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Mode-Transformation and Mode-Continuation
Regimes on Waveguiding Structures
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Abstract—In this paper, modal-interaction phenomena on
guided-wave structures are investigated using the theory of critical
and singular points. It has been previously shown that classical
mode coupling is controlled by the functional characteristics of the
dispersion equation in the vicinity of a Morse critical point (MCP),
which is real valued for typical structures in the lossless case. The
purpose of this study is to demonstrate that two distinct regimes of
modal behavior exist in the vicinity of the mode-coupling region,
which arise due to the presence of frequency-plane branch points
of the dispersion function. These branch-point singularities are
intimately associated with the MCP. It is further noted that which
of the two regimes governs modal behavior depends on the path of
frequency variation or on the presence of loss for time–harmonic
problems. Specifically, classical mode coupling is associated with
frequency variation between these branch points leading to mode
transformation. This traditional mode-transformation behavior
is eliminated for the path of frequency variation lying outside
of this region resulting in mode continuation (no exchange of
physical meaning between modes). The presence of these branch
points completely explains the observed phenomena and allows
for the conceptualization of the dispersion function in the vicinity
of modal interactions.

Index Terms—Branch points, critical points, mode coupling,
transmission lines, waveguides.

I. INTRODUCTION

E LECTROMAGNETIC waveguiding structures are funda-
mental components of electronic, photonic, and optical

systems. A thorough understanding of the characteristics of the
discrete propagation modes supported by these structures is im-
portant to obtain proper system functionality. Unfortunately, the
dispersion characteristics of all but the simplest waveguiding
structures must be determined numerically, which obscures the
general behavior of the dispersion function. As such, the mathe-
matical cause of modal interaction is not always clear, although
its physical cause may often be attributed to a perturbation of
some symmetry class.

Since a mathematical model is often needed to predict and
quantitatively explain physical phenomena, there has been a
considerable amount of research on methods to model modal
characteristics, especially mode coupling. The general area of
coupled-mode theory [1] has been developed and refined by
a large number of authors [2]–[5], and applied to a variety of
structures [6]–[13].
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A different mathematical model of the mode-coupling
phenomena is provided by the theory of Morse critical points
(MCP’s) [14]–[19], [22]–[24]. It has been found that a Morse
point always occurs in the region of mode coupling. In the local
vicinity of the Morse point, the dispersion equation is obtained
exactly as a quadratic form, which leads to the hyperbolic
behavior of the dispersion function in the mode-transformation
region. This view of mode transformation was initiated in
[14] and [15], and its analytical connection with traditional
coupled-mode theory was presented in [19].

While the role of the Morse point in mode-coupling prob-
lems has been established, there is another critical point
associated with the Morse point, which plays an important
role in explaining mode-interaction phenomena. It is demon-
strated in this paper that in the vicinity of the nondegenerated
Morse point associated with mode coupling, there are always
fold-type critical points of the dispersion equation, which
define frequency-plane branch points of the dispersion function
[21]. These branch points reside off of the real axis in the
complex frequency plane for codirectional coupling on lossless
structures and, thus, are not encountered in time–harmonic
analyses. In the event of material loss, these branch points
migrate in the complex frequency plane. As loss is varied,
these branch points may cross the real frequency axis, at which
point the dispersion behavior is changed in a fundamental
manner. It is the purpose of this paper to demonstrate that two
distinct propagation regimes exist in the mode-coupling region,
one associated with frequency variation between these branch
points leading to traditional mode coupling (mode transforma-
tion), and one associated with passing outside of this region
leading to mode continuation. These ideas allow one to fully
conceptualize the behavior of the dispersion function in the
region of mode interaction, and to predict the modal behavior
as various physical parameters of the structure are changed.

The paper is organized as follows. In Section II, the general
theory of MCP’s is applied to determine the behavior of the dis-
persion function in the mode-interaction region. The existence
of frequency-domain branch points associated with the Morse
point is demonstrated, and their significance is discussed. In
Section III, numerical results are shown for two different phys-
ical waveguiding structures. The role of the complex frequency-
plane branch points in affecting dispersion behavior is accessed,
and two distinct mode-interaction regimes are identified.

