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Numerical Analysis of Complicated Waveguide Circuits on
the Basis of Generalized Scattering Matrices and

Domain Product Technique

Vitaliy P. Chumachenko and Vladimir P. Pyankov

Abstract— - and -plane waveguide structures having arbitrarily
polygonal boundaries and piecewise homogeneous fillings are considered
in this paper. A modified version of the generalized scattering matrix
( -matrix) method is applied to their analysis. More specifically, the
segmentation of the whole unit is carried out. A homogeneously filled
multiangular region, supplied with flanged apertures, is taken as a key
building block. Scattering matrix of the block consists of amplitudes
of elliptic waves propagating from the apertures in the corresponding
half-spaces. Evaluation of the -matrix is based on the domain product
technique (DPT). Numerical examples demonstrating the efficiency,
flexibility, and reliability of the approach are also presented.

Index Terms—Domain product technique, scattering matrix, waveguide
components, waveguide discontinuities.

I. INTRODUCTION

The simulation of theH- andE-plane waveguide structures has nu-
merous applications in microwave circuit design. The literature on this
subject is very extensive. Of many books and papers, we mention only
[1]–[8] discussing the problem and giving references.

A conventional approach to the analysis of a complex structure con-
sists of dividing the whole unit into building blocks and subsequently
exploiting the method of generalized scattering (or other circuit) ma-
trices [1]–[3], [7]. Here, for obtaining the characteristics of the entire
multielement object with the required accuracy,S-matrices of the sep-
arate parts are to be determined with a high precision, owing to possible
accumulation of calculation errors. The approach works successfully if
the suitable building blocks emerge after segmentation, which can be
studied on the basis of effective numerical analytical techniques such
as, e.g., the modified residual technique [1] or semiinversion method
[8]. The set of such objects is clearly limited in number. Direct numer-
ical or hybrid methods (the latter ones include the first as components)
are used for the analysis of more complicated structures. Direct numer-
ical methods are more versatile, but require a large computer memory
and longer computing time. Their computational efficiency can notice-
ably decrease in the presence of edges on the scatterer contour, espe-
cially in finding amplitudes of higher order modes [8].

In this paper, we propose to replenish the set of key building blocks
with a new one. A very flexible unit is constructed in such a manner that
its characteristics can be accurately found based on the domain product
technique (DPT) [9]. The above configuration is similar to the one used
in recently published work [10] analyzing scattering from the groove
in a ground plane. The interior part of the block (result of segmenta-
tion) is a homogeneously filled region bounded by arbitrary polygon.
The boundary has “windows” supplied with infinite planar flanges. The
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S-matrix of the block consists of amplitudes of elliptic waves prop-
agating in the corresponding half-spaces from the flanged apertures.
Regular waveguides are attached to the irregular part of the junction by
introducing a block having the form of the open-ended waveguide with
the flange. Implementation of theS-matrix method based on the blocks
proposed enables accurate analysis of the fairly complicated structures
with low computational cost.

II. FORMULATION

Geometry of the problem is shown in Fig. 1(a). The modeled multi-
layer structure is uniform along the axis and has a size in this direction.
It is anH- orE-plane waveguide junction filled by piecewise homoge-
neous lossless magnetodielectric. In further discussion, we shall distin-
guish between these cases as (H) and (E), respectively. Every medium
may contain multiangular perfectly conducting inclusions having no
contact with the interface. For the sake of simplicity, we assume that
all the contours of their cross section are closed. The combined pres-
ence of ideal electric and magnetic walls is permissible. The last gives
the possibility to reduce the order of simultaneous equations in the
problem for symmetric geometry. We also consider the cross section
of any part of interfaces as a single segment with the end points on
the perfectly conducting boundaries.LMpl (H) or LEpl (E) modes
are excited in the structure. Here,l is fixed and the same for different
waveguides and denotes the number of the field variations alongOz.
The time factorexp(i$t) is omitted and suppressed throughout.Z-de-
pendencecos(l�z=b) (H) or sin(l�z=b) (E) or (H ,E, b =1) in the
field expressions is also omitted.

