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Eigenvalue Equations and Numerical Analysis of a
Coaxial Cavity with Misaligned Inner Rod

Shi-Chang Zhang and Manfred Thum8enior Member, IEEE

Abstract—Based on the Helmholtz equation, the superposition come dense, resulting in multimode operation. The competition
of cylindrical wave functions, and coordinates transformation, the = of the parasitic modes with the desired operating mode may

eigenvalue equation is derived rigorously for a coaxial gyrotron - 5,56 ynstable operation and deteriorate the performance of the
cavity with a misaligned inner rod. It is shown that, due to the ex- device [2], [3]
f ek

istence of the structural misalignment, any single normal mode o .
a perfect coaxial structure (i.e., without misalignment) no longer 1N Order to get good mode selection of the |a|'ge'V0|U_me
simultaneously satisfies both the outer and inner boundary condi- cavity in multimode operation, one of the most effective

tions; consequently, the superposition of cylindrical wave functions means is to employ coaxial cavities. Insertion of an inner
must be taken into account. A numerical approach of solving the rod into a cylindrical cavity may rarefy the spectrum of the

eigenvalue equation is proposed in this paper. As a practical appli- . . L .
cation, analysis is given to the higher mode coaxial cavity employed competing modes in the vicinity of the operating mode, and

in a 140-GHz/1.5-MW gyrotron device at the Forschungszentrum SOIve the problem of voltage depression if the electron beam
Karlsruhe, Karlsruhe, Germany. Result shows that the eigenvalue is placed close to the inner rod [3]-[5]. Therefore a coaxial
of the operating mode in a misaligned coaxial cavity is affected no- structure was widely considered in gyro-devices [3]-[9].
ticeably by the structural misalignment. Currently, a coaxial cavity has been employed in a gyrotron
Index Terms—Eccentric coaxial gyrotron cavity, eigenvalue oscillator at the Forschungszentrum Research Center Karl-
equations, numerical approach. sruhe (FZK, formerly the KfK), which is expected to operate
in the higher modeTEss 16,1 (TEs31,17,1) with an output
power of 1.5 MW at a frequency of 140 GHz (165 GHz)
for the next step of fusion experiments such as W7-X and
N THE PAST years, gyrotrons have become the majéFER [10]-[12].
subject of high-power high-efficiency radiation sources From the practical point-of-view, the structure of a coaxial
in the millimeter- and submillimeter-wave ranges. One dfavity may have a misalignment of the inner rod to the cylin-
their great promises is the application of electron cyclotratrical cavity wall. Surely the misalignment will change both the
resonance heating on tokamaks and stellarators. For the rdgtribution of RF fields and the eigenvalues of the cavity. This
generation of fusion machines such as the stellarators’ lafg@blem was studied early in several papers by means of the
helical device (LHD) in Japan and W7-X in Germany and theaethods such as point-matching, finite differences, and trun-
Tokamak International Thermonuclear Experimental Reacteation of series [13]-[16]. Generally, these papers considered
(ITER), millimeter-wave generators operating at long pulgenly the lowest few frequencies, as pointed out by Kuttler [17].
up to CW with RF output power in excess of 1 MW per unif hen, using conformal transformation, Kuttler [17] and Das
at frequencies from 140 to 170 GHz are required (see [1] apdd Vargheese [18] transformed the Helmholtz equation in an-
cited papers). nular cross section with eccentric inner rod into the weighted
As the device operates in long pulse/CW with megawatt levédelmholtz equation in a rectangular cross section [17] or in a
the ohmic heating of the gyrotron cavity walls will get seriougperfectly coaxial cross section [18]. More recently, Dumbrajs
To solve this problem, large-volume cavities must be employ@#d Pavelyev [19], [20] studied this problem by expanding the
to keep the ohmic losses at the acceptable value of about 3tldmode in azimuthal harmonics in terms of the Graf’s formula
kW/cm for the current available cooling techniques. Howeveef Bessel functions.
large volume of a cavity makes the spectrum of eigenvalues beMaking use of the coordinates transformation and the
superposition of cylindrical wave functions, where these wave
functions are defined as the separated solutions of Maxwell's
Manuscript received December 12, 1997. This work was supported in part@guations in cylindrical coordinates with the propagation
the Deutscher Akademischer Austausch Dienst under a K.C. Wong Reseatglhstant and cutoff wavenumber determined later from the
Fellowship, by the National Natural Science Foundation of China, and by tB%undary conditions, in this paper, we present a comparatively
European Fusion Technology Program. ’ J
S.-C. Zhang is with the Department of Applied Physics, Southwest Jiaotoe@mprehensive consideration of the eigenvalue equation of
University, Chengdu, Sichuan 610031, China, and is also with the World Lag- cngxial cavity with a misaligned inner rod. This paper is
oratory, China Center of Advanced Science and Technology, Beijing 100080 . . . .
China. organized as follows. In Section Il, we rigorously deal with
M. Thumm is with the Institute for Technical Physics, EURATOM-FZK As-the eigenvalue problem. In Section Ill, a numerical approach
sociation, Forschungszentrum Research Center, D-76021 Karlsruhe, Gernj@)proposed to solve the eigenvalue equations. In Section 1V,
and is also with the Institute for High-Frequency Techniques and Electronics .. . . . .
Univeristy of Karlsruhe, D-76128 Karlsruhe, Germany. analysis is carried out to the FZK coaxial cavity. Finally,
Publisher Item Identifier S 0018-9480(00)00219-2. conclusions are drawn in Section V.
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Fig. 1. Cross-sectional view of coaxial cavity and the coordinate systems. (a) Misaligned coaxial structure. (b) Perfectly coaxial struconmdin@es system
employed in this paper.