II. THEORY

Consider a two-dimensional waveguiding structure, invariant
along the waveguiding axis. It is assumed the discrete
propagation modes that the structure is capable of supporting

0018–9480/00$10.00 © 2000 IEEE



68 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 48, NO. 1, JANUARY 2000

satisfy thedispersion equation , where and
represent the guided-wave normalized propagation constant

and frequency, respectively, and is the free-space
wavenumber. In this paper, the dispersion equation is generated
from a rigorous integral-equation formulation, which is briefly
described in Section III. Thedispersion functionfor discrete
modes is obtained from as . The dispersion
function is usually determined implicitly by numerical com-
putation, except for the simplest closed-boundary waveguides
where an explicit relationship can be found. The purpose of
this paper is to conceptualize the implicit dispersion function

and its associated modal behavior in the vicinity of the
mode-coupling region by identifying singularities of
using concepts of critical points (i.e., behavior of derivatives)
of the dispersion equation .

We have recently discussed mode-coupling mechanisms on
open and shielded perturbed guided-wave structures [19]. It
has been shown that hyperbolic-type behavior of characteristic
modes is controlled by the presence of a nondegenerate iso-
lated MCP in the mode-transformation region. The functional
characteristics of the dispersion equation obtained
in the vicinity of the MCP qualitatively and quantitatively
reconstruct the modal behavior. These critical (Morse) points
are determined as the solution pair of the system of
nonlinear differential equations

(1)

where the Hessian determinantassociated with hyperbolic
modal behavior of is strictly negative in the lossless
case.

To obtain modal characteristics in the vicinity of the Morse
point, we use the Morse lemma [25], [26], which proves that the
function in the vicinity of the MCP can be exactly represented
by a quadratic form using a smooth change of coordinates. This
leads us to represent the function local to the Morse point
exactly as the Taylor polynomial of order two

(2)

where all partial derivatives are evaluated at .
The local dispersion behavior of propagation constants

in the mode-coupling region is represented by
the local structure obtained from (2) as

(3)

Note that the qualitative and quantitative functional behavior
and in the local vicinity of the MCP (i.e.,

in the mode-coupling region) is completely determined by (2)
and (3).

In [19], we started with (2) and investigated mode coupling
by establishing a connection between (3) and the traditional
theory of coupled modes. It was shown that (3) leads to a thor-
ough understanding of mode coupling for both the codirectional
and contradirectional cases, completely from the standpoint of
MCP’s via the Morse lemma. In this paper, we again start with
(2), but our goal now is to demonstrate that the frequency-do-
main branch points associated with the square root in (3) and,
therefore, intrinsically associated with the Morse point, provide
two distinct modal-interaction regimes. The presence of these
branch points was not investigated in [19], where the emphasis
was on traditional mode coupling. Subsequent to completion of
this study, we found similar results concerning the association
of branch points singularities with the Morse point in [18] for a
shielded resonator problem, for which the dispersion function is
available in closed form. It should also be noted that we investi-
gated mode interactions due to the presence of frequency-plane
branch points in [20] as well. The branch points investigated in
that study are not associated with a Morse point. They are of a
completely different origin and possess a different physical sig-
nificance than those investigated here.

To investigate the influence of the branch points on the mode-
interaction behavior, consider the term indicated in (3)

(4)

which defines a two-valued analytical function in the complex
-plane. Complex frequency-plane branch points separating

branches of the function and, consequently, the branches
of the function, are determined from (4) as

(5)

where for the nondegenerate MCP. In the
lossless case, the coordinates of the MCP and the
functional characteristics in the local neighborhood of the
Morse point , , ,

, are obtained as real-valued
quantities.