The problem is to findz-componentU of electric (H) or magnetic
(E) field satisfying the Helmholtz equation and the homogeneous
Dirichlet (H) or Neumann (E) conditions on the conducting parts of
the boundary. Those are taken in the reverse order on the magnetic
walls. The conditions, which guarantee continuity of the tangential
components of the field, are prescribed across the interfaces as

UA = UB
@UA
@n

= P
@UB
@n

: (1)

Here,n is the normal to the perimeter
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"B � �

2
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2

A

�A � �2B
(E) (2)

" and� are relative permittivity and permeability

� = 2�
"�

�2
�

l

2b
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and� is the free-space wavelength. The quantities are marked by in-
dexesA andB on the opposite sides of the interface.

Let us disjoin the waveguide junction into the autonomous multian-
gular blocks with homogeneous fillings. In Fig. 1(b), they are shown
separated by a finite distanced. The calculation formulas are obtained
further ford ! 0. It is assumed that the apertures of the blocks and
open-ended waveguides have infinite planar flanges superposing for
d = 0. Quantities, related to an auxiliary medium filling the space
between the blocks, are supplied below with asterisks. Parameters"�
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(a) (b)

(c)

Fig. 1. Decomposition of the waveguide junction. (a) Initial unit. (b) Decomposition scheme. (c) Separate building block.

andµ� are usually considered to be equal to" andµ of the right- or
left-hand-side autonomous block.

The scattering matrix of the separate block shown in Fig. 1(c) can
be determined as follows. The block is formed by an interior region,
bounded by a polygon, and attached half-planes. The total field in the
half-plane consists of a possible incident wave, caused by the opposite
building block, and waves propagating from the flanged aperture and
obeying the radiation condition. Here, we suppose that the sought-for
function satisfies the homogeneous Neumann boundary condition on
the flanges in both the (H) and (E) cases.

We introduce the following notations for the interior region:IA is the
set of numbers for segments related to apertures,ID andIN are sets
for segments with Dirichlet and Neumann boundary conditions, corre-
spondingly, andI = IA [ ID [ IN . We next define local Cartesian
(xi; yi) and elliptic(�i; �i) coordinate systems related to each other by
formulas

xi = fi cosh �i cos �i yi = fi sinh �i sin �i; i 2 I (4)

wherefi is a half-length of theith segment. The origin of the system
(xi; yi) is located at the center of the segment, and axisOyi is directed
into the interior region along the normal to the perimeter. Every seg-
ment of the contour may then be taken for a degenerate ellipse�i = 0.
On its different sides, whereyi = 0� or yi = 0+, the variable�i runs
from�π to 0 and fromπ to 0, respectively. In the coordinate systems
introduced, boundary conditions take the following form:

U = 0 yi = 0+ jxij < fi; i 2 ID (5)

@U

@yi
= 0 yi = 0+ jxij < fi; i 2 IN (6)

@U�

i

@�i � =��+

=
@U�i
@�i � =0�

= 0; i 2 IA (7)

U jy =0+ =U�i jy =0�;

@U

@yi y =0+

=Pi
@U�i
@yi y =0�

jxij < fi; i 2 IA: (8)

Fig. 2. Jump of permittivity and segmentation used (f =f = 1; " =

2:3; � = 1).

Here,U�i is the sought-for function within theith half-plane andPi is
the value of the parameterP from (2) for theith aperture (mediumA
is located in the interior).

