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Eigenvalue Equations and Numerical Analysis of a
Coaxial Cavity with Misaligned Inner Rod
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Abstract—Based on the Helmholtz equation, the superposition
of cylindrical wave functions, and coordinates transformation, the
eigenvalue equation is derived rigorously for a coaxial gyrotron
cavity with a misaligned inner rod. It is shown that, due to the ex-
istence of the structural misalignment, any single normal mode of
a perfect coaxial structure (i.e., without misalignment) no longer
simultaneously satisfies both the outer and inner boundary condi-
tions; consequently, the superposition of cylindrical wave functions
must be taken into account. A numerical approach of solving the
eigenvalue equation is proposed in this paper. As a practical appli-
cation, analysis is given to the higher mode coaxial cavity employed
in a 140-GHz/1.5-MW gyrotron device at the Forschungszentrum
Karlsruhe, Karlsruhe, Germany. Result shows that the eigenvalue
of the operating mode in a misaligned coaxial cavity is affected no-
ticeably by the structural misalignment.

Index Terms—Eccentric coaxial gyrotron cavity, eigenvalue
equations, numerical approach.

I. INTRODUCTION

I N THE PAST years, gyrotrons have become the major
subject of high-power high-efficiency radiation sources

in the millimeter- and submillimeter-wave ranges. One of
their great promises is the application of electron cyclotron
resonance heating on tokamaks and stellarators. For the next
generation of fusion machines such as the stellarators’ large
helical device (LHD) in Japan and W7-X in Germany and the
Tokamak International Thermonuclear Experimental Reactor
(ITER), millimeter-wave generators operating at long pulse
up to CW with RF output power in excess of 1 MW per unit
at frequencies from 140 to 170 GHz are required (see [1] and
cited papers).

As the device operates in long pulse/CW with megawatt level,
the ohmic heating of the gyrotron cavity walls will get serious.
To solve this problem, large-volume cavities must be employed
to keep the ohmic losses at the acceptable value of about 3–4
kW/cm2 for the current available cooling techniques. However,
large volume of a cavity makes the spectrum of eigenvalues be-
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come dense, resulting in multimode operation. The competition
of the parasitic modes with the desired operating mode may
cause unstable operation and deteriorate the performance of the
device [2], [3].

In order to get good mode selection of the large-volume
cavity in multimode operation, one of the most effective
means is to employ coaxial cavities. Insertion of an inner
rod into a cylindrical cavity may rarefy the spectrum of the
competing modes in the vicinity of the operating mode, and
solve the problem of voltage depression if the electron beam
is placed close to the inner rod [3]–[5]. Therefore a coaxial
structure was widely considered in gyro-devices [3]–[9].
Currently, a coaxial cavity has been employed in a gyrotron
oscillator at the Forschungszentrum Research Center Karl-
sruhe (FZK, formerly the KfK), which is expected to operate
in the higher mode ( ) with an output
power of 1.5 MW at a frequency of 140 GHz (165 GHz)
for the next step of fusion experiments such as W7-X and
ITER [10]–[12].

From the practical point-of-view, the structure of a coaxial
cavity may have a misalignment of the inner rod to the cylin-
drical cavity wall. Surely the misalignment will change both the
distribution of RF fields and the eigenvalues of the cavity. This
problem was studied early in several papers by means of the
methods such as point-matching, finite differences, and trun-
cation of series [13]–[16]. Generally, these papers considered
only the lowest few frequencies, as pointed out by Kuttler [17].
Then, using conformal transformation, Kuttler [17] and Das
and Vargheese [18] transformed the Helmholtz equation in an-
nular cross section with eccentric inner rod into the weighted
Helmholtz equation in a rectangular cross section [17] or in a
perfectly coaxial cross section [18]. More recently, Dumbrajs
and Pavelyev [19], [20] studied this problem by expanding the
th mode in azimuthal harmonics in terms of the Graf’s formula

of Bessel functions.
Making use of the coordinates transformation and the

superposition of cylindrical wave functions, where these wave
functions are defined as the separated solutions of Maxwell’s
equations in cylindrical coordinates with the propagation
constant and cutoff wavenumber determined later from the
boundary conditions, in this paper, we present a comparatively
comprehensive consideration of the eigenvalue equation of
a coaxial cavity with a misaligned inner rod. This paper is
organized as follows. In Section II, we rigorously deal with
the eigenvalue problem. In Section III, a numerical approach
is proposed to solve the eigenvalue equations. In Section IV,
analysis is carried out to the FZK coaxial cavity. Finally,
conclusions are drawn in Section V.
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(a) (b) (c)

Fig. 1. Cross-sectional view of coaxial cavity and the coordinate systems. (a) Misaligned coaxial structure. (b) Perfectly coaxial structure. (c) Coordinates system
employed in this paper.