Il. ENIGENVALUE EQUATIONS ically speakingyn is referred to as the azimuthal mode index,
each value of which indicates an elementary motig;denotes
the field amplitude of the mode, which is related to thitial
Without loss of generality, we consider a coaxial cavity igonditiory &', (being named as the cutoff wavenumber or trans-
which the inner rod has a misalignment to the outer conductégrse wavenumber) angj,, are determined by theuter and
[see Fig. 1(a)]. Before processing the misaligned coaxial strigner boundary conditionsand £, is known as the propaga-
ture, it is worthwhile to present a brief analysis of the perfe&ion constant or the axial wave number. In this paper, we define
structure shown in Fig. 1(b). For the convenience of descriptioff, Zout as the eigenvalue of the elementary mode (wheyg
itis referred to as systeB) and the corresponding quantities aréenotes the radius of the outer conductor); but for the conve-
marked by a prime. nience of description, we also call the cutoff wavenumiser
We assume that the fields governed by the equation of waa@ the eigenvalue since the const&pt,, does not change the
are separable cases with time variatdad longitudinal coordi- physical meaning.
nate variblez. It is then well known (see [21]) that the variation The particular solution of the transverse electric wave (TE
of the longitudinal component of the fields is governed by th@ode) in systen can be obtained by substituting the general

A. Perfectly Coaxial Structure

Helmholtz equation solution into the inner boundary condition
H, OH!
7 +i2) {35 } =0 ® oM ©)
2 on |\ f\=Ri,

and thegeneral solutioris .
& and the outer boundary condition

HUR . ¢, 2 1) = Y Al [ Jn(FLR) = Nk )] -
m o 50 =0 (6)
eJme Ci]k:Z C]wt (2) | R |=Rous
for the transverse electric (TE) field structure and to determine(;, and the eigenvalug’, Ro,:, wheredH_ /on
PN , . , . is the normal gradient off/ and R;,, is the radius of the inner
EUR, ¢ zt)=Y_ A, [Jm(/ﬁR) — GulVNm (KL R )} conductor, respectively. The inner boundary condition gives the
m ' ' ' coefficient(/,
_C]nu,c' C:I:gk'zz C]wt (3)
. . ! Jr/n(kllRm)
for the transverse magnetic (TM) field structure, where Cm = N (K, R’ m=0,1,2-- (7)
AV Llin