Following the DPT, we consider the interior region as a common
part (product) of some simple basis regions�i > 0(i 2 I) possessing
separable geometry in the elliptic coordinates introduced. It gives pos-
sibility to represent functionU in a manner similar to that in [9] and
[10] as

U =
i2I

Ui (9)

Ui =

1

n=0

Di
nMn(�i; qi)cen(�i; qi): (10)

Here,cen(�i; qi) are even angular Mathieu functions,Mn(�i; qi) =

Me
(2)
n (�i; qi)=Me

(2)
n (0; qi),Me

(2)
n (�i; qi) are relevant radial Mathieu

functions (the notation are due to [11]),qi = (�fi=2)
2, andfDi

ng
is a sequence of expansion coefficients to be specified. The last se-
quence tends to zero with increase ofn asO(1=n2+�) if the trans-
verse components of the field have singularities of the typeO(r�
) in
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TABLE I
DEPENDENCIES OF THES-MATRIX ELEMENTS ON THETRUNCATION NUMBERN FORM = M = N = N = N = N

the vicinities of the ends of the segment [9]. Here,� = 1 � 2
 andγ
is the greatest of two powers corresponding different end points. Since
cen(�; q) � cosn�, Mn(�; q) � e�n� asn ! 1, (9) and (10) give
efficient representation of the sought-for field in the interior.

Half-planes, attached to the apertures, also have separable geometry
in elliptic coordinates. Therefore, functionsU�i ; satisfying boundary
conditions (7) can be also written in the form of expansions in terms of
the Mathieu functions as

U
�

i =

1

n=0

s
ik
npMn(�i; q

�

i ) � cen(�i; q
�

i )

+�ik(�1)pMp(�k; q
�

k) � cep(�kq
�

k); i; k 2 IA: (11)

Here,siknp are elements of the scattering matrix, subject to definition,
�ik is the Kroneker delta, andk is the number of the aperture being
excited. Similar tofDi

ng, convergence rate of the sequencefsiknpg de-
pends on the behavior of theU�i in the vicinities of the end points of
the aperture. In (11), the second term represents an incident wave prop-
agating from the next block. The incident field expression is written in
the coordinate system of thekth aperture of the block considered. It
is valid solely if the distanced between that block and the next one,
causing this wave, vanishes. Note that reflected waves withn 6= p are
orthogonal to the impinging wave in terms of inner product(f; g) =
s�0 f(�k)g(�k) d�k for d = 0 only.

Inserting (9)–(11) into (5)–(8) and using orthogonal properties of the
angular Mathieu functions yield the infinite linear algebraic system
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Here,M 0
m(�; q) denotes the derivative of the functionMm(�; q) with

respect to�. The system (12)–(21) has the same properties as the one
in [10] and can be solved using a truncation procedure.

The generalized scattering matrix of the open-ended waveguide con-
sists of the amplitudes of elliptic waves of the half-space and those for
the waveguide eigenmodes. It is evaluated by using an algorithm sim-
ilar to the one described in [12]. Once scattering matrices of all the
building blocks have been derived, one can calculate theS-matrix of
the whole junction using known[1; 3] reconstruction formulas.

III. SAMPLE RESULTS

Included in this section are sample results obtained from aFOR-
TRAN computer code, which implements the theory described above.
The computing periods reported below refer to an IBM PC compatible
computer with a Pentium central processing unit (CPU) at 166 MHz.
S
rs
np are elements of theS-matrix of the whole junction considered.
First, for the sake of verification, we examine simple waveguide dis-

continuity shown in Fig. 2 and formed by a jump of permittivity. Table I
shows changes inSrsnp with increasing truncation numberN . Ni de-
notes the order of the partial sum in (10) after truncation for the func-
tionsUi related to the middle building block.M1 andM2 are the num-
bers of the waveguide eigenmodes taken into account in ports 1 and 2
during computation. Exact values of theSrsnp are also given. Note that
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Fig. 3. jS j versus" for a T-junction with dielectric wedge. (H): n = 1,
h=a = 0:2439, g=a = 0:7317, a=� = 0:82. (E): n = 0, h=a = 0:5,
g=a = 1, a=� = 0:4, b = 1.