II. ENIGENVALUE EQUATIONS

A. Perfectly Coaxial Structure

Without loss of generality, we consider a coaxial cavity in
which the inner rod has a misalignment to the outer conductor
[see Fig. 1(a)]. Before processing the misaligned coaxial struc-
ture, it is worthwhile to present a brief analysis of the perfect
structure shown in Fig. 1(b). For the convenience of description,
it is referred to as systemB, and the corresponding quantities are
marked by a prime.

We assume that the fields governed by the equation of wave
are separable cases with time variableand longitudinal coordi-
nate varible . It is then well known (see [21]) that the variation
of the longitudinal component of the fields is governed by the
Helmholtz equation

(1)

and thegeneral solutionis

(2)

for the transverse electric (TE) field structure and

(3)

for the transverse magnetic (TM) field structure, where

(4)

where is the speed of light in vacuum,is the wave frequency,
is the total wavenumber, and and are the first kind

of Bessel function and Neumann function of order, respec-
tively. The following are four independent constants for each
value of : , (or ), and , which are to be deter-
mined by the initial conditions and boundary conditions. Phys-

ically speaking, is referred to as the azimuthal mode index,
each value of which indicates an elementary mode;denotes
the field amplitude of the mode, which is related to theinitial
condition; (being named as the cutoff wavenumber or trans-
verse wavenumber) and are determined by theouter and
inner boundary conditions; and is known as the propaga-
tion constant or the axial wave number. In this paper, we define

as the eigenvalue of the elementary mode (where
denotes the radius of the outer conductor); but for the conve-
nience of description, we also call the cutoff wavenumber
as the eigenvalue since the constant does not change the
physical meaning.

The particular solution of the transverse electric wave (TE
mode) in systemB can be obtained by substituting the general
solution into the inner boundary condition

(5)

and the outer boundary condition

(6)

to determine and the eigenvalue , where
is the normal gradient of and is the radius of the inner
conductor, respectively. The inner boundary condition gives the
coefficient

(7)

where and are, respectively, the derivatives of and
to the whole argument. Substituting (7) into (2), then into

the outer boundary condition (6), we obtain

(8)
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In order to ensure that not all of is to be zero and to keep
the validity for all , we must have

(9)

The th nontrivial root of (9) denotes the eigenvalue of the
mode, where and are the azimuthal and radial mode

indexes, respectively. Equation (9) is referred to as the eigen-
value equations of the mode. It indicates the well-known
fact that, generally speaking, a single mode can exist in a per-
fectly coaxial waveguide and their cutoff wavenumbers are dif-
ferent from each other for different values of. For example, in
a cylindrical waveguide with a radius , the eigenvalue
of the mode is 3.832, whereas the eigenvalue of the
mode is 1.841.

Similarly, the inner and outer boundary conditions of the TM
wave

(10)

and

(11)

yield the eigenvalue equations of TM mode

(12)

where the th nontrivial root of (12) denotes the eigenvalue of
the mode, and are, respectively, the azimuthal and
radial mode indexes.

The axial wavenumber of a standing wave in a perfect
oscillator cavity with a length of , for instance, the
mode, can be determined by the axial boundary condition of,
resulting in

(13)

where is referred to as the axial mode index, and the eigen-
function of has been selected as . In this case, the
oscillating frequency of the mode, , is determined
by the cutoff wavenumber and the axial wavenumber

(14)

For a traveling-wave propagating in a waveguide, the axial
wavenumber is determined by the cutoff wavenumber and the
given wave frequency

(15)

Therefore, the eigenvalue may be expressed in terms of the axial
wavenumber since they can transfer each other when a wave
frequency in (15) is given.

We can now find the following properties of the eigenvalue
equations of the perfectly coaxial cavity.

1) Each eigenvalue equation (index) defines a subset of
eigenvalues , .

2) Single cylindrical wave functions can satisfy both the
inner and outer boundary conditions simultaneously,
consequently, they can exist individually, defining the
modes of the waveguide. These basic modes are called
the normal modes [22].