/ 12 /2 12
w=ke BT =k kL “) whereJ! and N/ are, respectively, the derivatives &f, and

wherecis the speed of light in vacuunw,is the wave frequency, N,,, to the whole argument. Substituting (7) into (2), then into
k" is the total wavenumber, ang),, and V,,, are the first kind the outer boundary condition (6), we obtain

of Bessel function and Neumann function of ordey respec- I R
tively. The following are four independent constants for eacE Al [Jnl(kj_Rout) - M
value ofm: A, k. (or £’), &/, and{/,,, which are to be deter- Ny (K Rin)
mined by the initial conditions and boundary conditions. Phys- =0. (8)

Nrn (kj_ Rout ):| ermp,
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In order to ensure that not all of/, is to be zero and to keep We can now find the following properties of the eigenvalue

the validity for all ¢/, we must have equations of the perfectly coaxial cavity.
o JL (K, Rw) ) -, 1) Each eigenvalue equation (inde® defines a subset of
T (K Rou) — N (W, Ron) Ny (K Rowt) = 0, eigenvalues:| ., n =0, 1,2, ---.
m 1 1n

2) Single cylindrical wave functions can satisfy both the
inner and outer boundary conditions simultaneously,

©) consequently, they can exist individually, defining the
modes of the waveguide. These basic modes are called
the normal modes [22].

3) Each eigenvalue depends on the inner-rod rafljysthe
outer-wall radiuf,.;, and the azimuthal mode index,
and the radial mode index.

m=01,2 ---.

The nth nontrivial root of (9) denotes the eigenvalue of the
TE,,., mode, wheren andn are the azimuthal and radial mode
indexes, respectively. Equation (9) is referred to as the eigen-
value equations of th€E,,,,, mode. It indicates the well-known
fact that, generally speaking, a single mode can exist in a per-
fectly coaxial waveguide and their cutoff wavenumbers are dif-
ferent from each other for different valuesraf For example, in B. Misaligned Coaxial Structure

acylindrical waveguide with a radius,, th? eigenvalué’, R,, Let us turn our attention to the misaligned coaxial structure,
of theTE,, mode is 3.832, whereas the eigenvalue offfia: a5 is shown in Fig. 1(a), which has a deviatibfiom the inner
mode is 1.841. - rod axis to the outer wall axis. We call it systefnNoting that
Similarly, the inner and outer boundary conditions of the TNhe transformation
wave Lo
R=R +d (e o= +d;y=19) (16)
=in does not change the form of the Helmholtz equation, one may
and obtain thegeneral solutiorof TE waves in systerA by choosing
theinverse transformatioof the general solution (2) of system
E2||R'|=Rm -0 (11) Bas follows:
yield the eigenvalue equations of TM mode (B ¢, 7’0?
, InlFi B =30 X Andplbid)| (kL R) = Gon Ny ()
Im (K] Rout) — N, R N (K Rour) = 0, . p=—oo
m 1t . . .
m=0,1,2 - A (17)

(12)  where the Graf’s addition formulas [23]in the triangi® PO’

where thenth nontrivial root of (12) denotes the eigenvalue of o 0 Smtp)e
the TM,,,,, mode,m andn are, respectively, the azimuthal and Jm(kLR') ™" = Z Jp(k1d)Jmip(kiL R) e TP%

radial mode indexes. p=—o0
The axial wavenumbek’, of a standing wave in a perfect (18)
oscillator cavity with a length of, for instance, thé'E,,, ,, , ooy gme! - ] ] J(mtp)e
mode, can be determined by the axial boundary condition of Nn(kLI) e - Z Tp(k1d) Ny p (kL R) ¢
P pe——oo
resulting in (19)

! f— f— v ow
hal=am, ¢=123 (13) have been used. Mathematically speakinggbeeral solution

whereg is referred to as the axial mode index, and the eigeff SystemA has much choice. The reason why we choose the
function of = has been selected aisi(k.z). In this case, the inverse transformation of systeis the similarity of these two

oscillating frequency of th&'E,, ,, , mode,w, is determined systems. Obviously, this choice meets the physical requirement

by the cutoff wavenumber and the axial wavenumber that, at a fixed point in space, the field must be single valued
" . [21]. The equivalence of thgeneral solution§.e., (2) and (17)]
_w _ ¢ [ 5 S . . L . )
f= 5 = 2r kT E2. (14) implies that the fields in a misaligned coaxial waveguide may

