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Abstract—A quasi-optical power-combining amplifier array Active
based on coplanar waveguide (CPW)-fed microstrip patch
antennas is introduced in this paper. Both the transmit and
receive antennas employ CPW-fed patches. This amplifier is not
only compatible with monolithic-microwave integrated-circuit

implementations, but can also provide a greater bandwidth than Q—
circuits based on conventional microstrip-fed patch antennas. A Input

4 x 4 amplifier array was designed and constructed atX-band. .

Results for the gain and power compression are also presented. Q—— —

Index Terms—Amplifier, CPW, quasi-optical, spatial.

I. INTRODUCTION N

. /
ANY PAPERS [1]-[7] have been presented that Esicianennasionalondiciectsic
demonstrate quasi-optical power combining uti-
lizing grids, coplanar waveguide (CPW)-fed slots, anBig.1. CPW-fed microstrip patch quasi-optical amplifier array.
microstrip-patch-based quasi-optical amplifiers. At mil-

limeter-wave frequencies, the use of CPW transmission Im_ﬁérns provide a means of efficiently splitting and combining

is preferable for monolithic-microwave integrated—circw{
(MMIC) implementations. CPW transmission lines are als,
necessary to avoid vias, specifically in the constructio{lﬂ
of amplifier arrays requiring substrates such as diamon
or ceramic-based materials (for heat sinking purposes
Quasi-optical amplifiers, which utilize the advantages o
CPW transmission lines, typically have slot antennas as the
radiating elements. Since slot antennas radiate equally in the II. DESIGN
front and back directions, polarizers are typically used to S ) _ _
regain the energy radiated in the undesirable direction. ThisA Simplified diagram of the CPW-fed microstrip patch
is done by providing constructive interference between tifiasi-optical amplifier array is shown in Fig. 1. A signal,
forward radiated fields and the reflected back radiated fieldsansmitted from a source located to the left-hand side of the
In this paper, a new design for quasi-optical amplifiers, bas@f#ay: is received by the microstrip patch antennas on the first
on CPW-fed microstrip patch antennas, is presented. Thyer. The signal is then coupled to slot antennas located on
design eliminates the need for polarizers, while maintainifg® Second layer, where it is amplified and coupled to the
the benefits of CPW transmission lines at millimeter- waveatch antennas located on the third layer. The receiving and
frequencies. The elimination of polarizers is made possiff@nsmitting antennas are placed orthogonally to each other
by using CPW-fed microstrip patch antennas, which provid@ order to minimize any mutual coupling. A perspective
front-to-back radiated power ratios on the order of 20 dB [8]. ViEW of the double-layer CPW-fed microstrip patch antenna is
In addition to presenting a new quasi-optical amplifier arra?,hOW” in Fig. 2, while a detailed view of the passive unit cell
topology, hard electromagnetic feed horns, as proposed in [g]),nstruction is shown in Fig.3. The CPW-fed microstrip patch

are used to form a closed quasi-optical amplifier system. Thedidennas were designed based upon the results found in [8] and
[10]. The design process began with a simple microstrip patch

antenna design based on personal computer-aided antenna
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Fig. 4. Simulated return loss for the input and output CPW-fed microstrip

. . . . ) patch antennas.
Fig. 2. Perspective view of the CPW-fed microstrip patch antennas.
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Fig. 3. Unitcell of the CPW-fed microstrip patch quasi-optical amplifier array.

The complete unit cell, including the biasing circuitry, was N
simulated using HP Momentum. Rogers 6006 with—= 6.15
and thickness of 10 mil was used for the CPW substrate. Rogers -
5880 withe,. = 2.2 and thickness of 62 mil was used for the <
patch antenna substrates placed above and beneath the CP\ -
substrate. The simulated return loss for both the input and output = L — -
antennas is shown in Fig. 4. Both antennas show 10-dB band- ' P angle - dogrees
widths of greater than 600 MHz. Additionally, the front—to-bacl&i
radiated power ratio for the input and output antennas is 20 an
15 dB, respectively. These results are illustrated by the simu-
lated radiation patterns given in Figs. 5 and 6.

60 120 180

% 6. Simulated®-plane radiation pattern for the output antenna.

