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Eigenvalues for Waveguides Containing Re-Entrant
Corners by a Finite-Element Method with
Superelements

Bernard Schiff and Zohar Yosibash

Abstract—Superelements have been developed to enable the fi-basic idea was to cover the region of each re-entrant corner with
nite-element method to be used for computing accurate eigenvalues g “singular superelement,” whose stiffness matrix could be cal-
of the Laplacian over domains containing re-entrant corners of ar- culated once and for all for a given geometry. The superelement

bitrary angle. A truncated asymptotic expansion of the solution is tructed tob f L with tri |
employed in the region of the corner, and linear blending is used was CONSUUCIEd SO as 10 De conormatwitl linear trianguiaror

over the remainder of the superelement to provide a smooth transi- bilinear rectangular elements, which were then employed over
tion to piecewise quadratics over the superelement boundary. The the remainder of the domain. The method was applied to deter-
superelement thus conforms with the usual triangular or quadri- mine cutoff frequencies for TE and TM modes in guides con-
lateral isoparametric elements used over the remainder of the do- taining one or more re-entrant corners of argig2 or 2. This
main, and can be easily incorporated into a general finite-element . . o . .
program. The scheme has been tested on various waveguides conPaper embodies a wide genera_llzatlon of these |degs. F_|rstly_, the
taining one or more ang|es of SIZ@TF/z or 27, and also on do- Superelements have been deS|gned to conform with six- (t“an'
mains containing various other angles, and the results agree well gular) or eight-node (quadrilateral) isoparametric quadratic ele-

with those obtained by other methods, mostly of less general appli- ments over the rest of the domain, enabling much higher accu-

cability. racy to be achieved at a moderate cost. Secondly, the re-entrant
Index Terms—Finite-element methods, singularities, Helmholtz  angles are not restricted to be of magnitddg2 or 27, so that
equation, eigenvalues. the method can be applied to more complicated geometries. Fi-
nally, the trial function over the superelement has been chosen
|. INTRODUCTION in a different way, so as to provide a better approximation to

IDGED AND oth id h ) the true solution in the region of the corner. The present method
R other waveguides whose Cross Sections COs yescribed in Section I1. The results obtained for various test

tain one or more re-entrant corners, o]‘ten of arigi¢2' cases are described in Section Ill, and the conclusions are sum-
or 27, are frequently used in microwave devices and C'rcu'ts'#rﬁarized in Section IV

is, therefore, important to be able to obtain accurate values for
the cutoff frequencies of the first few modes of propagation in
waveguides of this type. A variety of methods have been used
for this purpose, and some of the more accurate methods are dé-he TE and TM fields for the waveguide may be derived from
scribed in [1]-[6]. The flexibility of the finite-element methodpotentials that satisfy the Helmholtz equation

would seem to make it ideally suited for this purpose. The stan-

dard finite-element schemes, however, yield comparatively poor VU2, y. 2) + k¥, y.2) = 0 @

results when applied to problems containing a re-entrant COMgherek, is the propagation constant in free space. Taking the

due to the singular nature of the solution there. One method U@‘?ﬁhe axis to be in the-direction, we assume that(z, y, z) =
to circumvent this difficulty is to refine the mesh locally in the(/}(x y) exp’®* and, hence, obtain the equation i
) 1 L]

neighborhood of such a corner [7]. Another approach utilizes

Il. THE COMPUTATIONAL SCHEME

the known asymptotic expansion for the solution in the neigh- V24p(z,y) + k2ap(z,y) =0 (2)
borhood of the singularity, for example, by suitably modifying y y ) y ) )
the shape functions over each of the elements possessing a eky = kj — 7 and V7 denotes the two-dimensional

at the corner [8], [9] or by augmenting the trial function basis@Placian. Thus, we wish to solve

by the addition of functions possessing a suitable singular be- 2 _ .

havior there [10], [11]. In an earlier paper [12], Schiff outlined (VT + )‘) ¥(@.y) =0, in & (3)
a method that used a combination of these two approaches. {i boundary conditions