_ o _ be expanded in terms of the superposition of cylindrical wave
For a traveling-wave propagating in a waveguide, the axiinctions, where these wave functions are defined as the sep-
wavenumber is determined by the cutoff wavenumber and theated solutions of Maxwell’s equations in cylindrical coordi-

given wave frequency nates with the propagation constantand cutoff wavenumber
5 k. to be determined later from the boundary conditions. This
K = (f) — k2. (15) treatment is similar with that employed by Collin [22]. He de-
C

scribed that in a cylindrical waveguide with finite conducting
Therefore, the eigenvalue may be expressed in terms of the awialls or with discontinuity region, as a single normal mode no
wavenumber since they can transfer each other when a wéweger satisfies the boundary conditions, the arbitrary field can
frequency in (15) is given. be represented as an infinite series of the normal modes (cf. [22,
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chs. 5.3, 5.6, and 5.7]). As to the misaligned coaxial waveguide Now let us show that a single normal mode solution in a
however, this time the particular solution must be determined perfectly coaxial waveguide no longer individually satisfies

the boundary conditions of systefn both the outer and inner boundary conditions of the misaligned
OH. coaxial structure. For the case of a single normal mode solution,
an | =0 (20) in the above derivation, the sumto, 3", should be moved
g | R—d|=Rix away in (17) and, consequently, the result, i.e., (26), becomes
an
GH(R, ¢, =; t) J! (k1 Rin)
— - =0. 21) Ji_p(kod) | J(kiRou) — ~2=—"L Ni(k) Roy
on | Bl=Rout @) () | s Fou) Ny (k1 Rin) (it Fou)
- . . . . =0, i=0,=+1,£2,---. (29
Substituting (17) into the inner boundary condition (20) yields ' (29)
/ .
(o = M7 m=0,1,2,---. (22) Obviously,nosingle-valued:, can satisfy the above equation
_ _Nm(kLRin) o _ for various values of even ifi may be finite when the misalign-
Inserting (22) into (17), then substituting (17) into the outéfientd is very small. In other words, a single normal mode so-
boundary condition (21), we obtain lution must conflict the boundary conditions of the misaligned
o0 J! (k1 Rin) coaxial structure.
! _ m .
Zrn: p:z_:oo kLAn)Jp(kld) [Jnmq(klRout) N,r/n(]ﬂ/J_Rln) Lett'ng
AT J(mp)e _ J) (k1 Rin
NnH_p(kJ_ROUt)} ¢ 0- ai,m(kJ_) = Jifm(kJ_d) |:Ji/(kJ_Rout) - 77( = )
(23) N}, (k1 Rin)
Letting - Ni(k J_Rout):| (30)
m—+p=1
p=t—m (24) for TE waves, and
we rewrite (23) as T (kL Ron)
m N1 Lin
o Pk Ry (b)) = i (rid) [JimRout) _ ImliBin)
g J! : _ TmAT_ T ng Ny (k1 Rin
> Y Rrdndim(kad) [ Ji(k Row) AN (k1 Rin)

e Nl R)| @D
'Ni/(kJ_Rout):| " =0.
(25)
This equation must be valid for all, giving a set of eigenvalue
equations of TE waves as follows:

for TM waves, one can rewrite (26) and (27) as

Z airn(kJ_)Arn = 07 1= 07 :l:]-, Zl:2, et (32)

Z AnlJi—nl(kJ_d) m
kR J! (k1 Rin) Nk R —0 As a matter of fact, (32) is a set of linear equationsitg. If
il Row) - N’ (k1 Rin) i(kLRow)| =0, (32) could be simplified as a solvable matrix equationtq,

i=0,+1, £2, ---. (26) then in order to ensure not all ¢f,,, to be zero, it is necessary

- . . . at the coefficient determinant af,,, must be zero as follows:
Similarly, one can obtain a set of eigenvalue equations of Tm ™

waves
Z Arn ']i—rn (kJ_ d)