We have shown in [19] that mode coupling of codirectional
waves is related to the case . The location
of branch points can be immediately obtained from (5)
as a complex-conjugate pair of frequency-plane branch points
centered about the real-valued Morse frequency point

(6)

which is illustrated in the insert of Fig. 1. The corresponding
values of the propagation constants at those branch points
are easily determined using the form (3)

(7)
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Fig. 1. Dispersion behavior for dominant modes of symmetrical and
nonsymmetrical conductor-backed coplanar strip line with infinite
superstrate. Degeneracy occurs for the symmetric structure (dashed line:
w =h = w =h = 0:25), and is broken by the perturbation of symmetry
due to unequal strip widths (solid line:w =h = 0:25, w =h = 0:27),
d=h = 0:25, h = 1 cm,h = 0:1h , � = 2:25, � =� = 1:15. Insert
shows the path of frequency variation.

In addition to the explicit identification of the branch point
from (4), it can also be observed [22] that the pair of com-

plex conjugate points defined by (6) and (7) represent
complex conjugate critical points in the complex plane
satisfying

(8)

with the nonzero condition

(9)

which is sufficient to guarantee that is a branch point [21].
It can be noted from (6) that a decrease in mode coupling,

related to a decrease in the value [19], results in
the migration of the complex-conjugate branch points toward
the Morse frequency point (equivalently, points
approach the point). The degeneracy of modes (no
mode coupling) corresponds to the case when

[19] and to the collapse of branch points at the Morse fre-
quency point. We have pointed out in [21] that the Morse point is
never a branch point of the dispersion function. Therefore, in the
case of mode degeneracy, there are no frequency-plane branch
points associated with the MCP. Branch points occur only in
the presence of mode coupling, wherein the mode degeneracy is
broken with the formation of the characteristic hyperbolic-type
behavior.

It can be seen from the preceding discussion and from the nu-
merical results in Section III that interesting features of mode-
coupling behavior are associated with branch-point singularities
of the dispersion function , which are, in turn, predicted by
the existence of critical (Morse) points of the dispersion equa-
tion . Characteristic hyperbolic-type behavior in the
mode-coupling region isalwaysassociated with the presence of
a nondegenerate MCP, moreover, two frequency-plane branch
pointsalwaysaccompany the nondegenerate Morse point. Of
primary importance here is the migration of the branch points

due to the addition of material loss, as will be described in Sec-
tion III. We will also show how the location of branch points
qualitatively affects the mode-coupling behavior.

Although the focus in this paper is on coupling between codi-
rectional waves, a brief description of the role of branch points
for contradirectional wave coupling is in order. Mode coupling
between forward and backward traveling waves is related to the
case when [19]. This condition allows
for the occurrence of complex modes in the mode-coupling re-
gion within the frequency range bounded by the real-valued
branch points represented by (5). These branch points are
associated with leaky-wave cutoff frequencies separating com-
plex and complex conjugate solutions of the dispersion func-
tion [21]. The expression (5) in conjunction with the
normal form representation (3) gives the location of the prop-
agation constants in the -plane at the frequency-plane
branch points

(10)

The real-valued points defined by expressions (5)
and (10) in the lossless case are associated with fold points in
the plane governed by (8) and (9). The characteristic be-
havior in the vicinity of is locally determined by the
normal form of the fold point [21], [22]

for

for (11)

In the presence of dielectric-loss MCP’s, migrate
in the complex plane, and the functional characteristics
in the local neighborhood of the MCP become complex-valued
quantities. It can be seen that, in this case, the formula (5) cor-
responds to the complex frequency-plane branch points
located above and below the complex Morse frequency point

. Also note that the branch points in the mode-coupling re-
gion between codirectional waves in the presence of loss are no
longer complex conjugates.

III. N UMERICAL RESULTS AND DISCUSSION

To investigate the connection of frequency-plane branch
points with mode-coupling behavior, examples of a con-
ductor-backed coplanar strip line with infinite superstrate and
a grounded dielectric slab with anisotropic chirality will be
considered [19]. In each case, a rigorous full-wave solution has
been used to generate the dispersion equation .
In the first example (geometry shown in the inset of Fig. 1),
an electric-field integral equation similar to [22] and [27] is
formed by enforcing the boundary condition for the tangential
components of the electric field on the surface of the conducting
strips. The correctness of the full-wave code has been checked
extensively by comparison to results in the literature (e.g.,
[27], [28], among others). In the second example, dispersion
behavior of guided surface-wave modes on lossy grounded
dielectric slabs with anisotropic chirality has been investigated
via the volume equivalence principle for bianisotropic media
[29]. The numerical code was checked by comparison to
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(a)

