

Eigenvalue Equations and Numerical Analysis of a Coaxial Cavity with Misaligned Inner Rod

Shi-Chang Zhang and Manfred Thumm, *Senior Member, IEEE*

Abstract—Based on the Helmholtz equation, the superposition of cylindrical wave functions, and coordinates transformation, the eigenvalue equation is derived rigorously for a coaxial gyrotron cavity with a misaligned inner rod. It is shown that, due to the existence of the structural misalignment, any single normal mode of a perfect coaxial structure (i.e., without misalignment) no longer simultaneously satisfies both the outer and inner boundary conditions; consequently, the superposition of cylindrical wave functions must be taken into account. A numerical approach of solving the eigenvalue equation is proposed in this paper. As a practical application, analysis is given to the higher mode coaxial cavity employed in a 140-GHz/1.5-MW gyrotron device at the Forschungszentrum Karlsruhe, Karlsruhe, Germany. Result shows that the eigenvalue of the operating mode in a misaligned coaxial cavity is affected noticeably by the structural misalignment.

Index Terms—Eccentric coaxial gyrotron cavity, eigenvalue equations, numerical approach.

I. INTRODUCTION

IN THE PAST years, gyrotrons have become the major subject of high-power high-efficiency radiation sources in the millimeter- and submillimeter-wave ranges. One of their great promises is the application of electron cyclotron resonance heating on tokamaks and stellarators. For the next generation of fusion machines such as the stellarators' large helical device (LHD) in Japan and W7-X in Germany and the Tokamak International Thermonuclear Experimental Reactor (ITER), millimeter-wave generators operating at long pulse up to CW with RF output power in excess of 1 MW per unit at frequencies from 140 to 170 GHz are required (see [1] and cited papers).

As the device operates in long pulse/CW with megawatt level, the ohmic heating of the gyrotron cavity walls will get serious. To solve this problem, large-volume cavities must be employed to keep the ohmic losses at the acceptable value of about 3–4 kW/cm² for the current available cooling techniques. However, large volume of a cavity makes the spectrum of eigenvalues be-

Manuscript received December 12, 1997. This work was supported in part by the Deutscher Akademischer Austausch Dienst under a K.C. Wong Research Fellowship, by the National Natural Science Foundation of China, and by the European Fusion Technology Program.

S.-C. Zhang is with the Department of Applied Physics, Southwest Jiaotong University, Chengdu, Sichuan 610031, China, and is also with the World Laboratory, China Center of Advanced Science and Technology, Beijing 100080, China.

M. Thumm is with the Institute for Technical Physics, EURATOM-FZK Association, Forschungszentrum Research Center, D-76021 Karlsruhe, Germany, and is also with the Institute for High-Frequency Techniques and Electronics, University of Karlsruhe, D-76128 Karlsruhe, Germany.

Publisher Item Identifier S 0018-9480(00)00219-2.

come dense, resulting in multimode operation. The competition of the parasitic modes with the desired operating mode may cause unstable operation and deteriorate the performance of the device [2], [3].

In order to get good mode selection of the large-volume cavity in multimode operation, one of the most effective means is to employ coaxial cavities. Insertion of an inner rod into a cylindrical cavity may rarefy the spectrum of the competing modes in the vicinity of the operating mode, and solve the problem of voltage depression if the electron beam is placed close to the inner rod [3]–[5]. Therefore a coaxial structure was widely considered in gyro-devices [3]–[9]. Currently, a coaxial cavity has been employed in a gyrotron oscillator at the Forschungszentrum Research Center Karlsruhe (FZK, formerly the KfK), which is expected to operate in the higher mode $TE_{28,16,1}$ ($TE_{31,17,1}$) with an output power of 1.5 MW at a frequency of 140 GHz (165 GHz) for the next step of fusion experiments such as W7-X and ITER [10]–[12].

From the practical point-of-view, the structure of a coaxial cavity may have a misalignment of the inner rod to the cylindrical cavity wall. Surely the misalignment will change both the distribution of RF fields and the eigenvalues of the cavity. This problem was studied early in several papers by means of the methods such as point-matching, finite differences, and truncation of series [13]–[16]. Generally, these papers considered only the lowest few frequencies, as pointed out by Kuttler [17]. Then, using conformal transformation, Kuttler [17] and Das and Vargheese [18] transformed the Helmholtz equation in an annular cross section with eccentric inner rod into the weighted Helmholtz equation in a rectangular cross section [17] or in a perfectly coaxial cross section [18]. More recently, Dumbrabs and Pavelyev [19], [20] studied this problem by expanding the s th mode in azimuthal harmonics in terms of the Graf's formula of Bessel functions.

Making use of the coordinates transformation and the superposition of cylindrical wave functions, where these wave functions are defined as the separated solutions of Maxwell's equations in cylindrical coordinates with the propagation constant and cutoff wavenumber determined later from the boundary conditions, in this paper, we present a comparatively comprehensive consideration of the eigenvalue equation of a coaxial cavity with a misaligned inner rod. This paper is organized as follows. In Section II, we rigorously deal with the eigenvalue problem. In Section III, a numerical approach is proposed to solve the eigenvalue equations. In Section IV, analysis is carried out to the FZK coaxial cavity. Finally, conclusions are drawn in Section V.