1 =0, ongl (TM modes)
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ends and the midpoint) over each straight edge, and takes on
the value of the sum of the truncated series along the curved
P side. The function inside the element is obtained by quadratic
Q blending between the values along the four edges of the el-
R ement. This superelement was originally designed to be used
® when solving Laplace's equation over regions containing re-en-
C\ trant corners, and full mathematical details of the construction
o of the trial functions and the computation of the superelement
stiffness matrix are given in [13] by the authors on this topic.
The computation of the massmatrix needed for this paper is per-
formed in a similar manner. We will, therefore, here only out-
line the salient ideas. The integration over the inner region was
performed using tensor product88 Gaussian integration. For
each element of the transition regifh», a quadratic isopara-
Fig. 1. Typical superelemeft = 37/2). metric transformation was first used to transform the element
into a square, and the integration was then performed in the stan-
To solve the problem by the finite-element method, weard plane using & 8 Gaussian quadrature. The superelement
use a superelement over the immediate neighborhood cgihforms with the usual quadratic elements outside. Thus, the
each re-entrant corner and cover the remainde® ofith the trial functions would satisfy the conforming condition exactly
usual six-node triangular or eight-node quadrilateral quadragieer the whole domain were it not for the “variational crimes”
isoparametric elements. The superelement used in the previti4, Ch. 4]) committed in the use of numerical quadrature for-
method [12] was composed of two regions. The inner regidiulas and the inaccuracies inherent in the use of the six- or
was divided uniformly into rectangular elements, the trigight-pointisoparametric quadratic transformation used to map
function over each such element being taken as the bilin&@ch element onto the standard element.
interpolant to the asymptotic expansion, suitably truncated, forA small library of stiffness and mass matrices for different
the solution in the neighborhood of the corner. Over the seco@igometric configurations has been prepared. When solving a
region, the transition region, a piecewise bilinear trial functioparticular problem, the contributions from the superelement to
was used to match up between the elements on the edge oftfifeglobal stiffness and mass matrices are added at the assembly
inner region and the linear or bilinear elements adjoining tiséage in the same manner as for the usual types of element. The
superelement. superelements may thus be incorporated into a general finite-el-
In the present method, the superelement is again divided igt@ent program with no difficulty.
an inner and a transition region. The geometry of a typical su-
perelementis illustrated in Fig. 1. The inner regi®g is taken I1l. NUMERICAL RESULTS
to be a sector of a circle centered at the corner, and the trial func-

tion over this region is taken to be the asymptotic expansion forWe r;ave Itestefd t?he metthf(f);nl ona vanet;;tor:‘ cfasiz? for WT;Ch
the solution of the problem in the vicinity of the corner (instea ccurate vajues for the cutolt frequencies ot the Tirst few modes

of an interpolant to this series in the previous method). Let gqve been obtained by other methods. We now describe the

take polar coordinate with origin at the re-entrant cor@erif various cases treated. In each case, we list the results for two
the boundaries of the re-entrant corner aré at0 andé — w finite-element meshes with differing numbers of degrees of

then the asymptotic expansions are free_dom (d.o.f.) in order tc_) indicate the degree of convergence

achieved. Unless otherwise stated, we list the value of the
cutoff wavenumber, which we denote as usuakbyin radians
Z Z cjer! " sin(jy0)  (TM) (5)  per unit length, for each mode. The corresponding eigenvalue
j=tt= for (3) is, thereforeA = k2.

A. L-Shaped Guide

The domain is illustrated in Fig. 2. For the TM modes,
highly accurate results have been obtained by &oal. [15]
wherey = «/w. We use a truncated form of this series corand for some of the modes also by Fékal. [10]. Fox et al.
taining all of the terms for which~ + 2¢ < M for a suitable use the method of “special solutions,” expanding the solution
value of M. in terms of a series of solutions of the Helmholtz equation

The transition regiof2p is covered by a single ring of el- and determining the eigenvalues by requiring the (truncated)
ements, each of which has two edges that are straight linesearies to satisfy the boundary conditions at a number of equally
radial directions, a third edge being a straight line constitutirgpaced points on the boundary. They obtained convergence
part of the boundary of the superelement. The fourth edge liesfour digits after the decimal point with only eight terms
on a portion of the circular boundary of the inner regidp. in the series (they were able to obtain such a high accuracy
The trial function over each element of the transition region bee economically by utilizing the symmetry properties of this
haves as a quadratic (determined by the nodal values at the pasticular domain). Fixet alused finite elements with a basis of

Z ;e cos(j0) (TE) (6)
=0

tqu

I
=

J
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TABLE |
VALUES OF k. FOR AN L-SHAPED GUIDE

Ref. TM Modes TE Modes
[15], [10] | 3.1048 3.8984 4.4429 5.4334 5.6491
[6] 3.1083 3.8957 4.4400 5.4266 5.6477 | 1.2135 1.8796 3.1402 3.1402 3.3736
[3] 3.0910 3.8964 4.4392 5.4308 1.2012 1.8516 3.0959 3.3314
Present:
107 d.of. | 3.1069 3.9023 4.4492 5.4540 5.6742 | 1.2150 1.8801 3.1444 3.1444 3.3776
192 d.of. | 3.1054 3.8989 4.4438 5.4375 5.6551 | 1.2149 1.8800 3.1423 3.1423 3.3757
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Fig. 2. L-shaped domain.