(b)

Fig. 2. Propagation constant characteristics for dominant modes in
nonsymmetrical conductor-backed coplanar strip line versus complex
frequency withImffg = 0:1 GHz. Insert shows the path of frequency
variation.

isotropic chiral slab results [30] and anisotropic dielectric
slab results [31]. Note that chirality is used here simply to
induce mode coupling in the slab waveguide. In both cases, the
full-wave results were used to generate ; the various
derivatives on , introduced in (1), (8), and (9), were calculated
via finite-difference methods. The characteristic determinant

is obtained implicitly (no closed-form solution exists
for these particular problems) and it is calculated numerically.
Note that coordinates of MCP’s and branch-point
pairs are determined as the numerical solution of
(1), (8), and (9), respectively, using a numerical root search.
In this procedure, is given numerically at each step of the
iteration algorithm of the root search and in the calculation of
finite-difference approximations.

In the first part of the discussion, a conductor-backed
coplanar-strip line is considered in the absence of dielectric
loss. It is shown that the path of frequency variation with
respect to the location of the complex branch points affects the
mode-coupling behavior. In the second part, we will discuss
the migration of branch points in the complex frequency plane
versus dielectric loss for the above-mentioned structures, and
the influence of these branch points on the mode-coupling
behavior for time–harmonic (real-valued) frequencies.

(a)

(b)

Fig. 3. Propagation constant characteristics for dominant modes in
nonsymmetrical conductor-backed coplanar strip line versus complex
frequency withImffg = 0:2083 GHz. A bifurcation of characteristic curves
occurs at the� point when the path of frequency variation crosses the branch
point f in the complexf -plane.

It has been discussed in [19] for the example of conductor-
backed coplanar strips that changes in strip width of one con-
ductor perturb the symmetry of the structure (inset
in Fig. 1), leading to the transformation of uncoupled odd and
even modes (which possess a degeneracy) into coupled nonde-
generate and modes, as shown in Fig. 1. The nondegen-
erate MCP with coordinates is
obtained in the mode-coupling region of the perturbed struc-
ture. A numerical root search has been performed for the branch-
point pair associated with the MCP, satisfying (8) and
(9). Numerically determined values were found to be ,

. Coordi-
nates of the propagation constant and frequency-plane branch
points have been also calculated using (6) and (7), re-
sulting in ,

, showing good agreement with the numerical results
of the root search. The values are not shown in Fig. 1 since

of the Morse point and of the branch points
are practically identical for small coupling. The inset in Fig. 1
shows the path of frequency variation along the real axis in the
complex frequency plane, with the values denoted by and

.
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(a)

(b)

Fig. 4. Propagation constant characteristics for dominant modes in
nonsymmetrical conductor-backed coplanar strips versus complex frequency
with Imffg = 0:25GHz. No mode transformation occurs when the frequency
variation path is deformed above the branch pointf in the complexf -plane.

To investigate the role of the branch points, the path of fre-
quency variation has been deformed into the complex frequency
plane. Fig. 2 demonstrates the dispersion behavior of dominant
modes in the mode-coupling region versus complex frequency
with GHz. It can be seen that the qualitative hy-
perbolic-type behavior is not affected by the deformation of the
frequency variation path into the first quadrant of the complex

-plane. It turns out that this is true for any path passing be-
tween the conjugate branch points. For any frequency path be-
tween these branch points, transformation of theto mode
and the to mode occurs as it does for real-frequency vari-
ation. We call this themode transformation regimesince phys-
ical attributes of the mode (e.g., the-mode is quasi-odd while
the -mode is quasi-even) are interchanged between dispersion
curves in passing through this region.