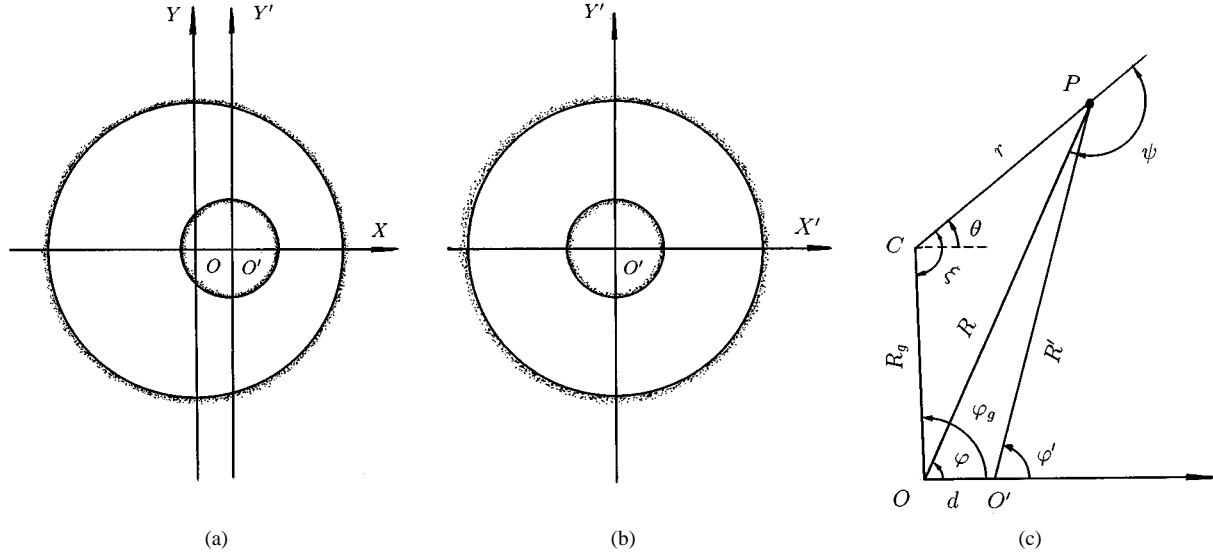


Fig. 1. Cross-sectional view of coaxial cavity and the coordinate systems. (a) Misaligned coaxial structure. (b) Perfectly coaxial structure. (c) Coordinates system employed in this paper.

II. ENIGENVALUE EQUATIONS

A. Perfectly Coaxial Structure

Without loss of generality, we consider a coaxial cavity in which the inner rod has a misalignment to the outer conductor [see Fig. 1(a)]. Before processing the misaligned coaxial structure, it is worthwhile to present a brief analysis of the perfect structure shown in Fig. 1(b). For the convenience of description, it is referred to as system *B*, and the corresponding quantities are marked by a prime.

We assume that the fields governed by the equation of wave are separable cases with time variable t and longitudinal coordinate variable z . It is then well known (see [21]) that the variation of the longitudinal component of the fields is governed by the Helmholtz equation

$$(\nabla_{R'}^2 + k_{\perp}^{\prime 2}) \left\{ \begin{array}{l} H'_z \\ E'_z \end{array} \right\} = 0 \quad (1)$$

and the *general solution* is

$$H'_z(R', \varphi', z; t) = \sum_m A'_m \left[J_m(k'_{\perp} R') - \zeta'_m N_m(k'_{\perp} R') \right] \cdot e^{jm\varphi'} e^{\pm jk'_z z} e^{j\omega t} \quad (2)$$

for the transverse electric (TE) field structure and

$$E'_z(R', \varphi', z; t) = \sum_m A'_m \left[J_m(k'_{\perp} R') - \zeta'_m N_m(k'_{\perp} R') \right] \cdot e^{jm\varphi'} e^{\pm jk'_z z} e^{j\omega t} \quad (3)$$

for the transverse magnetic (TM) field structure, where

$$\omega = k' c, k'^2 = k_z'^2 + k_{\perp}^{\prime 2} \quad (4)$$

where c is the speed of light in vacuum, ω is the wave frequency, k' is the total wavenumber, and J_m and N_m are the first kind of Bessel function and Neumann function of order m , respectively. The following are four independent constants for each value of m : A'_m , k'_z (or k'), k'_{\perp} and ζ'_m , which are to be determined by the initial conditions and boundary conditions. Phys-

ically speaking, m is referred to as the azimuthal mode index, each value of which indicates an elementary mode; A'_m denotes the field amplitude of the mode, which is related to the *initial condition*; k'_{\perp} (being named as the cutoff wavenumber or transverse wavenumber) and ζ'_m are determined by the *outer and inner boundary conditions*; and k'_z is known as the propagation constant or the axial wave number. In this paper, we define $k'_{\perp} R_{\text{out}}$ as the eigenvalue of the elementary mode (where R_{out} denotes the radius of the outer conductor); but for the convenience of description, we also call the cutoff wavenumber k'_{\perp} as the eigenvalue since the constant R_{out} does not change the physical meaning.