3) Each eigenvalue depends on the inner-rod radius, the
outer-wall radius , and the azimuthal mode index,
and the radial mode index.

B. Misaligned Coaxial Structure

Let us turn our attention to the misaligned coaxial structure,
as is shown in Fig. 1(a), which has a deviationfrom the inner
rod axis to the outer wall axis. We call it systemA. Noting that
the transformation

i.e., (16)

does not change the form of the Helmholtz equation, one may
obtain thegeneral solutionof TE waves in systemAby choosing
the inverse transformationof the general solution (2) of system
B as follows:

(17)

where the Graf’s addition formulas [23] in the triangle

(18)

(19)

have been used. Mathematically speaking, thegeneral solution
of systemA has much choice. The reason why we choose the
inverse transformation of systemB is the similarity of these two
systems. Obviously, this choice meets the physical requirement
that, at a fixed point in space, the field must be single valued
[21]. The equivalence of thegeneral solutions[i.e., (2) and (17)]
implies that the fields in a misaligned coaxial waveguide may
be expanded in terms of the superposition of cylindrical wave
functions, where these wave functions are defined as the sep-
arated solutions of Maxwell’s equations in cylindrical coordi-
nates with the propagation constantand cutoff wavenumber

to be determined later from the boundary conditions. This
treatment is similar with that employed by Collin [22]. He de-
scribed that in a cylindrical waveguide with finite conducting
walls or with discontinuity region, as a single normal mode no
longer satisfies the boundary conditions, the arbitrary field can
be represented as an infinite series of the normal modes (cf. [22,
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chs. 5.3, 5.6, and 5.7]). As to the misaligned coaxial waveguide,
however, this time the particular solution must be determined by
the boundary conditions of systemA

(20)

and

(21)

Substituting (17) into the inner boundary condition (20) yields

(22)

Inserting (22) into (17), then substituting (17) into the outer
boundary condition (21), we obtain

(23)

Letting

(24)

we rewrite (23) as

(25)

This equation must be valid for all, giving a set of eigenvalue
equations of TE waves as follows:

(26)

Similarly, one can obtain a set of eigenvalue equations of TM
waves

(27)

C. Eigenvalue Equation

Equations (26) and (27) include the effect of the misalignment
on eigenvalues. When , eigenvalue equations (26) and
(27) of the misaligned structure are restored to the eigenvalue
equations (9) and (12) of the perfect structure by the property of
the Bessel function [23]

for
for

(28)

Now let us show that a single normal mode solution in a
perfectly coaxial waveguide no longer individually satisfies
both the outer and inner boundary conditions of the misaligned
coaxial structure. For the case of a single normal mode solution,
in the above derivation, the sum to, , should be moved
away in (17) and, consequently, the result, i.e., (26), becomes

(29)

Obviously,no single-valued can satisfy the above equation
for various values of even if may be finite when the misalign-
ment is very small. In other words, a single normal mode so-
lution must conflict the boundary conditions of the misaligned
coaxial structure.

Letting

(30)

for TE waves, and

(31)

for TM waves, one can rewrite (26) and (27) as

(32)

As a matter of fact, (32) is a set of linear equations to. If
(32) could be simplified as a solvable matrix equation to,
then in order to ensure not all of to be zero, it is necessary
that the coefficient determinant of must be zero as follows:

(33)

The above equation is the eigenvalue equation of a misaligned
coaxial waveguide and determines the cutoff wavenumber
of the propagation wave. When , all the elements except
those on the main diagonal line of the determinant are zero, and
(33) is restored to the eigenvalue equations (9) and (12) of the
perfect structure by the property of Bessel functions (28). For a
given , the higher order values of (i.e., the coefficient
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of ) tend to be small; consequently, the eigenvalue equation
(33) may be truncated as a determinant with finite order, and the
eigenvalue can be solved by computer.

Finally, it is worthwhile to mention the substantial difference
of our method with Dumbrajs and Pavelyev’s treatment in [19]
and [20]: their derivation was based on the expansion of asingle
mode(i.e., the th mode in their papers, where the eigenvalue
of the normal mode in aperfectstructure was involved in their
eigenvalue equation [19, eq. (4)] and [20, eq. (5)]), whereas our
general solution is constructed by the superposition of cylin-
drical wave functions and, thus, the eigenvalue of the normal
mode in aperfectstructure is not involved. This substantial dif-
ference certainly leads to modified conclusions in both mathe-
matical and physical aspects.