Fig. 3. Domain for quadruple-ridged guide.
bicubic splines augmented by the first few terms of the asymp-
totic expansion multiplied by a suitable factor to satisfy the
boundary conditions. Their results agreed with those of [15] to

TABLE I
VALUES OF k. FOR TE MODES IN THE“QUADRUPLE-RIDGED” GUIDE

at least six significant digits. Guan and Su [6] and Swaminathan Ref. %,

et al. [3] obtained values for the first four TM and the first four 2] 1.822 2.322

TE modes. The former used finite differences over a uniform [9] 1.814 2.312

mesh, employing approximately 2500 d.o.f., while the latter (11] 1.808  2.300

used an equivalent-surface integral equation, which they solved Present:

by the method of moments with piecewise linear functions, 151 d.of. | 1.814 2.311
295 d.o.f. | 1.808 2.304

obtaining the eigenvalues by an iterative technique. The current
method was applied using an L-shaped superelement around
the singularity. In Table I, we compare our valuestpfwith in Table II. The excellent agreement between the results of the
those of previous calculations. The agreement with the resuftarent scheme with the finer mesh and those of Webb should

of [10] and [15] is especially good. be noted. The results for the coarser scheme are very close to
) _ those of Gil and Zapata, giving an indication of the degree of
B. Quadruple-Ridged Guide convergence.

The domainis shown in Fig. 3, and represents one-half of the . , ,
guide cross section, the other half being obtained by reflectisn Symmetric Double-Ridge Guide
in they-axis. There are four re-entrant corners, and thus we em-This guide has been treated by a variety of methods. The
ploy four L-shaped superelements. Computations for this guideoblem is to be solved over a domain consisting of a quarter
have also been made by Dasgupta and Saha [2], using a metbiothe guide cross section, as shown in Fig. 4. The remainder
developed by Montgomery [1], Gil and Zapata [9], and Webbf the guide is obtained by reflecting this domain about:ihe
[11]. Montgomery's method will be described in Section 1lI-Cand/ory-axis. Montgomery treated this guide in detail in [1].
Gil and Zapata use six-node quadratic finite elements and, o developed the solution inside each rectangle of which the
the triangles having a node at a singularity, they use a geomett@nain is composed in a “modal expansion,” the modes being
transformation to give the trial function the same behavior those for a rectangular guide possessing the given cross sec-
the radial direction as the leading term of the asymptotic expaien. The coefficients in the expansions and the valueg.of
sion for the solution. Webb used quadratic finite elements supere determined by solving an integral equation for the normal
plemented by singular trial functions for the electric field, introecomponent of the electric field over the interface between the
ducing a penalty term into the variational formulation to remousvo regions. Israel and Miniowitz [7] solved this problem using
spurious modes. The results of the various calculations are listpdntic Hermite finite elements with local mesh refinement in
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current results agree very closely with those of Israel and Min-
0.2 iowitz [7] and Gil and Zapata [9]. There is also good agreement
with the values obtained by Montgomery [1] and Guan and Su

[6].

A

region 2 0.2 D. Symmetric Rectangular Coaxial Guide

The domainis illustrated in Fig. 5, and represents one-half of
the guide cross section, the other half being obtained by reflec-
tion in thez-axis. The dimensions in this figure are given in me-
ters. The guide has a slitalong the line= 3, —2.5 < y < 2.5.
Particularly accurate calculations have been made for TE modes
in this guide. Guan and Su [6] used finite differences over a uni-
-------------- ! form mesh, employing approximately 15 000 d.o.f. De keéal.

[4] used modal expansions over the two rectan@lesz < 3

0.05 and3 < z < 6. They take into account the singular nature

o . of the field at the tip of the slit (the point = 3,y = 2.5)

by including a suitable multiplicative factor in the expression

for the component of the electric field along the “interface”

z =3, 2.5 < y < 3 between these two rectangles.