The particular solution of the transverse electric wave (TE mode) in system *B* can be obtained by substituting the general solution into the inner boundary condition

$$\left. \frac{\partial H'_z}{\partial n} \right|_{|\vec{R}'|=R_{\text{in}}} = 0 \quad (5)$$

and the outer boundary condition

$$\left. \frac{\partial H'_z}{\partial n} \right|_{|\vec{R}'|=R_{\text{out}}} = 0 \quad (6)$$

to determine ζ'_m and the eigenvalue $k'_{\perp} R_{\text{out}}$, where $\partial H'_z / \partial n$ is the normal gradient of H'_z and R_{in} is the radius of the inner conductor, respectively. The inner boundary condition gives the coefficient ζ'_m

$$\zeta'_m = \frac{J'_m(k'_{\perp} R_{\text{in}})}{N'_m(k'_{\perp} R_{\text{in}})}, \quad m = 0, 1, 2, \dots \quad (7)$$

where J'_m and N'_m are, respectively, the derivatives of J_m and N_m to the whole argument. Substituting (7) into (2), then into the outer boundary condition (6), we obtain

$$\sum_m A'_m \left[J_m(k'_{\perp} R_{\text{out}}) - \frac{J'_m(k'_{\perp} R_{\text{in}})}{N'_m(k'_{\perp} R_{\text{in}})} N_m(k'_{\perp} R_{\text{out}}) \right] e^{jm\varphi'} = 0. \quad (8)$$

In order to ensure that not all of A'_m is to be zero and to keep the validity for all φ' , we must have

$$J'_m(k'_\perp R_{\text{out}}) - \frac{J_m(k'_\perp R_{\text{in}})}{N'_m(k'_\perp R_{\text{in}})} N'_m(k'_\perp R_{\text{out}}) = 0, \\ m = 0, 1, 2, \dots \quad (9)$$

The n th nontrivial root of (9) denotes the eigenvalue of the TE_{mn} mode, where m and n are the azimuthal and radial mode indexes, respectively. Equation (9) is referred to as the eigenvalue equations of the TE_{mn} mode. It indicates the well-known fact that, generally speaking, a single mode can exist in a perfectly coaxial waveguide and their cutoff wavenumbers are different from each other for different values of m . For example, in a cylindrical waveguide with a radius R_w , the eigenvalue $k'_\perp R_w$ of the TE_{01} mode is 3.832, whereas the eigenvalue of the TE_{11} mode is 1.841.

Similarly, the inner and outer boundary conditions of the TM wave

$$E'_z|_{|\vec{R}'|=R_{\text{in}}} = 0 \quad (10)$$

and

$$E'_z|_{|\vec{R}'|=R_{\text{out}}} = 0 \quad (11)$$

yield the eigenvalue equations of TM mode

$$J_m(k'_\perp R_{\text{out}}) - \frac{J_m(k'_\perp R_{\text{in}})}{N'_m(k'_\perp R_{\text{in}})} N_m(k'_\perp R_{\text{out}}) = 0, \\ m = 0, 1, 2, \dots \quad (12)$$

where the n th nontrivial root of (12) denotes the eigenvalue of the TM_{mn} mode, m and n are, respectively, the azimuthal and radial mode indexes.

The axial wavenumber k'_z of a standing wave in a perfect oscillator cavity with a length of L , for instance, the $\text{TE}_{m,n,q}$ mode, can be determined by the axial boundary condition of z , resulting in

$$k'_z L = q\pi, \quad q = 1, 2, 3, \dots \quad (13)$$

where q is referred to as the axial mode index, and the eigenfunction of z has been selected as $\sin(k_z z)$. In this case, the oscillating frequency of the $\text{TE}_{m,n,q}$ mode, ω , is determined by the cutoff wavenumber and the axial wavenumber

$$f = \frac{\omega}{2\pi} = \frac{c}{2\pi} \sqrt{k_\perp^2 + k_z^2}. \quad (14)$$

For a traveling-wave propagating in a waveguide, the axial wavenumber is determined by the cutoff wavenumber and the given wave frequency

$$k'_z = \sqrt{\left(\frac{\omega}{c}\right)^2 - k_\perp^2}. \quad (15)$$

Therefore, the eigenvalue may be expressed in terms of the axial wavenumber since they can transfer each other when a wave frequency in (15) is given.

We can now find the following properties of the eigenvalue equations of the perfectly coaxial cavity.

- 1) Each eigenvalue equation (index m) defines a subset of eigenvalues $k_{\perp,mn}$, $n = 0, 1, 2, \dots$
- 2) Single cylindrical wave functions can satisfy both the inner and outer boundary conditions simultaneously, consequently, they can exist individually, defining the modes of the waveguide. These basic modes are called the normal modes [22].
- 3) Each eigenvalue depends on the inner-rod radius R_{in} , the outer-wall radius R_{out} , and the azimuthal mode index m , and the radial mode index n .

