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Abstract—In this paper, a method-of-moments integral-equation
formulation of a generalized scattering matrix (GSM) is presented
for the full-wave analysis of interactive planar electric and mag-
netic discontinuities in waveguide. This was developed to efficiently
handle a variety of waveguide-based strip-to-slot transitions, espe-
cially on thin substrates. This single matrix formulation replaces
the problematic procedure of cascading individual GSM’s of an
electric (strip) layer, a thin substrate, and a magnetic (slot) layer.

Index Terms—Electromagnetic analysis, generalized scattering
matrix, Green’s functions, method of moments, patch, slot an-
tennas, waveguide transition.

I. INTRODUCTION

M ANY waveguide-based microwave and millimeter-wave
systems are constructed as cascaded blocks. For ex-

ample, some waveguide-based filters and spatial power
combiners consist of a number of transverse patterned con-
ductive layers separated by waveguide sections, as shown in
Fig. 1. This structure can be modeled as five blocks: one for
each of the three waveguide sections of permittivity, , and

, one for the layer containing the metal strip at , and
the other for the layer containing the slot at . It would
be possible to electromagnetically characterize this structure
using a multilayer method-of-moments (MoM) technique in
which the conductors are discretized. Such discretization can
result in a very large matrix problem. Also, this approach
cannot be used when a block requires three-dimensional (3-D)
electromagnetic (EM) characterization obtained, for example,
using the FEM. A solution is to use the generalized scattering
matrix (GSM) procedure, in which the field in the waveguide
is decomposed into a number of orthogonal waveguide modes.
An EM analysis of one block at a time then enables the
coefficients of the forward and backward traveling components
at each of the two internal waveguide surfaces of a block to
be related. The GSM’s of each block can then be cascaded to
obtain the overall system characterization. The GSM has two
attributes that are important for system design. The first is that
it uses memory efficiently as the memory is determined by the
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Fig. 1. Geometry of a rectangular waveguide-based strip-to-slot transition
module: strip is 0.6 mm� 5.4 mm, slot is 5.4 mm� 0.6 mm,a = 22:86 mm,
b = 10:16 mm,� = 2:5 mm,� = 1:0, � = 6:0, � = 1:0.

discretization of a single block rather than the discretization of
the whole system. The memory required to represent the GSM
of each block is determined by the number of waveguide modes
required to represent the field adequately. With the appropriate
choice of blocks, this is relatively small. The second is that, in
an iterative design procedure, some blocks will be unchanged,
and the EM characterization of these can be reused.

The work reported in this paper was developed for the mod-
eling of waveguide-based spatial power-combining systems [1],
[2]. Spatial power-combining systems generally consist of an
array of unit cell amplifiers arranged in a regular two-dimen-
sional array. A GSM approach in conjunction with MoM dis-
cretization was developed in [3] for the analysis of quasi-op-
tical grids used for grid amplifiers and grid oscillators. Active
device ports are incorporated in the algorithm in terms of nor-
malized Floquet harmonics that allows polarizers and periodic
grid structures to be modeled without the need of ideal mag-
netic and electric walls. A full-wave analysis of infinite peri-
odic grid structures with active devices was proposed in [4]
based on the MoM solution for the electric current density dis-
cretized by rooftop basis functions on the grid surface. The al-
gorithm was implemented for a single unit cell of the infinite
grid using specific approximations (equiphase conditions with
the introduction of electric and magnetic walls). Three-dimen-
sional finite-difference time-domain analysis of infinite peri-
odic grid structures was presented in [5] using Floquet boundary
conditions and Berenger’s perfectly matched layer absorbing
boundary condition. The technique was used to model a mul-
tilayer quasi-optical rotator array and compared with measure-
ments. The problem with the above techniques are that idealized
conditions are assumed, particularly infinite periodicity. A novel
MoM-based GSM modeling scheme was recently proposed by
the authors for efficient simulation of large waveguide-based
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Fig. 2. Geometry of a waveguide-based transition module of arbitrarily shaped
interactive electric and magnetic layers.