III. N UMERICAL APPROACH OFEIGENVALUE EQUATION

Without loss of generality, we consider the case of a small
misalignment. We assume that a traveling wave is in-
jected or a standing wave is excited in a perfectly
coaxial structure. This wave must be modified when the struc-
ture has a misalignment. If the misalignment is so small that
finite terms , , , , in
(33) survive and higher order terms vanish, only the th,

th, , th, th, th, ,
th, th cylindrical wave functions will be involved, and

the eigenvalue equation (33) is truncated as a determinant with
order of

(34)

This estimation may be made by using the eigenvalue of the
perfect structure. In this way, one can calculate the eigenvalue

, which is modified by the misalignment.

IV. A NALYSIS OF THE FZK COAXIAL CAVITY

In this section, we give a numerical analysis of the influences
of a possible misalignment on the eigenvalues and eigenfre-
quencies by using the following design parameters: the radii
of the inner and outer conductors are 8.128 and 29.81 mm
( ) and the cavity length is 20 mm. Ac-
cording to (13), the axial wavenumber can be figured
out, which is mm−1. The oscillating
frequency of the mode is figured out from (14).

A main goal of the gyrotron development program at the
Research Center Karlsruhe, FZK, is the design, construc-
tion, and test of high-power gyrotron oscillators for electron
cyclotron wave application and diagnostics of magnetically
confined plasma in controlled thermonuclear fusion research. A
coaxial-cavity gyrotron oscillator is under development, which

Fig. 2. Dependence of the eigenvalues on the ratio of the outer wall radius to
the inner rod radius forTE traveling wave when the coaxial structure has
no misalignment.

Fig. 3. Dependence of the eigenfrequency on the ratio of the outer wall radius
to the inner rod radius forTE standing wave when the coaxial structure
has no misalignment, where the outer wall radius is 29.81 mm and the cavity
length is 20 mm.

is expected to operate in the mode at the frequency
of 140 GHz with an output power of 1.5 MW [10].

Figs. 2 and 3 show the dependence of the eigenvalue and os-
cillating frequency on the ratio of the outer wall radius to the
inner rod radius in a perfect structure. From these figures, we
see that the FZK cavity had eigenvalue of 87.3377 and oscil-
lating frequency of 139.9929 GHz, which is in agreement with
the observation in the experiment [10].

Figs. 4 and 5 displays the influences of small misalignment
of the inner rod to the cavity wall on the eigenvalue and
the eigenfrequency shift . In the calculation, the
eigenvalue equation is truncated as a determinant of order 13. It
appears that the misalignment may decrease the eigenvalue and
eigenfrequency.

Finally, it should be pointed out that the modification of the
eigenvalue based on the existence of the misalignment affects
not only the eigenfrequency, but also the distribution of the RF
fields since the eigenvalue is involved in the arguments of the
Bessel functions and Neumann functions of the RF field expres-
sions. Consequently, the interaction of the electron beam with
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Fig. 4. Eigenvalue of TE traveling wave modified by small
misalignment, whereR =R = 3:6677.

Fig. 5. Modification of the eigenfrequency ofTE standing wave by
small misalignment, whereR =R = 3:6677, the outer wall radius is 29.81
mm and cavity length is 20 mm.

the RF fields in a coaxial-cavity gyro-device must be modified
by the structure misalignment. This topic is under consideration
and will be published in a future paper.

V. CONCLUSIONS

In this paper, we have derived the rigorous eigenvalue equa-
tion (33) for the coaxial structure with a misalignment between
the outer wall and inner rod, proposed a numerical approach to
solve the modification of the eigenvalue due to the existence of
the structural misalignment, and carried out the analysis of the
higher mode coaxial cavity employed in a 140-GHz/1.5-MW
gyrotron oscillator of FZK. The following general conclusions
can be drawn: 1) single cylindrical wave function can no longer
satisfy both the outer and inner boundary conditions of a mis-
aligned coaxial structure (waveguide or cavity), and taken indi-
vidually, these functions cannot define the modes of the struc-
ture; however, the modes can be written as asuperpositionof
cylindrical wave functions, and are of the TE or TM (or TEM)
type and 2) the eigenvalues of a misaligned coaxial structure
must be calculated on the basis of this superposition of cylin-

drical wave functions and are modified noticeably by the struc-
tural misalignment.
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