B. Misaligned Coaxial Structure

Let us turn our attention to the misaligned coaxial structure, as is shown in Fig. 1(a), which has a deviation d from the inner rod axis to the outer wall axis. We call it system A . Noting that the transformation

$$\vec{R} = \vec{R}' + \vec{d} \quad (\text{i.e., } x = x' + d; y = y') \quad (16)$$

does not change the form of the Helmholtz equation, one may obtain the *general solution* of TE waves in system A by choosing the *inverse transformation* of the general solution (2) of system B as follows:

$$H_z(R, \varphi, z; t) = \sum_m \sum_{p=-\infty}^{\infty} A_m J_p(k_\perp d) \left[J_{m+p}(k_\perp R) - \zeta_m N_{m+p}(k_\perp R) \right] \\ \cdot e^{j(m+p)\varphi} e^{\pm jk_z z} e^{j\omega t} \quad (17)$$

where the Graf's addition formulas [23] in the triangle $\Delta OPO'$

$$J_m(k_\perp R') e^{jm\varphi'} = \sum_{p=-\infty}^{\infty} J_p(k_\perp d) J_{m+p}(k_\perp R) e^{j(m+p)\varphi} \quad (18)$$

$$N_m(k_\perp R') e^{jm\varphi'} = \sum_{p=-\infty}^{\infty} J_p(k_\perp d) N_{m+p}(k_\perp R) e^{j(m+p)\varphi} \quad (19)$$

have been used. Mathematically speaking, the *general solution* of system A has much choice. The reason why we choose the inverse transformation of system B is the similarity of these two systems. Obviously, this choice meets the physical requirement that, at a fixed point in space, the field must be single valued [21]. The equivalence of the *general solutions* [i.e., (2) and (17)] implies that the fields in a misaligned coaxial waveguide may be expanded in terms of the superposition of cylindrical wave functions, where these wave functions are defined as the separated solutions of Maxwell's equations in cylindrical coordinates with the propagation constant k_z and cutoff wavenumber k_\perp to be determined later from the boundary conditions. This treatment is similar with that employed by Collin [22]. He described that in a cylindrical waveguide with finite conducting walls or with discontinuity region, as a single normal mode no longer satisfies the boundary conditions, the arbitrary field can be represented as an infinite series of the normal modes (cf. [22],

chs. 5.3, 5.6, and 5.7]). As to the misaligned coaxial waveguide, however, this time the particular solution must be determined by the boundary conditions of system A

$$\frac{\partial H_z}{\partial n} \Big|_{|\vec{R}-\vec{d}|=R_{in}} = 0 \quad (20)$$

and

$$\frac{\partial H(R, \varphi, z; t)}{\partial n} \Big|_{|\vec{R}|=R_{out}} = 0. \quad (21)$$

Substituting (17) into the inner boundary condition (20) yields

$$\zeta_m = \frac{J'_m(k_{\perp}R_{in})}{N'_m(k_{\perp}R_{in})}, \quad m = 0, 1, 2, \dots. \quad (22)$$

Inserting (22) into (17), then substituting (17) into the outer boundary condition (21), we obtain

$$\sum_m \sum_{p=-\infty}^{\infty} k_{\perp} A_m J_p(k_{\perp}d) \left[J'_{m+p}(k_{\perp}R_{out}) - \frac{J'_m(k_{\perp}R_{in})}{N'_m(k_{\perp}R_{in})} \cdot N'_{m+p}(k_{\perp}R_{out}) \right] e^{j(m+p)\varphi} = 0. \quad (23)$$

Letting

$$\begin{aligned} m + p &= i \\ p &= i - m \end{aligned} \quad (24)$$

we rewrite (23) as

$$\sum_{i-m=-\infty}^{\infty} \sum_m k_{\perp} A_m J_{i-m}(k_{\perp}d) \left[J'_i(k_{\perp}R_{out}) - \frac{J'_m(k_{\perp}R_{in})}{N'_m(k_{\perp}R_{in})} \cdot N'_i(k_{\perp}R_{out}) \right] e^{j i \varphi} = 0. \quad (25)$$

This equation must be valid for all φ , giving a set of eigenvalue equations of TE waves as follows:

$$\sum_m A_m J_{i-m}(k_{\perp}d) \cdot \left[J'_i(k_{\perp}R_{out}) - \frac{J'_m(k_{\perp}R_{in})}{N'_m(k_{\perp}R_{in})} N'_i(k_{\perp}R_{out}) \right] = 0, \quad i = 0, \pm 1, \pm 2, \dots. \quad (26)$$

Similarly, one can obtain a set of eigenvalue equations of TM waves

$$\sum_m A_m J_{i-m}(k_{\perp}d) \cdot \left[J_i(k_{\perp}R_{out}) - \frac{J_m(k_{\perp}R_{in})}{N_m(k_{\perp}R_{in})} N_i(k_{\perp}R_{out}) \right] = 0, \quad i = 0, \pm 1, \pm 2, \dots. \quad (27)$$

C. Eigenvalue Equation

Equations (26) and (27) include the effect of the misalignment on eigenvalues. When $d = 0$, eigenvalue equations (26) and (27) of the misaligned structure are restored to the eigenvalue equations (9) and (12) of the perfect structure by the property of the Bessel function [23]

$$J_{i-m}(k_{\perp}d)|_{d=0} = \begin{cases} 1, & \text{for } m = i \\ 0, & \text{for } m \neq i. \end{cases} \quad (28)$$

Now let us show that a single normal mode solution in a perfectly coaxial waveguide no longer individually satisfies both the outer and inner boundary conditions of the misaligned coaxial structure. For the case of a single normal mode solution, in the above derivation, the sum to m , \sum_m , should be moved away in (17) and, consequently, the result, i.e., (26), becomes

$$J_{i-m}(k_{\perp}d) \left[J'_i(k_{\perp}R_{out}) - \frac{J'_m(k_{\perp}R_{in})}{N'_m(k_{\perp}R_{in})} N'_i(k_{\perp}R_{out}) \right] = 0, \quad i = 0, \pm 1, \pm 2, \dots. \quad (29)$$

Obviously, no single-valued k_{\perp} can satisfy the above equation for various values of i even if i may be finite when the misalignment d is very small. In other words, a single normal mode solution must conflict the boundary conditions of the misaligned coaxial structure.