EM and quasi-optical systems for spatial power combining [6].
The development of field-circuit interfaces to simulate interac-
tion between passive and active [monolithic microwave inte-
grated circuit (MMIC)] devices and circuits is a novel, but nec-
essary, development for integrated EM and circuit modeling.
The idea of partitioning a whole system into individual mod-
ules (electric or magnetic layer) is implemented and the GSM
of each layer is obtained based on a full-wave MoM formula-
tion. Internal ports connecting MMIC devices and passive cir-
cuit elements with the distributed structure are established in the
technique and these ports are retained in the cascading of blocks.
The GSM is constructed for all propagating and evanescent TE
and TM modes and provides an accurate simulation of inter-
actions between neighboring modules. A problem occurs when
the separation between neighboring layers becomes electrically
small. This necessitates a significant increase in the number of
waveguide modes (i.e., the size of the GSM) in order to provide
the adequate interaction of cascading modules. In turn, this re-
sults in a dramatic increase of memory and computational re-
quirements. The solution is to model two closely spaced layers
as a single block rather than as the cascade of three blocks. The
particular problem addressed here is shown in Fig. 2. The new
block consists of the electric layer (the conductors) at ,
the volume between and , and the magnetic layer
(the slots) at . It is the purpose of this paper to develop the
GSM formulation for this enlarged block.

In this paper, a full-wave integral-equation formulation is
developed for EM modeling of waveguide-based arbitrarily
shaped interactive electric (strip, patch) and magnetic (slot,
aperture) discontinuities. In essence, the MoM-based GSM
formulation is developed for two close layers, which are then
modeled as a single block. The incident electric and magnetic
fields are expressed in terms of eigenmode expansions with
unknown magnitudes, including both propagating and evanes-
cent TE and TM modes normalized by a unity power condition

[7]. A coupled set of the electric- and magnetic-field integral
equations is discretized via the MoM using piecewise-sinu-
soidal overlapping basis and testing functions for the electric
and magnetic current density. The MoM matrix equation yields
a matrix representation for the electric and magnetic current
amplitude coefficients in terms of the unknown magnitudes
of incident electric and magnetic fields expressed in terms of
waveguide modes (eigenmode expansions) and the inverse
MoM matrix. The magnitudes of scattered (reflected and
transmitted) modes are obtained in terms of current amplitude
coefficients using a unity power normalization for the electric
and magnetic vector functions. Finally, this procedure results
in the GSM representation relating magnitudes of incident and
scattered modes. The method is numerically stable for thin as
well as thick substrates and requires the same central processing
unit (CPU) time and computer memory for each separation
between the electric and magnetic layers (in the range from
micrometers to centimeters and larger). Numerical results are
obtained for various waveguide-based interactive electric and
magnetic layers and compared with measurement data and data
obtained using a GSM cascading modeling scheme from [6]
(for electrically large separation between layers) and a 3-D
commercial FEM program.

II. I NTEGRAL-EQUATION FORMULATION AND GENERALIZED

SCATTERING MATRIX METHOD

A. Introduction

Consider a waveguide-based transition module with three di-
electric layers, as shown in Fig. 2. An arbitrarily shaped met-
allization (electric layer) and slot apertures in a ground
plane (magnetic layer) are located on the interfaces of adjacent
dielectric layers with permittivities and , and and ,
respectively. The incident electric and magnetic fields in the re-
gion are generated by an impressed electric current source

( for the magnetic field). It should be noted that
an incident magnetic field from region is similarly handled.
The scattered electric and magnetic fields in the regionsand

are generated by the induced electric current on the metal-
lization and by the induced magnetic current on the surface
of slot apertures (note that both electric and magnetic cur-
rents contribute to the fields). The electric and magnetic fields
in the region are due to magnetic currents only, but the conti-
nuity of tangential components of the magnetic field across the
surface provides the interaction of all regions and necessi-
tates the formulation of the problem in terms of coupled elec-
tric- and magnetic-field integral equations.

B. Electric and Magnetic Layers

A coupled set of integral equations is obtained by enforcing a
boundary condition on the tangential components of the electric
field on the conducting surface at as follows:

(1)
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and a continuity condition on the tangential components of the
magnetic field on the surface of the slot aperturesat
as follows:

(2)

where , , and are scattered electric
and magnetic fields. Note that is a part of the incident
magnetic field transmitted from the region through the di-
electric interface at .