Fig. 4. jS j versus�a=(2�) in the (E) case for a three-port junction with
dielectric insertion (" = 2:3, � = 1, c=a = 0:8, b=a = 2).

the decomposition scheme of the above object is artificially compli-
cated to make the algorithm approximately as complex as the ones for
the following examples where exact solutions are unknown. It follows
from Table I that the data obtained converge rapidly to the exact values
of the evaluated quantities. As seen, getting sufficiently accurate results

does not lead to matrix equations of a high order and, as a consequence,
does not require a large computer memory.

In Figs. 3 and 4, illustrative examples demonstrating some possibil-
ities of the technique are given. Fig. 3 presents plots ofjS11

nn
j as func-

tions of the relative permittivity of a dielectric wedge placed into the
coupling cavity of the waveguide T-junction depicted. The structure is
excited by the dominant mode in both the (H) and (E) cases. If" = 1,
results obtained coincide with the known [2] data for the respective
hollow-waveguide discontinuities. The total computing periods were
6 s (H) and 8 s (E) (41 calculation points for each case).

Fig. 4 presents the dependencies of the normalizedS-matrix ele-
ments versus frequency parameter�a=(2�) for the three-port junction
shown. The incident wave isLE01. The elapsed period (26 frequency
points) was 12 s.

IV. CONCLUSION

A new version of utilization of the generalized scattering matrix
method in simulation of the two-dimensional (2-D) waveguide struc-
tures having polygonal boundaries and piecewise homogeneous fillings
is presented in this paper. A special way of segmentation of such ob-
jects, providing possibility of determiningS-matrices of the building
blocks on the basis of the DPT, is proposed. Practical applicability of
the theory has been confirmed by solving test problems. The approach
offered enables efficient and accurate analysis of the wide group of
geometrically complicated waveguide junctions and components with
low computational cost.
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Efficient Evaluation of Spatial-Domain MoM Matrix
Entries in the Analysis of Planar Stratified Geometries

Noyan Kinayman and M. I. Aksun

Abstract—An efficient hybrid method for evaluation of spatial-domain
method-of-moments (MoM) matrix entries is presented in this paper. It
has already been demonstrated that the introduction of the closed-form
Green’s functions into the MoM formulation results in a significant compu-
tational improvement in filling up MoM matrices and, consequently, in the
analysis of planar geometries. To achieve further improvement in the com-
putational efficiency of the MoM matrix entries, a hybrid method is pro-
posed in this paper and, through some examples, it is demonstrated that
it provides significant acceleration in filling up MoM matrices while pre-
serving the accuracy of the results.

Index Terms—Closed-form spatial-domain Green’s functions, method of
moments, printed circuits.

I. INTRODUCTION

The method of moments (MoM) is one of the widely used numer-
ical techniques employed for the solution of mixed potential integral
equations (MPIE’s) [1]–[3] arising in the analysis of planar stratified
geometries. Recently, the computational burden of the spatial-domain
MoM, which is evaluations of the Sommerfeld integrals, has been alle-
viated by introducing an efficient algorithm to approximate these inte-
grals in closed-form expressions, resulting in closed-form spatial-do-
main Green’s functions [4], [5]. Consequently, the central processing
unit (CPU) time required to calculate the MoM matrix entries, also
known as “fill-time,” has been reduced considerably. Following this de-
velopment, it was also shown that the reaction integrals (MoM matrix
entries) resulting from the application of the MoM in conjunction with
the closed-form Green’s functions can also be evaluated analytically,
which further improves the computational efficiency of the spatial-do-
main MoM [6].

In this paper, a new hybrid method based on the use of the technique
outlines in [6], in the vicinity of the source and a simpler approxima-
tion algorithm, elsewhere, is developed and presented. It is also demon-
strated that this hybrid method has significantly accelerated the matrix
fill-in time as compared to the original approach presented in [6]. The
application of the hybrid method is provided for a realistic example,
and possible difficulties together with their remedies are discussed.