Fig. 4. Domain for symmetric double-ridge guide. We have solved the problem using a square superelement
around the singularity at the end of the slit. The values obtained
are compared with those of previous calculations in Table V.

the neighborhood of the singularity, while Guan and Su [6] and The results listed in Table 1V are the cutoff frequencies in

Gil and Zapata [9] employed their methods as described in Setegahertz instead of the wavenumbers, in order to compare

tions 111-A and I11-B, respectively. We solved the problem usingasily with the results of other authors. There are additional

an L-shaped element over the neighborhood of the singularitya@des not listed in this table, as we have only listed those modes

the pointz = 0.055 = 0.05. The values of:.. for the first few for which both Guan and Su and De Lebal. give results. Our

TE modes are listed and compared with the previous resultg'@sults using the finer mesh agree with those of De ¢feal to

Table Ill. It will be seen that for some of the modes, we obtainetithin 0.03% for the first two modes listed, while Guan and

pairs of values lying very close to one another. In each case, fhi¢'s value for the first mode differs from ours by 0.5%. This is

two eigenfunctions corresponding to the pair of almost identicatobably due to the fact that Guan and Su's method makes no

eigenvalues were completely different from one another, indiovision for the existence of the singularity.

cating the presence of an almost degenerate eigenvalue. This

phenomenon was reported and explained by Montgomery in H, T-Septate Guide

Sec. V] as follows: “Note the existence of so-called hybrid and

trough modes. Hybrid modes are considered to be basic ridged’he domain is illustrated in Fig. 6, and represents one-half

waveguide modes of propagation. Trough modes are so nanaséthe guide cross section, the other half being obtained by re-

because they are rectangular waveguide type modes which eftgstting this domain in the:-axis. The guide has slits along the

in the trough region (region 2). . One should also note that thelinesz = 0.25, —0.125 < y < 0.125 and0 < z < 0.25,

trough modes are almost degenerate for a narrow gap inresgeaty = 0, and the modes are either symmetric or antisym-

that the TE magnetic and electric eigenvalues are almost thetric across the 1in€.25 < =z < 1.0, ¥y = 0. Calculations

same.” Returning to our results in Table I, the trough modder this guide have been made by Swaminategal. [3], using

are those for which we obtain a pair of almost equal valués,of the method described in Section IlI-A, and by Sétual. [5]

and these are exactly those modes classified as such by Mdyta somewhat similar method, except that they use a different

gomery, as shown in diagrammatic form in [1, Fig. 3]. In Tabletegral equation and employ piecewise constant functions over

lll, we label each eigenvalue with its symmetry type, the tweach segment in the method of moments.

letters referring to s(ymmetry) or a(symmetry) of the eigenfunc- We have solved the problem using a square-shaped superele-

tion with respect to reflection in the or y-axes, respectively. It ment around the singularity at the point= 0.25, y = 0.125.

will be noted that the two members of a pair have identical syrithe values obtained are compared with those from previous cal-

metry with respect to thg-axis, but opposite symmetry with re-culations in Table V. Shet al. were apparently unable to re-

spect to thex-axis. For a trough mode, being similar to a modsolve the difference between the two lowest TE modes. Our re-

for the rectangular region 2, it is not surprising to find that thsults altogether agree more closely with those of Swaminathan

corresponding eigenfunction is comparatively small in region &t al. The agreement with the results of these authors for the TE

Thus, the contribution from this region to the energy integral imodes is, however, less satisfactory than for the other guides

small and there is, therefore, only a small difference between figed in the previous sections. This may be due to the fact that

eigenvalues for the two possible types of boundary conditiotteey had to modify their method for this case, as is mentioned

over the edg® < x < 0.055, y = 0. It will be seen that the in their paper.

region 1

L K

0.055
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TABLE Il
VALUES OF k. FOR TE MODES IN THE SYMMETRIC DOUBLE-RIDGE GUIDE

Ref. ke's

[1] 0.14371 0.31656 0.52098 0.61902 0.67117 0.69732

F% (164 dof.) 0.14397 0.61922 0.6713

9
54 d.o.f. 0.1439 0.6203 0.6731
141 d.o.f. 0.1439 0.6193 0.6714

[6] 0.1434 0.3168 0.6192 0.6705 0.6975
Present:

Sym. Type as sa aa ss as 88 as sa aa
72 d.of. 0.14390 | 0.31578 ©0.31707 | 0.52215 | 0.61977 0.61978 | 0.67232 | 0.69757 0.69858
122 d.of. 0.14385 | 0.31572 0.31673 | 0.52159 | 0.61931 0.61931 | 0.67137 | 0.69647 0.69775

0.5 In order to further verify the accuracy of the method, calcula-
tions were also performed for the above-mentioned guides with
an HP-version finite-element scheme, using varying humbers
3| 4y of d.o.f. The HP scheme required roughly double the number of
d.o.f. used by the current method for a given accuracy. Further
details will be given in [16].

e e e G. Effect of the Superelement

In order to assess the degree of improvement resulting from
the inclusion of the superelements, some of the computations
Fig. 5. Domain for symmetric rectangular coaxial guide. were repeated with the superelement replaced by a number of

eight-node quadratic elements similar to those that were adja-
cent to the superelement in the original mesh. As a typical ex-

o TABLE 1V ample of the results obtained, we list in Table VIthe percentage

UTOFF FREQUENCIES INMEGAHERTZ FORTE MODES IN SYMMETRIC X . A
RECTANGULAR COAXIAL GUIDE errors in the frequency for the symmetric rectangular coaxial
guide discussed in Section IlI-D using the fine mesh with and

Ref. Cutoff Frequencies . . . .
5 4303 31786 57351 6403z 79395 oagos  Without the superelement. The figures listed illustrate the gen-
(4] 14.270 31.819 57.374 64.089 79.451 94.558  eral feature that the percentage improvement is largest for the
Present: ; . .
ot dof | 14331 31867 57.551 64413 80.057 95.684 smallest eigenvalue an_d_d_ecreases as the elgenvalue_lncreases.
156 d.o.f. | 14.274 31.822 57.409 64.140 79.565 94.835 As regards the sensitivity of the results to the detailed con-

struction of the superelement, it was found that the eigenvalues
were very insensitive to the value &,,,,,, the ratio of the
radius R of the inner regiort)y to that of the largest circle
N _ that may be inscribed in the superelement. For example, in the
0.225 1Y 0 1251_ case of the symmetric rectangular coaxial guide, the eigenvalues

varied by less than 0.01% d3,,,,, varied over the range 0.9
——————————————— to 0.6, and by less than 0.1% over the range from 0.9 to 0.15.
0.25 0.75 . The present computations were performed vith,.,, equal to

0.9 or 0.75. The number of elements into which the regien

of the superelement is divided is equal to the number of ele-
ments of the outer region that are adjacent to the superelement.
Thus, increasing the number of element<p will require a

F. Accuracy of the Method finer mesh in the neighborhood of the superelement. Therefore,

The values obtained using the finer mesh agree with tfRy high accuracy, we used smaller elements near the sgp_erele-
nearest results obtained by other methods to within a maxim(®¢nt: while allowing larger elements further away, and divided
difference of 0.3%, in most cases the difference being no mdhg regiort2» accordingly. For the results quoted in Tables |-V,
than 0.12%. For the coarse mesh, the maximum difference witl§ divided(2p> into 20, 8, 12, 10 and 16 elements, respectively,
the nearest other calculations was 1.5% and, in most cad§he coarse meshes, and into 24, 12, 12, 16 and 16 elements,
the difference was less than 0.5%. The only exception was f&sPectively, for the fine meshes. This point will be discussed
the TE modes of the T-septate guide, where the current valdere fully in [16].
differed from the nearest values (those of Swaminattaeil)
by as much as 2.7% for both meshes. We assume that this is Hug® General Re-Entrant Angle
to the difficulty encountered by these authors for this particular In order to confirm that the current method is valid for a re-en-
guide. trant corner of any size betweenand?2=, the method has also

Fig. 6. Domain for T-septate guide.
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TABLE V
VALUES OF k. FOR THE T-SEPTATE GUIDE

Ref. TM Modes TE Modes

(3] 8.1293 10.8659 14.3161 14.5550 | 2.9752 3.1677 5.5635 7T.2357
[5] 8.1302 10.8720 14.3124 14.5439 3.0015 5.4265 7.2252
Present:

116 d.o.f. | 8.1387 10.9209 14.5288 14.6157 | 2.9365 3.0847 5.5908 7.2371
202 d.o.f. | 8.1357 10.8886 14.3558 14.5712 | 2.9356 3.0824 5.5824 7.2354