The integral form of the boundary condition (1) is obtained
by combining the vector-wave equation formulation for the
electric field and the corresponding formulation for the electric
dyadic Green’s function. The integral-equation formulation of
the second vector-dyadic Green’s theorem [8] with appropriate
boundary and continuity conditions is

(3)

Here, the integral on the left-hand side of (3) represents the in-
cident electric field due to impressed electric current
and the integrals on the right-hand side are the scattered electric
fields due to induced electric and magnetic cur-
rents. The electric dyadic Green’s functions and

are obtained as the solution of the boundary-value
problem for a semiinfinite two-layered waveguide terminated
by a ground plane at (similar formulations for elec-
tric Green’s dyadics are presented in [8]). The electric dyadic
Green’s functions satisfy boundary and continuity conditions
for the electric-field vector on the surface of a conducting shield
and on the interface of adjacent dielectric layers with permittiv-
ities and . The formulation of the boundary-value problem
for the electric Green’s dyadics and some analytical details are
provided in Appendix A.

The continuity condition for tangential components of the
magnetic field (2) is obtained in integral form using a similar
procedure as that described above for the electric-field vector re-
sulting in the magnetic-field integral equation for the unknown
currents and as follows:

(4)

The integral on the left-hand side of (4) represents the incident
magnetic field introduced in the region and the integrals
on the right-hand side are the scattered magnetic fields due

to induced electric and magnetic currents. The
electric dyadic Green’s functions ,
have been derived for semiinfinite two-layer waveguide satis-
fying boundary and continuity conditions for the magnetic field
vector (see the formulation in Appendix B). The electric dyadic
Green’s function of the second kind is obtained for
a single-layered semiinfinite waveguide terminated by a ground
plane at (details are given in Appendix C). Green’s
functions in this formulation are obtained in terms of double
series expansions over the complete system of eigenfunctions
of the Helmholtz operator. Dyadic Green’s functions in terms of
rectangular vector-wave functions have also been constructed
for a semiinfinite rectangular waveguide with multilayered
loading [9].

The incident electric and magnetic fields introduced in inte-
gral form in (3) and (4) are determined at the point of observa-
tion due to current sources and at the
source point . This representation naturally comes from the
integral-equation formulation using the second vector-dyadic
Green’s theorem, but at the same time, it requires an explicit
form for the electric current source. An alternative to the in-
tegral representation, a series eigenmode expansion, including
both propagating and evanescent TE and TM modes, is proposed
here. The total incident electric field introduced by the boundary
condition (1) at is given as

(5)

The total incident magnetic field that appears in the continuity
condition (2) at is determined similarly as

(6)

where , are unknown magnitudes of all propagating
and evanescent TE and TM modes, respectively, and

is the propagation constant defined as

and

(7)

The vector functions and introduced in
(5) and (6) for the electric and magnetic fields of TE and TM
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modes, respectively, satisfy the unity power normalization con-
dition [7]

(8)

Here, the “±” sign corresponds to waves propagating in the pos-
itive (+) and negative (−) -directions and is the waveguide
cross section. The expressions for the electric and magnetic
vector function components for TE and TM modes have been
derived using the procedure described in [7].

The total reflection and transmission coefficients
for TE and TM modes at are determined as the solution
of the boundary-value problem for a two-layered waveguide ter-
minated by a ground plane at in the absence of electric
and magnetic currents (no strip metallization and slot apertures).
Note that the induced electric and magnetic currents in the above
formulation are due to total incident electric and magnetic fields
that include direct and reflected (transmitted) parts associated
only with incident fields. The problems of determining total re-
flection and transmission coefficients have been solved sepa-
rately for TE and TM modes by matching continuity conditions
on the dielectric interface at and boundary conditions at

where

(9)

The coupled set of integral equations (3) and (4) with the in-
cident electric and magnetic fields expressed in terms of eigen-
mode series expansions (5) and (6) is discretized via the tra-
ditional MoM using the - and -directed overlapping piece-
wise-sinusoidal basis and testing functions for the electric and
magnetic currents

(10)

Fig. 3. Rectangular cells with thex-directed overlapping piecewise-sinusoidal
basis functions.