Letting

$$a_{i,m}(k_{\perp}) = J_{i-m}(k_{\perp}d) \left[J'_i(k_{\perp}R_{out}) - \frac{J'_m(k_{\perp}R_{in})}{N'_m(k_{\perp}R_{in})} \cdot N'_i(k_{\perp}R_{out}) \right] \quad (30)$$

for TE waves, and

$$a_{i,m}(k_{\perp}) = J_{i-m}(k_{\perp}d) \left[J_i(k_{\perp}R_{out}) - \frac{J_m(k_{\perp}R_{in})}{N_m(k_{\perp}R_{in})} \cdot N_i(k_{\perp}R_{out}) \right] \quad (31)$$

for TM waves, one can rewrite (26) and (27) as

$$\sum_m a_{i,m}(k_{\perp}) A_m = 0, \quad i = 0, \pm 1, \pm 2, \dots. \quad (32)$$

As a matter of fact, (32) is a set of linear equations to A_m . If (32) could be simplified as a solvable matrix equation to A_m , then in order to ensure not all of A_m to be zero, it is necessary that the coefficient determinant of A_m must be zero as follows:

$$\begin{vmatrix} \dots & \dots & \dots & \dots & \dots & \dots \\ \dots & a_{i-1,m-1}(k_{\perp}) & a_{i-1,m}(k_{\perp}) & a_{i-1,m+1}(k_{\perp}) & \dots & \dots \\ \dots & a_{i,m-1}(k_{\perp}) & a_{i,m}(k_{\perp}) & a_{i,m+1}(k_{\perp}) & \dots & \dots \\ \dots & a_{i+1,m-1}(k_{\perp}) & a_{i+1,m}(k_{\perp}) & a_{i+1,m+1}(k_{\perp}) & \dots & \dots \\ \dots & \dots & \dots & \dots & \dots & \dots \end{vmatrix} = 0. \quad (33)$$

The above equation is the eigenvalue equation of a misaligned coaxial waveguide and determines the cutoff wavenumber k_{\perp} of the propagation wave. When $d = 0$, all the elements except those on the main diagonal line of the determinant are zero, and (33) is restored to the eigenvalue equations (9) and (12) of the perfect structure by the property of Bessel functions (28). For a given d , the higher order values of $J_x(k_{\perp}d)$ (i.e., the coefficient

of $a_{i,m}$) tend to be small; consequently, the eigenvalue equation (33) may be truncated as a determinant with finite order, and the eigenvalue k_{\perp} can be solved by computer.

Finally, it is worthwhile to mention the substantial difference of our method with Dumbrajs and Pavelyev's treatment in [19] and [20]: their derivation was based on the expansion of a *single mode* (i.e., the s th mode in their papers, where the eigenvalue of the normal mode in a *perfect* structure was involved in their eigenvalue equation [19, eq. (4)] and [20, eq. (5)]), whereas our general solution is constructed by the superposition of cylindrical wave functions and, thus, the eigenvalue of the normal mode in a *perfect* structure is not involved. This substantial difference certainly leads to modified conclusions in both mathematical and physical aspects.

III. NUMERICAL APPROACH OF EIGENVALUE EQUATION

Without loss of generality, we consider the case of a small misalignment. We assume that a $TE_{u,n}$ traveling wave is injected or a $TE_{u,n,p}$ standing wave is excited in a perfectly coaxial structure. This wave must be modified when the structure has a misalignment d . If the misalignment d is so small that finite terms $J_0(k_{\perp}d)$, $J_{\pm 1}(k_{\perp}d)$, $J_{\pm 2}(k_{\perp}d)$, ..., $J_{\pm v}(k_{\perp}d)$ in (33) survive and higher order terms vanish, only the $(u-v)$ th, $(u-v+1)$ th, ..., $(u-1)$ th, u th, $(u+1)$ th, ..., $(u+v-1)$ th, $(u+v)$ th cylindrical wave functions will be involved, and the eigenvalue equation (33) is truncated as a determinant with order of $(2v+1)$

$$\begin{vmatrix} a_{u-v, u-v}(k_{\perp}) & \cdots & a_{u-v, u}(k_{\perp}) & \cdots & a_{u-v, u+v}(k_{\perp}) \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ a_{u, u-v}(k_{\perp}) & \cdots & a_{u, u}(k_{\perp}) & \cdots & a_{u, u+v}(k_{\perp}) \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ a_{u+v, u-v}(k_{\perp}) & \cdots & a_{u+v, u}(k_{\perp}) & \cdots & a_{u+v, u+v}(k_{\perp}) \end{vmatrix} = 0. \quad (34)$$

This estimation may be made by using the eigenvalue of the perfect structure. In this way, one can calculate the eigenvalue k_{\perp} , which is modified by the misalignment d .