Before measuring the passive array, as illustrated in Fig. 8,
the insertion loss of the copolarized horns was measured with
the horns spaced approximately 1 cm apart. The measured in-
sertion loss was found to be 1.2 dB over a bandwidth greater
A 4 x 4 amplifier array, shown in Fig. 7, was constructethan 2 GHz about the center frequency of 10 GHz. However,
based on the unit cell design discussed previously. The actihie return loss across this band was better than 20 dB. The in-
devices used are Mini-Circuits ERA1 matched monolithic ansertion loss is associated with the hard electromagnetic horns
plifiers. These devices are designed to provide 10 dB of gaand dielectric lenses used to correct the magnitude and phase
from dc to 8 GHz. In our experiments, these devices are usedors. As mentioned earlier, the hardened horns radiate with
above their design frequency, providing an acceptable gainabfiniform power distribution across the horn’s aperture. This
approximately 9 dB at 10 GHz. The spacing between the arrdges incur some additional loss associated with the dielectrics
elements is 800 mil or 0.68 in air. used along the sidewalls of the horn since some of the energy

Ill. EXPERIMENTAL RESULTS
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Fig. 7. 4x 4 CPW-fed microstrip patch quasi-optical amplifier array.
) Fig. 10. Measured gain and return loss of the activedACPW-fed microstrip
Amplifier patch quasi-optical amplifier array.
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Fig. 8. Measurement setup. Two cross-polarized horns are used to couple Horn
energy to the quasi-optical amplifier array.
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Fig. 11. Measurement setup for the far-field radiation pattern.

amplifier array with hard horn feeds included was measured to
be 5.0 dB at 9.8 GHz with a 3-dB bandwidth of 400 MHz, as
shown in Fig. 10. Considering 2.2- and 1.2-dB losses associated
with the passive array and hard horns, respectively, the device
gain is 8.4 dB, which is consistent with expectations. As men-
tioned, the ERA1 devices are designed to operate below 8 GHz.

dB
®
S

—Insertion Loss

AAAAAA Retur Loss | The reduced gain at higher frequencies can cause the reduction
“® o5 g o5 » s & = - in bandwidth. The bandwidth of the active array is lower than
Frequency - GHz the bandwidth of the passive array by 200 MHz. The active ar-
Fig. 9. Measured insertion loss and return loss of the passivé€PW-fed @Y return loss is better than 15 dB across the band. In fact, the
microstrip patch quasi-optical amplifier array. active arrays return loss is better than the return loss for the pas-

sive array. This is because the amplifying devices are unilateral

will flow inside the dielectrics and is effectively lost. In addi-and, therefore, isolate the input and output antennas. This pre-
tion, dielectric lenses are used to create a uniform phase frephts the out-of-band reflections from the output antennas from
at the aperture and also incur some losses. The passive aremching the input side.
was then placed between the two cross-polarized horns sincén addition to the amplifier gain, radiation patterns as well
the array input and output antennas are cross polarized. Ba#hthe arrays power compression were measured. The measure-
the input and output horns are placed in the reactive near figlgent setup for the radiation pattern is shown in Fig. 11, and the
of the antenna array. This causes a minimal disturbance to theasured radiation patterns are shown in Figs.12 and 13. The
antennas since the fields at the horn’s aperture resemble thossiwiulated results are for a coax-fed microstrip patch antenna
free space. Spill-over losses are also minimized by placing thgay. However, the actual array elements are excited differently
antenna array at the horn’s aperture. The results of the active beeause of the capacitively coupled CPW slots. This is a con-
tenna measurement are shown in Fig. 9. The insertion loss wsuting factor for the discrepancy between the measured and
found to be 3.4 dB at 9.9 GHz with a 3-dB bandwidth of 608imulated radiation patterns.
MHz. This gives an insertion loss of 2.2 dB due to the passive The uniform£,-field distribution provided by the hard elec-
array. The return loss is again better than 15 dB across the #omagnetic horns is illustrated in Fig. 14. The setup is illus-
tire bandwidth, indicating that the passive array is operating tiated in Fig. 8 for the amplifier power compression measure-
expected. ment. The results of this measurement are illustrated in Fig. 15.

The active array was then placed in the horn-to-horn setup aflde 3-dB compression power is 17.7 dBm. A single device
its performance was measured. The overall gain for the4d under 3-dB compression in a 59-system provided 10 dBm
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Fig. 12.  Simulated and measurédplane radiation patterns. Fig. 15. Measured power compression curve of thex 4 quasi-optical

amplifier array constructed with CPW-based unit cells.

IV. CONCLUSION

A CPW-fed microstrip patch quasi-optical power-combining
amplifier array is introduced. A 16-element passive and active
array were designed and measured. The passive array demon-
strated an insertion loss of 3.4 dB. The active array showed
5.0 dB of gain at 9.8 GHz with a 3-dB bandwidth of 400 MHz.
This amplifier is not only compatible with MMIC implemen-

5 [ Simulated tations, but can also provide a greater bandwidth than circuits
|_orMesured based on conventional microstrip-fed patch antennas.
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Fig. 13. Simulated and measurétiplane radiation patterns.
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