Jrn k Rin
. |:Ji(]fJ_Rout) - % Ni(kJ_Rout):| = 07

i =0, £1, £2, ... (27)

ai—l,rn—l(kJ_) ai—l,rn(kJ_) ai—l,rn-l—l(kJ_)
@, rn—l(kl) a/i,rn,(kl) @, rn,—l—l(kl)

it1 m—1(k1) Giv1, m(kL) aitt, m+1(bL)

=0. (33)
C. Eigenvalue Equation

Equations (26) and (27) include the effect of the misalignmemhe above equation is the eigenvalue equation of a misaligned
on eigenvalues. Whei = 0, eigenvalue equations (26) antcoaxial waveguide and determines the cutoff wavenuniber
(27) of the misaligned structure are restored to the eigenvagiethe propagation wave. Wheh= 0, all the elements except
equations (9) and (12) of the perfect structure by the property#bse on the main diagonal line of the determinant are zero, and

the Bessel function [23] (33) is restored to the eigenvalue equations (9) and (12) of the
1, form =1 perfect structure by the property of Bessel functions (28). For a
Jimm(k1d)|a=o = 0, for m # i. (28) givend, the higher order values of.(k d) (i.e., the coefficient
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of a; ) tend to be small; consequently, the eigenvalue equation 878
(33) may be truncated as a determinant with finite order, and the TE%,16
eigenvaluet . can be solved by computer. 876 |- ; . d/Rout=0

Finally, it is worthwhile to mention the substantial difference ! Rout=20.81 mm
of our method with Dumbrajs and Pavelyev's treatment in [19]
and [20]: their derivation was based on the expansiorstigle 2 Br4r
mode(i.e., thesth mode in their papers, where the eigenvalue §
of the normal mode in gerfectstructure was involved in their B sr2 |
eigenvalue equation [19, eq. (4)] and [20, eq. (5)]), whereas our , \ :
general solution is constructed by the superposition of cylin- a7 |
drical wave functions and, thus, the eigenvalue of the normal
mode in aperfectstructure is not involved. This substantial dif- \/
fere_nC(Ia ce(;ta|rr:ly .Iealds to modified conclusions in both mathe- 35-82.6 28 3 32 94 86 38 4
matical and physical aspects. Rout/Rin

1. NUMERICAL APPROACH OFEIGENVALUE EQUATION . fndincrrof racius o Ean s, haveling wwe when the comil sructure has

. . . nQ misalignment.
Without loss of generality, we consider the case of a small g
misalignment. We assume thatl&, ,, traveling wave is in- 140.6

jected or aTE,, , , standing wave is excited in a perfectly TE 28,16,1
coaxial structure. This wave must be modified when the struc- 1404 — d/Rout=0
ture has a misalignmedt If the misalignment is so small that 1402 | ' Rout=20.81 mm
finite terms.Jo(k 1 d), Jur (k1 d), Jao(krd)s -+ Jau(k d) in 5 \ L=20mm
(33) survive and higher order terms vanish, only the- v)th, g " \
(w — v+ Dth, -, (w—1)th, uth, (u + Dth, -+, (u + v — §:>J' 1398 | /
1)th, (v + v)th cylindrical wave functions will be involved, and 2 g
the eigenvalue equation (33) is truncated as a determinant with 1396 | /
order of (2v + 1) 1394 [ :
G uv(kr) o Gu—w (kL) Gu— (kL) 1392 g
139 . . '
26 28 3 32 34 36 38 4
[£27% u—'v(kJ_) Tt Ay, u(kJ_) Tt [£27% u—l—'v(kJ_) Rout/Rin

Fig. 3. Dependence of the eigenfrequency on the ratio of the outer wall radius
Qugv u—v(bL) 0 Gugu,w(BL) 0 Gugu,uto (kL) to the inner rod radius f6F Es, 16,1 standing wave when the coaxial structure
0. (34) has no misalignment, where the outer wall radius is 29.81 mm and the cavity
length is 20 mm.