Here, are locally determined basis functions defined as

and functions , , and have a similar defini-
tion. A parameter determines in some sense
a degree of smoothness of the basis functions. Note that these
functions are continuous with a discontinuous derivative at

and, for small , they approach triangular basis functions
( ). As an example, rectangular cells with the

-directed overlapping basis functions are shown in Fig. 3.
A matrix system of linear equations is obtained for the un-

known coefficients in the currents’ expansion (10)

(11)

where is the total MoM matrix of all self and mutual interac-
tions of electric- and magnetic-field components with the elec-
tric and magnetic current components

is the vector of unknown currents’ coefficients, and rep-
resents tested incident electric and magnetic fields associated
with magnitudes

The elements of the impedance block matrix are asso-
ciated with the electric-field components due to electric current
components, obtained in the following integral form at
:

(12)
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The elements of the block matrix are associated with
the electric-field components due to magnetic current compo-
nents , shown in (13), at the bottom of this
page.

The elements of the block matrix are associated with
the magnetic-field components due to electric current compo-
nents , shown in (14), at the bottom of this
page.

The elements of the admittance block matrix are asso-
ciated with the magnetic-field components due to magnetic cur-
rent components, obtained in the integral form at ,
shown in (15), at the bottom of this page.

The electric Green’s functions introduced in (12) and (15)
have a singularity on the surface of the electricand magnetic

layers where a point of observationand a source point
are co-located as a result of the boundary (3) and continuity (4)
conditions. This singularity is associated with the primary part
of the electric Green’s function and it is not integrable in those

regions, resulting in a divergent double series of the Green’s
function expansion. However, the MoM discretization provided
in this paper enables a singular integral operator to be partially
reduced. The result is that a slowly converging double series
[the results of integrating (12) and (15)] is obtained. An accel-
eration procedure to facilitate a convergence of a double series
and speed up the MoM matrix fill is demonstrated in [10] and
[11]. An efficient technique to improve a convergence of sincle
and double series was also presented in [1616].

The incident electric and magnetic fields (5) and (6) tested
with the overlapping piecewise-sinusoidal- and -directed
functions introduced in (10) can be expressed in matrix form
in terms of the unknown magnitudes of the TE and TM
modes, as shown in (16)

(16)

(13)

(14)

(15)
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where

Here, and define the inner product of the vector
function components and correspond to the testing functions.

and are total reflection coefficients defined in (9),
is the identity matrix, and

with and being total transmission coefficients (for the
incident field only) at , as defined by (9). The above matrix
representation (16) leads to a relationship between magnitudes
of incident and scattered modes—the GSM.

Using the above matrix transformations, the vectorof mag-
nitudes of electric and magnetic currents can be obtained in
terms of the unknown magnitudes of incident TE and TM modes
using the following matrix product:

(17)

C. Reflection Coefficient

The next step in the determination of the GSM for waveguide-
based interactive electric and magnetic layers is to represent the
scattered electric field (reflected at ) in terms of the eigen-
mode series expansion and relate it to the integral representation
of the scattered electric field due to induced electric and mag-
netic currents. Following the electric-field integral-equation for-
mulation (3), the reflected electric field at (interface of
adjacent dielectric layers with dielectric permittivitiesand )
has the form

(18)

Note that the reflected part of the total incident field is included
in (18). An alternative representation of the reflected electric
field is obtained in terms of the eigenmode series expansion with
unknown magnitudes of reflected TE and TM modes

(19)

The unity power normalization condition (8) applied to (18) and
(19) enables the magnitudes of reflected TE and TM modes
to be expressed in the following form:

(20)

The above system of equations can be written in matrix form
relating magnitudes of the reflected TE and TM modes to
magnitudes of incident modes using unknown magnitudes
of the electric and magnetic currents (details of the integration
over , , and are omitted here due to their algebraic
simplicity) as follows:

(21)

Here, is a block matrix obtained as a result of integra-
tion of surface integrals introduced in the system of (20), and

is a diagonal matrix with elements being the total reflection
coefficients or determined in (9).

Substituting the vector of electric and magnetic current mag-
nitudes determined as the matrix product (17) into the matrix
equation (21), the matrix relationship of the reflected and inci-
dent modes is obtained as follows:

with

(22)
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This is the reflection coefficient part of the GSM of the whole
structure.

D. Transmission Coefficient

In this section of the paper, we derive the GSM transmission
coefficient relating magnitudes of incident and transmitted
modes associated with the whole structure. The transmitted
electric field due to the magnetic current induced on the surface
of slot apertures at is obtained in the integral form

(23)

where is the electric dyadic Green’s function of the
first kind obtained for a single-layered semiinfinite wave-
guide terminated by a ground plane at . This Green’s
function has been extensively studied by many authors and
it is presented, for example, in [7], [8], and [12]. Note that

, where
is the vector potential dyadic Green’s function of the first kind
obtained as a diagonalized dyadic for rectangular cavities and
waveguides [13], [14].