The dispersion behavior of dominant modes is qualitatively
changed if the path of frequency variation crosses the branch
point (Fig. 3). This type of bifurcation has been discussed in
[21] in connection with the analysis of leaky-wave cutoff fre-
quencies in open-boundary waveguides. Note that no conclu-
sions can be made in this case regarding transformation or con-
tinuation among modes. It is important to emphasize that, in
passing through the branch point, we break the hyperbolic-type

Fig. 5. Evolution of complex conjugate frequency-plane branch points
parameterized by strip widthw =h .

Fig. 6. Evolution of complex frequency-plane branch points parameterized by
dielectric loss in nonsymmetrical conductor-backed coplanar strip line (see inset
in Fig. 1). d=h = 0:25, w =h = 0:25, w =h = 0:27, h = 1 cm,
h = 0:1h , and� =Ref� g = 1:15.

universal unfolding of the MCP associated with the mode-cou-
pling behavior [19], [24]. Similar qualitative behavior of domi-
nant modes occurs if the path of frequency variation crosses the
fourth quadrant branch point in the complex -plane.

If the path of frequency variation is deformed above in
the complex -plane, as shown in Fig. 4, or below the fourth
quadrant branch point , the mode transformation character-
istic hyperbolic behavior no longer occurs, resulting in the con-
tinuation of the modes to and to . We call this themode
continuation regimesince physical meaning of each dispersion
curve ( or ) remains unchanged in passing through this region.
Operation in this regime will significantly effect the operation
of devices that rely on the exchange of modes for correct oper-
ation.

As we continue to deform the frequency path in the first or
fourth quadrant of the complex-plane even further above
or below the branch points, the characteristic curves of the
dominant modes approach those obtained for the symmetrical
structure (which has a degenerate rather than a nondegenerate
Morse point, and which does not exhibit frequency-plane
branch points).
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(a)

(b)

Fig. 7. Dispersion behavior of dominant modes in lossy nonsymmetrical
conductor-backed coplanar strip line withImf� g = �0:01. The path of
frequency variation lies between branch pointsf and f . Critical points
(� ; � ; � ) are shown in the complex(�; f) plane.

The above illustrative analysis leads to the conclusion that the
characteristic hyperbolic-type mode-coupling behavior associ-
ated with mode transformation occurs only if the path of fre-
quency variation lies within the strip between complex-conju-
gate frequency-plane branch points. Mode continuation occurs
if the path is deformed above or below .

The evolution of complex-conjugate frequency-plane branch
points parameterized by strip width is demonstrated in Fig. 5 for
the example of a conductor-backed coplanar strip line. The first
quadrant branch point and the fourth quadrant branch point

approach the degenerate Morse frequency pointas strip
width approaches . In the symmetrical case

, those branch points collapse due
to the absence of mode coupling. They continue to migrate in
opposite quadrants as strip width is decreased with respect
to .

While frequency variations in the complex plane are non-
physical for time–harmonic problems, the above analysis is in-
tended to demonstrate that two distinct regimes exist (mode
transformation or mode continuation) depending on the path
of frequency variation relative to the branch-point locations.
We will investigate the migration of complex frequency-plane
branch points versus dielectric loss, and their influence on the

(a)

(b)

Fig. 8. Dispersion behavior of dominant modes in lossy nonsymmetrical
conductor-backed coplanar strip line withImf� g = �0:015. The path of
frequency variation lies below the branch points due to migration off into
the first quadrant of the complexf -plane.

mode coupling behavior for time–harmonic (real-valued) fre-
quencies in the following. The example of a nonsymmetrical
conductor-backed coplanar strip line with infinite superstrate
is considered in the presence of a lossy substrate with

.
It is noted here that complex frequency-plane branch points

pairs (complex conjugate in lossless structures) migrate versus
dielectric loss, such that at some critical value of loss one of the
branch points crosses the real frequency axis (in this par-
ticular example, as shown in Fig. 6). It can be seen from Fig. 6
that for any value of loss greater than the critical value ,
the path of frequency variation along the real frequency axis lies
below both branch points and . Passing below (above) or
between the branch point pair while varying frequency along the
real axis has the same effect as that noted for the lossless case
for complex-valued frequency paths. Therefore, a critical value
of loss separates two qualitatively different states of the struc-
ture associated with mode transformation and mode continua-
tion. Any path of frequency variation (along the real axis for
time–harmonic problems) that lies betweenand guaran-
tees the formation of hyperbolic-type mode-transformation be-
havior. Frequency variation along the real axis that passes above