TABLE VI TABLE VII
PERCENTAGE ERRORS IN CUTOFF FREQUENCIES FORSYMMETRIC VALUES FOR CUTOFF WAVELENGTHS IN (MILLIMETERS) IN A GUIDE WITH
RECTANGULAR COAXIAL GUIDE WITH AND WITHOUT THE USE OF A A TRAPEZOIDAL RIDGE
SUPERELEMENT FORMODESLISTED IN TABLE IV
Ref. TE Modes TM Mode
With [17] : Experimental | 248.0 128.2 1267  101.0 79.0
Superelement (156 d.o.f.) | 0.03 0.01 0.06 0.08 0.14 0.29 [17) : Theoretical 248.4 127.5 125.4 98.0 82.5
Without Present:
Superelement (121 d.of.) | 240 0.77 0.52 0.76 0.73 0.36 80 d.of. 257.53 129.14 126.89 100.89 80.20
158 d.o.f. 257.54 129.15 126.90 100.91 80.23

1% for two more. On the other hand, the results for the lowest
TE mode differ by 3.8%. The agreement with the Meiekeal.
computational results is less favorable. We have no explanation
for the size of the discrepancies, especially in view of the fact
that the current results agree very well with those obtained by
the HP version of the finite-element scheme mentioned in Sec-
tion IlI-F.

The generality of the method has also been tested by deter-
mining the first three acoustic eigenfrequencies for a simplified
model of an automobile interior containing re-entrant angles of
sizes25x /18 and29x /18, and satisfactory agreement was ob-
tained with the experimental values and with the results of other
50 calculations. Details of these calculations will be described in
[16].

37.5

Fig. 7. Domain for trapezoidal waveguide.
been tested on the waveguide with trapezoidal ridges considered IV. CONCLUSION
by Meinkeet al.[17]. Meinkeet al. use a conformal transfor- A superelement has been designed to overcome the loss of ac-
mation to map the domain onto a rectangle, obtaining the mapacy encountered when applying the standard finite-element
ping function in the form of an infinite series. Our computatioschemes to obtain cutoff wave numbers for TE and TM modes
is carried out on the quarter of the guide cross section showrifinvaveguides whose cross sections contain corners with re-en-
Fig. 7. The remainder of the guide can be obtained by reflectitnant angles. The results of test calculations are listed for several
in thex- and/ory-axes. For the TE modes, the boundary condwaveguides whose cross sections contain one or more re-entrant
tions are thabu/dn = 0 over the edgeBC, CD, DE, andEA angles, using two different mesh sizes in each case. Our results,
andu = 0 or du/dn = 0 overAO andOB (thus, there are four obtained using a moderate number of d.o.f., compare well with
different types of modes). The conditions for the TM modes atke most accurate values obtained by a variety of other methods.
obtained from those for the TE modes by simply interchangirithe method has also been tested successfully on domains con-
w anddu/dn. taining various other angles to verify its suitability for re-entrant
Again, we treated this case with a coarser and a finer mesingles of any size. The superelement is compatible with six- and
using 80 and 158 d.o.f., respectively, including the d.o.f. beight-point quadratic isoparametric elements, and can be easily
longing to the superelement around the re-entrant corner at iheorporated in standard finite-element programs. More general
point C. For the superelements, we uskg..,, = 0.9, and di- methods, such as the use of edge elements, have recently been
vided them into ten and 18 elements, respectively. Mekgtke developed for solving problems in electromagnetics in which it
al.give the results of their calculations and also experimentalnecessary to work with the field components directly rather
values for the first four TE modes and the lowest TM modé¢han with just a scalar potential (see, e.g., reference ([18, Ch.
The results are compared with those obtained by the curréf for details). Such methods can be adapted to take account
method in Table VII, in which the wavelengths are listed folef singularities, e.qg., as in Pantic-Tanm¢ial. [19] and Gil and
lowing [17]. It will be seen that the current results agree wittWebb [20]. We feel, however, that for the problem addressed
the experimental values to within 0.2% in two cases, and within this paper, the method presented has the advantage that it
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achieves high accuracy while requiring only a standard finite-elf16] B. Schiff and Z. Yosibash, "Eigenvalues for the Laplacian over do-
ement program into which Superelements can be Incorporated. mains Containing re-entrant corners by the finite element method,"

unpublished.
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