IV. ANALYSIS OF THE FZK COAXIAL CAVITY

In this section, we give a numerical analysis of the influences of a possible misalignment on the eigenvalues and eigenfrequencies by using the following design parameters: the radii of the inner and outer conductors are 8.128 and 29.81 mm ($R_{\text{out}}/R_{\text{in}} = 3.6677$) and the cavity length is 20 mm. According to (13), the axial wavenumber k_z can be figured out, which is $k_z = q\pi/L \approx 0.1571 \text{ mm}^{-1}$. The oscillating frequency of the $TE_{28,16,1}$ mode is figured out from (14).

A main goal of the gyrotron development program at the Research Center Karlsruhe, FZK, is the design, construction, and test of high-power gyrotron oscillators for electron cyclotron wave application and diagnostics of magnetically confined plasma in controlled thermonuclear fusion research. A coaxial-cavity gyrotron oscillator is under development, which

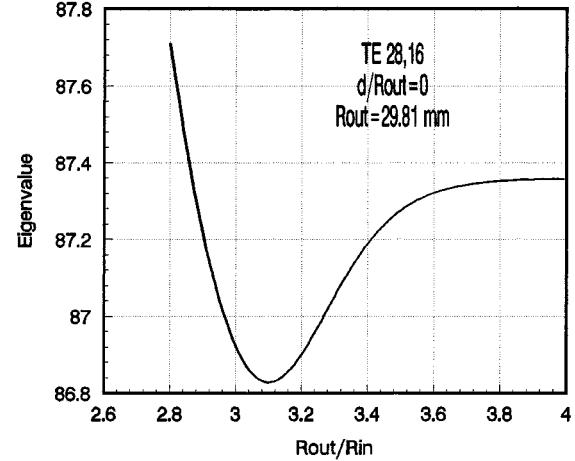


Fig. 2. Dependence of the eigenvalues on the ratio of the outer wall radius to the inner rod radius for $TE_{28,16}$ traveling wave when the coaxial structure has no misalignment.

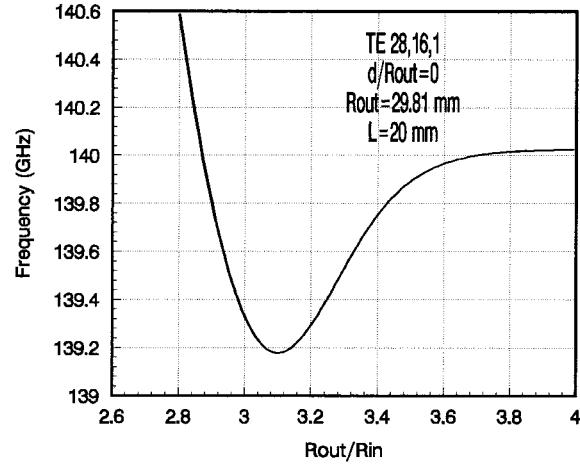


Fig. 3. Dependence of the eigenfrequency on the ratio of the outer wall radius to the inner rod radius for $TE_{28,16,1}$ standing wave when the coaxial structure has no misalignment, where the outer wall radius is 29.81 mm and the cavity length is 20 mm.

is expected to operate in the $TE_{28,16,1}$ mode at the frequency of 140 GHz with an output power of 1.5 MW [10].

Figs. 2 and 3 show the dependence of the eigenvalue and oscillating frequency on the ratio of the outer wall radius to the inner rod radius in a perfect structure. From these figures, we see that the FZK cavity had eigenvalue of 87.3377 and oscillating frequency of 139.9929 GHz, which is in agreement with the observation in the experiment [10].

Figs. 4 and 5 displays the influences of small misalignment of the inner rod to the cavity wall on the eigenvalue $k_{\perp}R_{\text{out}}$ and the eigenfrequency shift $f(d) - f(d=0)$. In the calculation, the eigenvalue equation is truncated as a determinant of order 13. It appears that the misalignment may decrease the eigenvalue and eigenfrequency.

Finally, it should be pointed out that the modification of the eigenvalue based on the existence of the misalignment affects not only the eigenfrequency, but also the distribution of the RF fields since the eigenvalue is involved in the arguments of the Bessel functions and Neumann functions of the RF field expressions. Consequently, the interaction of the electron beam with

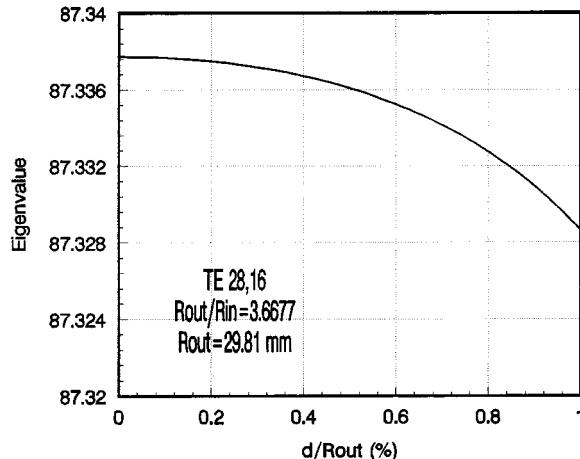


Fig. 4. Eigenvalue of $TE_{28,16}$ traveling wave modified by small misalignment, where $R_{\text{out}}/R_{\text{in}} = 3.6677$.