The electric field transmitted in the region is also ex-
pressed in terms of the eigenmode series expansion with un-
known magnitudes of transmitted TE and TM modes

(24)

Note that the components of vector functions are obtained
in the region filled with dielectric of permittivity (charac-
teristic wave impedances for TE and TM modes are determined
in this region).

The unity power normalization condition (8) applied to (23)
and (24) results in the expression for the magnitudes of trans-
mitted modes in terms of the induced magnetic current

(25)

Following the procedure implemented above for the reflec-
tion coefficient , a matrix relationship between the trans-
mitted and incident modes is obtained as follows:

with

(26)

Fig. 4. Magnitude of the transmission coefficientS against frequency for
a strip-to-slot transition module. Numerical results are compared with data
obtained using a GSM cascading modeling scheme and a 3-D commercial
FEM program.

Fig. 5. Phase of the transmission coefficientS against frequency for a
strip-to-slot transition module.

This is the transmission coefficient part of the GSM of the whole
structure. The matrix is analogous to the matrix and it is
constructed in such a way to provide a connection with the ma-
trix product (17). (The electric current is not present in the result
(25) and this requires the introduction of zero-element blocks in
the matrix ).

The and coefficients of the GSM are obtained sim-
ilarly. It should be noted that the integral-equation formulation
in conjunction with the GSM method does not require the di-
rect calculation of electric and magnetic currents. Instead, those
currents are used to relate magnitudes of scattered (reflected and
transmitted) modes to magnitudes of incident modes by means
of matrix transformations.

III. N UMERICAL RESULTS AND DISCUSSION

The GSM elements, the reflection and transmission coeffi-
cients in (22) and (26), are calculated numerically for a variety
of waveguide-based interactive electric and magnetic discon-
tinuities used in EM and quasi-optical power-combining sys-
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Fig. 6. Magnitude of the transmission coefficientS against separation�
between strip and slot.

Fig. 7. Geometry of a rectangular waveguide-based patch-to-slot transition
module: strip is 10.4 mm� 9.0 mm, slot is 10.4 mm� 0.2 mm,a = 22:86mm,
b = 10:16 mm,� = 0:381 mm,� = 1:0, � = 6:0, � = 1:0.

tems. In the first example, results are obtained for a waveguide-
based rectangular strip-to-slot transition module (Fig. 1) and
compared with those generated by the GSM cascading scheme
[6] and the commercial HFSS program (Hewlett-Packard, ver-
sion 5.2). Figs. 4 and 5 demonstrate dispersion characteristics
(magnitude and phase) for the transmission coefficient in
a narrow resonance frequency range (18.5–20.3 GHz) for the
dominant mode. Very good agreement of the MoM nu-
merical solution with the GSM cascading and HFSS results is
observed. It can be seen that for electrically large substrates
( mm), the MoM algorithm developed in this paper and
the GSM modeling scheme proposed in [6] can both be used to
generate the accurate solution for waveguide-based interactive
discontinuities.

Note that even though the dispersion behavior of the scat-
tering parameters is shown for the dominant mode, the

-band waveguide in the above frequency range is overmoded
and all self and coupling parameters, given by (22) and (26), are
calculated. Fig. 6 shows the behavior of the transmission
coefficient of the mode versus separationbetween the
strip metallization and slot aperture. The results are obtained
at 19.635 GHz (the resonance frequency from Figs. 4 and 5
for mm). It can be seen that the structure resonates
at the same frequency for different distances between the strip
and slot. The algorithm is numerically stable for different mate-
rial and geometrical parameters, including thin substrates with

Fig. 8. Magnitude of the reflectionS and transmissionS coefficients
against frequency for a resonant patch-to-slot transition. Numerical results are
compared with measurement data.

Fig. 9. Phase of the reflectionS and transmissionS coefficients against
frequency for a resonant patch-to-slot transition.

a high dielectric permittivity, and it does not require additional
CPU time and memory.