II. THE HYBRID METHOD

Evaluation of MoM matrix entries is the one that requires most of
the CPU time of the technique for moderate-size geometries (spanning
a few wavelengths). To give an idea, CPU times for the evaluations
of the Green’s functions, matrix entries, and the solution of the MoM
matrix equation are given in Table I for some typical printed geome-
tries. Note that the geometries referred to in Table I have been analyzed
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with uniform segmentation, which gives rise to block symmetric MoM
impedance matrices. Detailed study of hybrid method for the interdig-
ital capacitor mentioned in Table I will be provided in the following
sections. Due to space limitations, results for the patch antenna and the
bandpass filter could not be provided.

In order to introduce the hybrid method, let us first write down the
spatial-domain MoM matrix entry of a planarly stratified geometry ob-
tained through the MPIE formulation [1], [2]

Zmn = hTxm; G
A
xx � Jxni+

1

w2
Txm;

@

@x
Gq
x �

@Jxn
@x

(1)

whereTxm are the testing functions,Jxn are the basis functions, and
h ; i is the inner product. The spatial-domain Green’s functions em-
ployed in (1) are obtained in closed forms with the use of the two-level
approach described in [7], which have the generic form of

GA; q �=

N

n=1

an
e�jk r

rn
(2)

wherern = �2 � b2n, � = x2 + y2, ki is the wavenumber in
source layer, andbn is the complex constant. It has been demonstrated
in [6] that the MoM matrix entries given in (1) can be calculated an-
alytically without any numerical integration for piecewise-continuous
basis and testing functions, provided the closed-form Green’s functions
are used for the formulation. In that approach, each of the exponentials
in (2) is replaced by its Taylor series approximation as follows:

GA; q �=

N

n=1

an

M

m=0

cmn

(rn � rc)
m

rn
(3)

wherecmn are the Taylor series coefficients andrc is the center of
expansion for the exponential terme�jk r . Alternatively, one could
replace the entire Green’s function in (2) with a suitable approximation
that would enable the reaction integrals to be evaluated analytically. For
instance, one may use the polynomial approximation for the Green’s
function as

GA; q �=

L

l=�1


l � �
l (4)

where
l are complex coefficients obtained from a least-squares (LS)
fitting scheme. It is obvious that the analytical integration of the re-
action integrals is considerably simpler for the Green’s function ex-
pressed in (4) than for those expressed in (3). This is because the an-
alytical evaluation of the inner-product integrals using the former rep-
resentation requires extensive complex arithmetic operations, as well
as multiple evaluations of complex logarithms and trigonometric func-
tions. However, the caveat in the polynomial-fitting approach is that the
approximating the Green’s function over the entire range is very diffi-
cult, if not impossible, with a relatively smallL, because of the singular
behavior of the Green’s functions as� ! 0. One approach to resolving
this dilemma is to utilize both of the above representations, but in com-
plementary regions, thereby taking the advantage of the salient features
of both. This can be done by using (3) to represent the Green’s function
for smallρ, where it exhibits a singular behavior, and then by switching
over to (4) asρ becomes larger.

To summarize, a direct application of the rigorous method places an
unnecessary computational burden whenρ, the distance between the
source and testing points, is greater than a predetermined value�ls =
10s=k0, wheres is a constant. To circumvent this problem, one can use
a hybrid approach as given in (5), which uses a judicious combination

0018-9480/00$10.00 © 2000 IEEE
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TABLE I
CPU TIMES IN SECONDSREQUIRED FOR THEANALYSIS OF SOME TYPICAL GEOMETRIES ATSINGLE FREQUENCY ON ASUN SPARC ULTRA-2 WORKSTATION.

HYBRID METHOD INCLUDES THEADAPTIVE SELECTION OF� , AS EXPLAINED IN SECTION II

of the two methods, to increase the computational speed with which
the MoM matrix entries are generated as follows:

Z
q;A
mn =

f(u)g(v)

N

n=1

an
e�jk

p
u +v �b

p
u2+v2�b2n

dudv;

� < �ls

f(u)g(v)

L

l=�1


l�
l
dudv; � � �ls:

(5a)

(5b)

For rooftop basis and testing functions,f(u) andg(v) are given as

f(u) =�0 + �1u+ �2u
2 + �3u

3 (6)

g(v) =�0 + �1v (7)

whereα andβ are constants obtained from the correlation operation of
the basis and testing functions [6].