This estimation may pe made by using the eigenvalge of tﬁeexpected to operate in tHeE.s 16,1 mode at the frequency
perfect structure. In this way, one can calculate the eigenvalye; 40 gHz with an output powér of 1.5 MW [10].

k1, which is modified by the misalignmerit Figs. 2 and 3 show the dependence of the eigenvalue and os-
cillating frequency on the ratio of the outer wall radius to the
inner rod radius in a perfect structure. From these figures, we
see that the FZK cavity had eigenvalue of 87.3377 and oscil-

In this section, we give a numerical analysis of the influencéating frequency of 139.9929 GHz, which is in agreement with
of a possible misalignment on the eigenvalues and eigenftee observation in the experiment [10].
guencies by using the following design parameters: the radiiFigs. 4 and 5 displays the influences of small misalignment
of the inner and outer conductors are 8.128 and 29.81 nwufithe inner rod to the cavity wall on the eigenvalueR,,,; and
(Rout/Rin = 3.6677) and the cavity length is 20 mm. Ac-the eigenfrequency shift(d) — f(d = 0). In the calculation, the
cording to (13), the axial wavenumbér, can be figured eigenvalue equation is truncated as a determinant of order 13. It
out, which isk, = ¢n/L = 0.1571 mm1. The oscillating appears that the misalignment may decrease the eigenvalue and
frequency of thel'Es 16,1 mode is figured out from (14). eigenfrequency.

A main goal of the gyrotron development program at the Finally, it should be pointed out that the modification of the
Research Center Karlsruhe, FZK, is the design, constrigigenvalue based on the existence of the misalignment affects
tion, and test of high-power gyrotron oscillators for electronot only the eigenfrequency, but also the distribution of the RF
cyclotron wave application and diagnostics of magneticalfields since the eigenvalue is involved in the arguments of the
confined plasma in controlled thermonuclear fusion researchB&ssel functions and Neumann functions of the RF field expres-
coaxial-cavity gyrotron oscillator is under development, whickions. Consequently, the interaction of the electron beam with

IV. ANALYSIS OF THE FZK CoAXIAL CaAvITY
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87.34

87.336

g 87332
2
>
5 sram | :
TE 28,16
87.324 [ ROUt/Hin=3.6577
Rout=2081 mm
2, 0.2 0.4 06 08 1 (1]
d/Rout (%)

(2]
Fig. 4. Eigenvalue of TE.s 15 traveling wave modified by small
misalignment, wher&?, ../ R, = 3.6677.
(3]
0
—_
: (4]
4r
N
T
3 (5]
g 8
% 6]
g
o} "2 (7]
o TE2816,1
[F | .
Rout=2081 mm
20 L — [9]
0 0.2 0.4 0.6 0.8 1
d/Rout (%) [10]
Fig. 5. Modification of the eigenfrequency @fE.s 16,1 Standing wave by [11]
small misalignment, wherR..... / Ri» = 3.6677, the outer wall radius is 29.81
mm and cavity length is 20 mm.
[12]

the RF fields in a coaxial-cavity gyro-device must be modified
by the structure misalignment. This topic is under consideratiofiL3]
and will be published in a future paper.
[14]
V. CONCLUSIONS

In this paper, we have derived the rigorous eigenvalue equétd]
tion (33) for the coaxial structure with a misalignment between
the outer wall and inner rod, proposed a numerical approach tas]
solve the modification of the eigenvalue due to the existence of
the structural misalignment, and carried out the analysis of th 7
higher mode coaxial cavity employed in a 140-GHz/1.5-MW
gyrotron oscillator of FZK. The following general conclusions
can be drawn: 1) single cylindrical wave function can no Ionger[18]
satisfy both the outer and inner boundary conditions of a mis-
aligned coaxial structure (waveguide or cavity), and taken indi-
vidually, these functions cannot define the modes of the strué—1 )
ture; however, the modes can be written aguperpositiorof
cylindrical wave functions, and are of the TE or TM (or TEM) [20]
type and 2) the eigenvalues of a misaligned coaxial structure
must be calculated on the basis of this superposition of cyling1]

13

drical wave functions and are modified noticeably by the struc-
tural misalignment.
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