A wide resonant strip (or patch) coupled to a thin slot in a
rectangular waveguide with a layered environment is shown in
Fig. 7. Numerical results are obtained in the 11.5–15-GHz fre-
quency range for the dominant mode showing a strong
patch-to-slot coupling at 12.475 and 14.225 GHz (Fig. 8). Fig. 9
shows the dispersion behavior of the phase of and ,
which changes in sign passing through the 0level at the res-
onance frequencies. The GSM result for the magnitude of the
transmission coefficient , shown in Fig. 8, is compared fa-
vorably to experiment. The experimental results were obtained
using an HP8510C Network Analyzer. The difference observed
in peak values of the transmission coefficient is due to con-
ductor loss, dielectric loss, and imperfect connection between
the ground plane containing slot at and the waveguide
walls, which causes a current discontinuity at the edges.

Many spatial power-combining systems are arranged as a
multilayer structure with an array of input antennas on one side
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Fig. 10. Geometry of a waveguide-based cross-polarized 2� 2 strip-to-slot array.a = 7:11 mm, b = 3:56 mm,L = 1:4 mm,w = 0:1 mm, l = 0:4 mm,
h = 0:05 mm, � = 0:075 mm, � = 2:8, � = 12:9, � = 8:5.

and an array of output antennas on the other [1], [2]. An active
device, a MMIC amplifier, is inserted between an input–output
antenna pair. Some structures use an array of coupled slot and
strip pairs (Fig. 1) and others use coupled slot and patch antenna
structures (Fig. 7). A more complicated structure is shown,
in part, in Fig. 10. This structure is a cross-polarized double

strip-to-slot transition module and is placed in a lateral
position across a waveguide. Actual structures could have larger
arrangements of or more cells. A special property of these
structures are that the individual antennas, in this case slots,
are subresonant. It is only as an array that the structure has the
desired bandpass characteristics and, therefore, it is important
to model the array in its entirety. In Fig. 10, and referring to
Figs. 1 and 7, the input angled microstrips are located at the
interface of dielectric layers with permittivities (typically
air) and . The energy of vertically polarized modes is coupled
to the energy of horizontally polarized modes from the input
slot antennas (horizontally oriented slots at ) to the output
slot antennas (vertically oriented slots also at ) by means
of the angled microstrips. At subresonant frequency, input slot
antennas are strongly coupled to microstrips designed to couple
the energy of vertically polarized modes to the output antennas,
which are subresonant for horizontally polarized modes. The
input and output slot antennas are located at the interface
(ground plane) of dielectric layers with permittivitiesand
(again, typically air). Note that the strips and slots are separated
by a very thin substrate ( mm) with a high dielectric
permittivity . The resonant properties of the
structure are mostly determined by the resonance frequency of
the input slot antenna array. The resonance occurs at frequency
28.15 GHz for this particular geometry enclosed in a layered

-band rectangular waveguide. Note that the waveguide is

Fig. 11. Magnitude of the reflectionS and transmissionS coefficients
against frequency for the 2� 2 waveguide-based strip-to-slot array.

overmoded (even though it operates in the-band frequency
range) due to the presence of dielectric layers allowing the
higher order modes to propagate. Figs. 11 and 12 show the
coupling properties of the transition module: the energy of
the mode is transmitted not only through the horizontal
input slots ( to coupling), but also through the
vertical output slots ( to coupling), which change
the field polarization. When this structure is used in a spatial
power-combining system, wherein the input and output signals
are separated by vertical and horizontal polarizers, we are
particularly interested in providing maximum cross-polarized
coupling from the mode to the mode. Note that
many modern waveguide-based spatial power-combining
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Fig. 12. Phase of the reflectionS and transmissionS coefficients against
frequency for the 2� 2 waveguide-based strip-to-slot array.

systems are developed with the use of large strip-to-slot (or
patch-to-slot) arrays where a strong cross-polarized coupling
is provided. The examples demonstrated in this paper show
the principles of a waveguide-based cross-polarized coupling,
which can be effectively used for the development of large EM
and quasi-optical systems.