At this point, it is worthwhile to describe the strategy for employing
the hybrid technique. To use a smallL in (4) and simplify the algorithm,
the polynomial-fitting algorithm is performed over a small range ofρ,
which is requires the LS fitting withNls sampling points to be repeated
for each of the inner-product operations. Consequently, to accelerate
the fitting process, the closed-form Green’s function is sampled be-
tween�ls and�max, and the sampled values are stored in a look-up
table before starting to fill up the MoM matrix. These tabulated values
can then be subsequently interpolated to perform the LS fitting rela-
tively fast for each inner product operation. Here, one can use linear or
quadratic interpolation scheme to find required values for the LS ap-
proximation process from the previously sampled values of the Green’s
function whose effects will also be demonstrated.

For a given geometry, either user can specify the value of�ls through
s or it can be determined adaptively by using the rms fitting error in the
LS approximation scheme. The adaptive approach, which is the one
used throughout this paper, starts with an error criterion defined as in
following form:

1

Ne

N

i=0

G
A; q

method#1 �G
A; q

method #2

2

� E (8)

whereGA; q

method #1 corresponds to the Green’s function approximations
obtained from (3),GA; q

method #2 corresponds to the Green’s function ap-
proximations obtained from (4),E is the acceptable rms fitting error,
andNe is the number of samples used in error checking (Ne > Nls).
Then, since the LS approximation in (4) is implemented over a range of
�(�a � � � �b), the lower and upper limits�a and�b, respectively, are
determined adaptively starting with the initial values of minimum cell
width and maximum possibleρ value for the inner product evaluation,
respectively. If the condition specified by (8) is satisfied,�ls is set to

Fig. 1. S andS of the interdigital capacitor given inFig. 2. The dashed
lines represent the results fromememem by Sonnet Software, Inc, Liverpool, NY.

�a and the iteration is terminated, otherwise�a is increased by a small
increment��, and the iteration continues until (8) is satisfied. This ap-
proach makes the hybrid method a very suitable tool for designing an
efficient MoM-based electromagnetic simulator. In the examples given
in Table I, the constantE was selected as 10−5.

III. N UMERICAL EXAMPLES

To study the effectiveness and accuracy of the hybrid method pro-
posed in this paper, CPU times for different parameter setting and scat-
tering parameters (S-parameters) of an example printed structure are
obtained using the rigorous and hybrid methods. The example selected
here is an interdigital microwave integrated circuit (MIC) capacitor
whoseS-parameters and geometry are shown in Figs. 1 and 2, respec-
tively. Number of basis functions for the interdigital capacitor is chosen
to be 576. For the sake of fairness, an error term is defined as

error =

N

i=1

S
rigorous
1i � S

hybrid
1i

2

(9)

whereNp is the number of ports in the structure. The matrix fill time for
this geometry could be reduced by changing the auxiliary parameters,
as shown in Fig. 2 (L = 4; Nls = 9). Note that the matrix fill time for
eachs value given in the figure is the accumulative fill time over fre-
quency in the simulation band, whereas the times given in Table I are at
single frequency. To find the average fill time at a single frequency, the
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Fig. 2. Total matrix and percentage of inner-products that fall in the LS
approximation region for the interdigital capacitor (1000 MHz� f � 10 000
MHz, �f = 250 MHz).