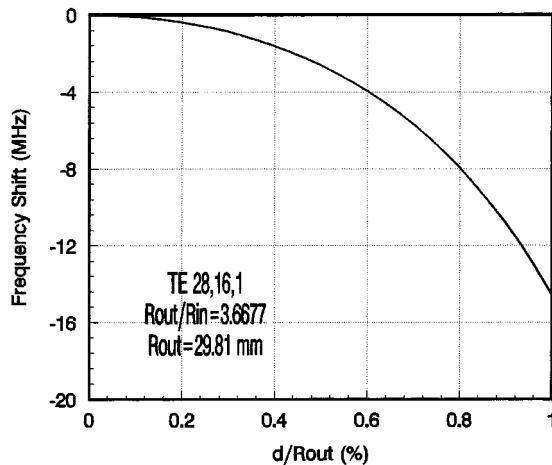


Fig. 5. Modification of the eigenfrequency of $TE_{28,16,1}$ standing wave by small misalignment, where $R_{\text{out}}/R_{\text{in}} = 3.6677$, the outer wall radius is 29.81 mm and cavity length is 20 mm.

the RF fields in a coaxial-cavity gyro-device must be modified by the structure misalignment. This topic is under consideration and will be published in a future paper.

V. CONCLUSIONS

In this paper, we have derived the rigorous eigenvalue equation (33) for the coaxial structure with a misalignment between the outer wall and inner rod, proposed a numerical approach to solve the modification of the eigenvalue due to the existence of the structural misalignment, and carried out the analysis of the higher mode coaxial cavity employed in a 140-GHz/1.5-MW gyrotron oscillator of FZK. The following general conclusions can be drawn: 1) single cylindrical wave function can no longer satisfy both the outer and inner boundary conditions of a misaligned coaxial structure (waveguide or cavity), and taken individually, these functions cannot define the modes of the structure; however, the modes can be written as a *superposition* of cylindrical wave functions, and are of the TE or TM (or TEM) type and 2) the eigenvalues of a misaligned coaxial structure must be calculated on the basis of this superposition of cylind-

rical wave functions and are modified noticeably by the structural misalignment.

ACKNOWLEDGMENT

The authors are grateful to Dr. C. Iatrou, Dr. S. Kern, Dr. B. Piosczyk, Dr. S. Illy, Dr. R. Vincon, Dr. M. Kuntze, Dr. M. Pereyaslavets, Dr. E. Borie, and Dr. O. Dumbrajs for useful discussions. The authors would also like to thank the reviewers for their constructive suggestions.

REFERENCES

- [1] M. Thumm and W. Kasperek, "Recent advanced technology in electron cyclotron heating systems," *Fusion Eng. Des.*, vol. 26, pp. 291–317, 1995.
- [2] K. E. Kreischer, R. J. Temkin, H. P. Fetterman, and W. J. Mulligan, "Multimode oscillations and mode competition in high-frequency gyrotrons," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-32, pp. 481–490, May 1984.
- [3] J. J. Barroso and R. A. Correa, "Design of a $TE_{42,7}$ coaxial cavity for a 1 MW, 280 GHz gyrotron," *Int. J. Infrared Millim. Waves*, vol. 13, pp. 443–455, 1992.
- [4] S. N. Vlasov, L. I. Zagryadskaya, and I. M. Orlova, "Open coaxial resonators for gyrotrons," *Radio Eng. Electron. Phys.*, vol. 21, pp. 96–102, 1976.
- [5] G. S. Nusinovich, M. E. Read, O. Dumbrajs, and K. E. Kreischer, "Theory of gyrotrons with coaxial resonators," *IEEE Trans. Electron Devices*, vol. 41, pp. 433–455, March 1994.
- [6] S. C. Zhang, "Coaxial waveguide gyrotron," *Int. J. Infrared Millim. Waves*, vol. 7, pp. 867–880, 1986.
- [7] S. C. Zhang, "Bunching mechanism and kinetic analysis of a relativistic electron beam in centrifugal electrostatic focusing system," *Int. J. Infrared Millim. Waves*, vol. 7, pp. 1497–1510, 1986.
- [8] S. C. Zhang, "Gyrotron focused by radial electrostatic field and axial magnetostatic field," *Int. J. Electron.*, vol. 61, pp. 1081–1091, 1986.
- [9] S. C. Zhang and S. Liu, "Angular momentum effect and enhanced efficiency in electron cyclotron maser," *Phys. Rev. A, Gen. Phys.*, vol. 38, pp. 849–853, 1988.
- [10] B. Piosczyk *et al.*, "A 1.5-MW, 140-GHz, $TE_{28,16}$ -coaxial cavity gyrotron," *IEEE Trans. Plasma Sci.*, vol. 25, pp. 460–469, June 1997.
- [11] C. T. Iatrou *et al.*, "Design and experimental operation of a 165-GHz, 1.5-MW, coaxial-cavity gyrotron with axial RF output," *IEEE Trans. Plasma Sci.*, vol. 25, pp. 470–479, June 1997.
- [12] S. C. Zhang and M. Thumm, "Kinetic description of the influence of electron-beam misalignment on the performance of a coaxial-cavity gyrotron," *Phys. Plasmas*, vol. 3, pp. 2760–2765, 1996.
- [13] E. Abaka and W. Baier, "TE and TM modes in transmission lines with circular outer conductor and eccentric circular inner conductor," *Electron. Lett.*, vol. 5, pp. 251–252, 1969.
- [14] H. Y. Yee and N. F. Audeh, "Cutoff frequencies of eccentric waveguides," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-14, pp. 487–493, Oct. 1966.
- [15] G. I. Veselov and S. G. Semenov, "Theory of circular waveguide with eccentrically placed metallic conductor," *Radio Eng. Electron. Phys.*, vol. 15, pp. 687–690, 1970.
- [16] M. J. Hine, "Eigenvalues for a uniform fluid waveguide with an eccentric-annulus cross-section," *J. Sound Vibration*, vol. 15, pp. 295–305, 1971.
- [17] J. R. Kuttler, "A new method for calculating TE and TM cutoff frequencies of uniform waveguides with lunar or eccentric annular cross section," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-32, pp. 348–354, Apr. 1984.
- [18] B. N. Das and O. J. Vargheese, "Analysis of dominant and higher order modes for transmission lines using parallel cylinders," *IEEE Trans. Microwave Theory Tech.*, vol. 42, pp. 681–683, Apr. 1994.
- [19] O. Dumbrajs and A. Pavelyev, "Symmetry breaking in coaxial cavities and its influences on gyrotron operation," *Fusion Technol.*, vol. 1994-1, pp. 521–524, 1994.
- [20] O. Dumbrajs and A. Pavelyev, "Insert misalignment in coaxial cavities and its influences on gyrotron operation," *Int. J. Electron.*, vol. 82, pp. 261–268, 1997.
- [21] J. A. Stratton, *Electromagnetic Theory*, New York: McGraw-Hill, 1941.

