. Hanson, “On the nature of critical points in

Modal interactions on Waveguiding structures have been in- leakage regimes of a conductor-backed coplanar strip IBEE Trans.

Microwave Theory Techvol. 45, pp. 87-94, Jan. 1997.

vestigated using the theory of critical and sir_lgular point_s. It h"f‘?z3] G. W. Hanson and A. B. Yakovlev, “New explanation of the leaky mode
been shown that frequency-plane branch points of the dispersion phenomena in a coplanar strip line,”lint. Symp. Antennas Propagat.

function exist in the mode-coupling region. These branch points, , Ghiba. Japan, Sept. 1996, pp. 277-280.

4] G.W.Hanson, “An analysis of mode coupling on waveguiding structures

are associated with the occurrence of a nondegenerate MCP,” from the theory of universal unfoldings,” ISNC/URSI Nat. Radio Sci.
which has been previously shown to occur in the mode-couplin Meeting Atlanta, GA, June 1998, p. 161. _
region and which is connected with traditional coupled-mode2®! T- Poston and |. StewartCatastiophe Theory and lts Applica-

tions London, U.K.: Pitman, 1978.

theory. The identified branch points do not influence modale R. Gilmore, Catastrophe Theory for Scientists and Engineevew
behavior for codirectional coupling in time—harmonic lossless  York: Wiley, 1981. ' o
problems, but may significantly affect mode-interaction phe 271 J: S. Bagby, C-H. Lee, D. P. Nyquist, and Y. Yuan, “Identification of

propagation regimes on integrated microstrip transmission linegE

nomena in the event of material loss. Numerical examples have  Trans. Microwave Theory Teghvol. 41, pp. 1887-1893, Nov. 1993.

been shown for two different waveguiding structures, althougli28] H. Shigesawa, M. Tsuiji, and A. A. Oliner, “Simultaneous propagation of
the effect is general in nature bound and leaky dominant modes on printed-circuit lines: A new general
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