Fig. 3. Error inS andS of the interdigital capacitor for different values
of s [error is defined in(9)].

time values read from Fig. 2 should be divided by the number of sim-
ulation points, which in this case is 37. From the figure, it is observed
that the matrix fill time is saturated arounds = �3:0, providing a
considerable amount of reduction in the matrix fill time. However, the
error inS-parameters is relatively high at some frequency points, and
the situation is even worse ats = �5:0, as shown in Fig. 3. This could
be attributed to a poor approximation of the Green’s functions by the
polynomials given in (4). It is also observed that the error inS-param-
eters increases even though the percentage of the inner products eval-
uated through the LS fitting scheme does not increase. This is due to
fact that, although the value of�ls below some point cannot change
the matrix fill time (unless it becomes zero), the algorithm keeps sam-
pling the Green’s functions starting from lower and lowerρ values as
�ls is decreasing. However, such choices of�ls only occur in cases of
manually varying the value ofs; in practice, there is a minimum limit
(usually the minimum cell width) on the value of�ls and it is deter-
mined by the adaptive algorithm that was previously described.

As a next step, the number of sampling points, i.e.,Nls, is increased
from 9 to 12, and the error inS-parameters is calculated again for
s = �5:0, giving the results in Fig. 4. While there is a noticeable im-

Fig. 4. Error inS andS of the interdigital capacitor for different values
of s [error is defined in(9)].

provement in the average error, the error is still not acceptable at higher
frequency points. Thus far, we have only employed linear interpolation
with nine interpolation points, for which the results given in Fig. 3 have
higher error fors = �5:0. Although increasing the interpolation points
from 9 to 12 in the linear LS approximation has improved the results
to a degree, they are still not acceptable (Fig. 4). However, switching
to quadratic interpolation from linear interpolation gives a significant
improvement even for the smaller values ofs, as shown in Fig. 4.

IV. CONCLUSIONS

In this paper, it has been demonstrated that the hybrid method sig-
nificantly improves the efficiency of the evaluation of spatial-domain
MoM matrix entries, on the order of tenfold to twentyfold reduction
in matrix fill time. Therefore, even for moderate-size geometries, the
solution time of the matrix equations becomes the dominating factor
on the overall performance of the spatial-domain MoM. Consequently,
the spatial-domain MoM in conjunction with the closed-form Green’s
functions has become a powerful computer-aided design (CAD) tool
for the analysis of planar structures, provided that the hybrid method
presented in this paper is employed in the evaluation of the matrix en-
tries.
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CAD Models for Asymmetrical, Elliptical, Cylindrical, and
Elliptical Cone Coplanar Strip Lines

Zhengwei Du, Ke Gong, Jeffrey S. Fu, Zhenghe Feng, and Baoxin Gao

Abstract—By the conformal mapping method, we give analytical
closed form expressions for the quasi-TEM parameters for asymmetrical
coplanar strip lines (ACPS’s) with finite boundary substrate. Then, based
on the analysis of ACPS’s, elliptical coplanar strip lines (ECPS’s) and
cylindrical coplanar strip lines (CCPS’s), and elliptical cone coplanar strip
lines (ECCPS’s) are studied. Computer-aided-design oriented analytical
closed-form expressions for the quasi-TEM parameters for ACPS’s,
ECPS’s, CCPS’s, and ECCPS’s are obtained. All of the expressions are
simple and accurate for microwave circuits’ designs and are useful for
transmission-line theory and antenna theory. The reasonableness of the
method and results are verified and various design curves are given.

Index Terms—Asymmetrical coplanar strip lines, CAD modes, con-
formal mapping, cylindrical coplanar strip lines, elliptical cone coplanar
strip lines, elliptical coplanar strip lines.

I. INTRODUCTION

Coplanar transmission lines are used extensively in monolithic mi-
crowave integrated circuits (MMIC’s) and integrated optical applica-
tions [1], [2]. An asymmetrical coplanar transmission line consists of a
narrow metal strip and a conductive plane grounded, which are placed
on one side of the dielectric substrate and mutually separated by a
narrow slot. The advantage is the possibility of combination with other
types of transmission lines such as a slot line, coplanar waveguide, and
microstrip when used in filters, impedance matching networks, and di-
rectional couplers. In the earlier years, coplanar strip lines (CPS’s) were
analyzed by assuming that the substrate is infinite [3], [4]. In recent
years, people obtained the expressions for the quasi-TEM parameters
for CPS’s on a substrate [5], [6] and multilayer substrates [7]–[10] of
finite thickness. The problem of a CPS with a substrate of finite thick-
ness and finite width has not been solved up to now.