IV. CONCLUSION

A full-wave integral-equation formulation has been de-
veloped for the modeling of waveguide-based, interactive,
arbitrarily shaped electric (strip, patch), and magnetic (slot,
aperture) layers with application to spatial power-combining
systems. The MoM-based GSM algorithm was developed to
handle a variety of interactive electric and magnetic disconti-
nuities with thin substrates of high dielectric permittivity. The
GSM of a transition module is constructed as an individual
GSM in the cascading algorithm for the composite GSM
of power-combining systems. Numerical results are shown
for various waveguide-based transition modules, including
strip-to-slot, patch-to-slot, and cross-polarized strip-to-slot
array. Modeling of the patch-to-slot and strip-to-slot transitions
is also compared with measured data and numerical results
generated using a GSM cascading modeling scheme from [6]
(for electrically large separation between strip and slot) and a
commercial FEM program, respectively. The method is stable
for different material and geometrical parameters and can be
effectively used for the simulation and analysis of closely
spaced interactive discontinuities. These cannot be cascaded as
individual layers due to the computational problems that arise
from the small separation of the layers.

APPENDIX A
ELECTRIC DYADIC GREEN’S FUNCTION OF THETHIRD KIND

FOR THEELECTRIC-FIELD VECTOR

The electric dyadic Green’s function is obtained
as the solution of the coupled set of vector-wave equations [8],
[15]

(27)

subject to two sets of boundary conditions. The first one is of
the first kind on the surface of a conducting shield and ground
plane at , including the surface of slot apertures (Fig. 2)

(28)

The second set describes the mixed continuity conditions for
the electric Green’s function dyadics of the third kind on the
interface of adjacent dielectric layers at as follows:

(29)

It should be noted that the location of thesources in
the above formulation is considered to be in the region.
Similarly, the boundary-value problem for the electric Green’s
dyadics and can be formulated for -sources
positioned in the region . Solution of the boundary-value
problem (27)–(29) yields nine components of the electric
Green’s function dyadics expressed in terms of double infinite
series expansions over the complete system of orthonormal
eigenfunctions of the Helmholtz operator with one-dimensional
-directed scalar Green’s functions

A scalar form of the vector wave equation (27) for Green’s
function dyadics and is combined into three
independent systems of equations. The first system of scalar
equations, obtained for and components of the
Green’s functions, is reduced to the second-order differential
equations for the-directed one-dimensional functions .
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Those functions are obtained as a superposition of primary and
scattered parts

(30)

The unknown coefficients in (30) are
obtained subject to the boundary and continuity conditions (28)
and (29).

The other components of the Green’s functions are derived
from the second and third systems of scalar equations using a
similar approach to the above for the , , and com-
ponents.

APPENDIX B
ELECTRIC DYADIC GREEN’S FUNCTION OF THETHIRD KIND

FOR THEMAGNETIC-FIELD VECTOR

Only the formulation of the boundary-value problem for
dyadic Green’s functions will be shown here due to the sim-
ilarity of the approach to that discussed in the Appendix A.
The electric dyadic Green’s function is obtained
satisfying the coupled set of vector-wave equations

(31)

The boundary conditions (analogous to those for the magnetic
field on the surface of a perfect conductor) on the surface of
a conducting shield and ground plane at , including the
surface of slot apertures (Fig. 2), are

(32)

and the mixed continuity conditions for the electric Green’s
function dyadics of the third kind on the interface of adjacent
layers at (analogous to continuity conditions for tangen-
tial components of the electric and magnetic fields expressed in
terms of the magnetic field vector) are

(33)

Note that the location of the-sources in the above formula-
tion (31)–(33) is considered to be in the region. This is neces-
sary in order to formulate the magnetic-field integral equation in
this region and to satisfy the continuity conditions on the surface
of slot apertures. The boundary-value problem for the electric
Green’s function dyadics and has also been formu-
lated for sources positioned in the region, and the Green’s
functions derived have been implemented in the determination
of the GSM transmission coefficient .

APPENDIX C
ELECTRIC DYADIC GREEN’SFUNCTION OF THESECONDKIND

The electric dyadic Green’s function is obtained
for a semiinfinite waveguide filled with dielectric with permit-
tivity and terminated by a ground plane at . This
Green’s function is determined as the analog of the magnetic
field vector satisfying the vector-wave equation at each interior
point of the region and the magnetic-type boundary condi-
tions on the ground plane, including the surface of slot aper-
tures at . Components of the Green’s dyadic are expressed
in terms of double series expansions over the complete system
of eigenfunctions (shown in the Appendix A) with one-dimen-
sional -directed Green’s functions determined in the following
form:

(34)

Note that the transverse components of the Green’s function
are primarily of interest as it appears in the scattering in-

tegral in (4). This Green’s function has been also obtained in
terms of rectangular vector-wave functions [12].
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