- [22] R. E. Collin, *Field Theory of Guided Waves*, New York: McGraw-Hill, 1960, ch. 5.
- [23] G. N. Watson, *Theory of Bessel Functions*. London, U.K.: Cambridge Univ. Press, 1952.

Shi-Chang Zhang was born in Zigong City, China, in July 1945. He graduated from Sichuan University, Chengdu, China, in 1969, and received the Master and Ph.D. degrees in electronic physics from Chengdu Institute of Radio Engineering, Chengdu, China, in 1981 and 1987, respectively.

From 1970 to 1978, he was an Electronic Engineer at the Zigong Radio Factory. From 1982 to 1984, he was a Lecturer at the Guilin Institute of Electronic Technology. In May 1987, he joined the Department of Applied Physics, University of Electronic Science and Technology of China, as an Associate Professor. In December 1988, he became a Professor. Since 1991, he has been a Professor and is currently the Chairman of the Department of Applied Physics, Southwest Jiaotong University, Sichuan, China. He visited the Imperial College of Science, Technology and Medicine, London, from January to December 1994, and collaborated with the Research Center, University of Karlsruhe (formerly KfK), from January to December 1995, which was sponsored by the U.K. Royal Society and the Germany Scholarship Exchange Center (DAAD). He has published over 60 journal papers and authored *Introduction to Free-Electron Lasers* (Chengdu, China: Southwest Jiaotong Univ., 1993) and co-authored *Quantum Electronics* (Tianjin, China: Tianjin Sci. Technol., 1990). His interests include electromagnetic theories, free-electron lasers, and high-power microwave generators such as gyrotrons, relativistic magnetrons, gyro-peniotron, and orbitrons.

Dr. Zhang is a senior member of the China Electronic Society, and a member of the China Center of Advanced Science and Technology (World Laboratory), New York Academy of Sciences, American Physical Society, American Association for the Advancement of Science (AAAS), and the International Society for Optical Engineers (SPIE). He was the recipient of the 1990 Sino-British Fellowship Trust Grants presented by the U.K. Royal Society.

Manfred Thumm (SM'94) was born in Magdeburg, Germany, on August 5, 1943. He received the Dipl.Phys. and Dr.rer.nat. degrees in physics from University of Tübingen, Tübingen, Germany, in 1972 and 1976, respectively.

While with the University of Tübingen, he was involved in the investigation of spin-dependent nuclear forces in inelastic neutron scattering. From 1972 to 1975, he was Doctoral Fellow of the Studienstiftung des deutschen Volkes. In 1976, he joined the Institute for Plasma Research, Electrical Engineering Department, University of Stuttgart, Stuttgart, Germany, where he was involved with RF production and RF heating of toroidal pinch plasmas for thermonuclear fusion research. From 1982 to May 1990, his research activities were mainly devoted to electromagnetic theory in the areas of component development for the transmission of very high-power millimeter waves through overmoded waveguides and of antenna structures for RF plasma heating with microwaves. In June 1990, he became a Full Professor at the Institute for Microwaves and Electronics, University of Karlsruhe, Karlsruhe, Germany, and Head of the Gyrotron Development and Microwave Technology Division, Institute for Technical Physics, Forschungszentrum Research Center, University of Karlsruhe. Since April 1999, he has been the Director of the Institute for Pulsed Power and Microwave Technology, University of Karlsruhe, where his current research projects are the development of high-power gyrotrons, windows and transmission lines for nuclear fusion plasma heating and material processing.

Dr. Thumm is chairman of the Chapter 8.6 (Vacuum Electronics and Displays) of the Information Technical Society (ITE) of the German Verein Deutscher Elektrotechniker (VDE) and a member of the German Physical Society.