(i.e., and lie in the fourth quadrant of the frequency
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(a)

(b)

Fig. 9. Dispersion behavior of guided surface-wave modes on lossy grounded
dielectric slab waveguide with anisotropic chirality:� = 9� , � = � =

3� , � = � = � = � , � = �� = j�
p
� � , � = 0:05,

� = � = 0, Imf� g = �0:09 (for all permittivity components). The
path of frequency variation is between branch pointsf andf in the complex
f -plane.

plane) or below (i.e., and lie in the first quadrant) re-
sults in mode continuation, as indicated in Fig. 6. Under which
regime the structure operates depends on the value of loss.

To illustrate the occurrence of mode transformation for the
lossy case, a value of dielectric loss is exam-
ined, which provides the location of branch points and
in opposite quadrants with respect to the path of time–harmonic
frequencies (Fig. 7). The coordinates of the Morse frequency
point and branch points have been calculated numerically as the
solution of nonlinear equations given by (1), (8), and (9), respec-
tively, resulting in , ,
and . The characteristic mode coupling be-
havior and the transformation of theand modes is shown in
Fig. 7 for time–harmonic frequencies.

To demonstrate that modal interchange ceases when stronger
losses are introduced, consider an increase of the dielectric loss
to , which results in the migration of all crit-
ical and branch points, especially the branch point, across
the real frequency axis into the first quadrant of the complex

-plane. The coordinates of the Morse frequency point and
branch points at this value of loss become ,

(a)

(b)

Fig. 10. Dispersion behavior of guided surface-wave modes on lossy grounded
dielectric slab waveguide with anisotropic chirality forImf� g = �0:45 (for
all permittivity components). Branch points migrate into the fourth quadrant of
thef -plane, resulting in a qualitative change in the modal behavior.

, . The qualitative
behavior of the dispersion function is dramatically changed, as
shown in Fig. 8. The mode transformation shown in Fig. 7 is
changed into mode continuation (Fig. 8). As such, for physical
time–harmonic frequencies, a smooth change of dielectric loss
may result in significant qualitative changes in the mode cou-
pling behavior, which is associated with migration of complex
frequency-plane branch points across the real frequency axis.

To provide another example, dispersion behavior of guided
surface-wave modes on a lossy grounded dielectric slab
waveguide with anisotropic chirality [see inset in Fig. 9(a)]
is investigated in connection with complex frequency-plane
branch points. Fig. 9 demonstrates the hyperbolic type behavior
of hybrid and modes in the lossy anisotropic chiral
slab with (dielectric loss for all permittivity
components) and their mutual transformations. The path of
time–harmonic frequencies lies between complex branch points

and with coordinates GHz
and GHz, respectively. The
MCP has been found in the mode-coupling region with

GHz. These special points of interest
migrate into the fourth quadrant of the complex-plane as
loss is increased, as shown in Fig. 10. At some critical value
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of , the branch point crosses the real frequency
axis resulting in mode bifurcation. For the case demonstrated
in Fig. 10 ( ), the path of frequency variation
is above the branch points and the Morse point with coordi-
nates , ,

. A migration of the in the fourth
quadrant across the real frequency axis leads to the formation of
the modal continuation behavior with no mode transformation.

IV. CONCLUSION

Modal interactions on waveguiding structures have been in-
vestigated using the theory of critical and singular points. It has
been shown that frequency-plane branch points of the dispersion
function exist in the mode-coupling region. These branch points
are associated with the occurrence of a nondegenerate MCP,
which has been previously shown to occur in the mode-coupling
region and which is connected with traditional coupled-mode
theory. The identified branch points do not influence modal
behavior for codirectional coupling in time–harmonic lossless
problems, but may significantly affect mode-interaction phe-
nomena in the event of material loss. Numerical examples have
been shown for two different waveguiding structures, although
the effect is general in nature.
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