Elliptical coplanar strip lines (ECPS’s), cylindrical coplanar strip
lines (CCPS’s), and elliptical cone coplanar strip lines (ECCPS’s) can
be used as adapters and slot lines as well as antennas. Although ellip-
tical [11] and elliptical cone [12], [13] striplines and microstrip lines
have been analyzed, the analyzes of ECPS’s and ECCPS’s have not
been reported to our knowledge. In [14] and [15] closed form expres-
sions for quasi-TEM parameters for CCPS’s were given. Both [14] and
[15] treated the width of the substrate as infinite when the CCPS was
mapped into the ACPS, while the width should be2�. In addition, there
is an error in [15] as pointed out in this paper.

The objective of this paper is to solve the problems mentioned above.
Assuming that the ACPS with a finite-boundary dielectric substrate of
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finite thickness and width, ECPS, CCPS, and ECCPS are operating in
the quasi-TEM mode, the conformal mapping method is used for the
analysis. The assumption is valid when the length of a line is much
longer than the wavelength of the guided wave and the operating fre-
quency of the guided wave is not high. This method can give fast and
accurate results in the microwave frequency range since the quasi-TEM
parameters for coplanar lines are only slightly sensitive to changes in
the frequency [15]. As the substratum, we study the quasi-TEM param-
eters for the ACPS with finite boundary substrates at first. In Sections
III and IV, ECPS’s, CCPS’s, and ECCPS’s are analyzed. In Section V,
the reasonableness of the method and results are verified, and numer-
ical results for the characteristic impedance for the ACPS with finite
boundary substrate, ECPS, CCPS, and ECCPS are given.

II. ACPS WITH FINITE BOUNDARY SUBSTRATE

The analyzed ACPS on a finite-boundary substrate is shown in
Fig. 1(a). The widths of the infinitely long strips arew1 andw2 and
the gap between them is2s. The two strips are mounted on a substrate
having a thickness ofh, a width of 2w, and a relative dielectric
constant of"r . In this case, the ACPS capacitanceC isC = C0 +C1,
whereC0 is the ACPS capacitance in free space when the dielectric
is replaced by air, andC1 is the ACPS capacitance obtained when
assuming that the electric field is concentrated in a dielectric of
thicknessh, width 2w, and relative dielectric constant of"r � 1. This
assumption has shown an excellent accuracy in the cases of the CPS
and ACPS with a finite thickness and infinite width substrate [5]–[8].

The free-space capacitanceC0 is given by [9]

C0 = "0
K(k0

0)

K(k0)
(1)

wherek0 is shown in (2) at the bottom of the following page. In
order to obtain the capacitanceC1, the dielectric region in Fig. 1(a)
is mapped into the lower half region, as shown in Fig. 1(b), by the
Jacobian elliptic function transformationt = sn((K(k)=w)z; k),
where K(k) is the complete elliptic integral of the first kind of
modulusk, K(k)=K(k0) = w=h, andk0 =

p
1� k2. For simplified

calculation, the excellent approximate expressions ofk are given by
[16]

k =
exp (�w=h)� 2

exp (�w=h) + 2

2

; for 1 � w

h
<1 (3a)

k = 1� exp (�h=w)� 2

exp (�h=w) + 2

4

; for 0 <
w

h
< 1: (3b)

The widthss, w1, andw2 are mappedst, w1t, andw2t, which can be
expressed as follows:

st = t1 = sn
K(k)

w
s; k (4a)

w1t = t2 � t1 = sn
K(k)

w
(s+ w1); k � sn

K(k)

w
s; k

(4b)

w2t = t3 � t1 = sn
K(k)

w
(s+ w2); k � sn

K(k)

w
s; k :

(4c)
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(a)

(b)

Fig. 1. Geometry of ACPS and its conformal mapping. (a) Original ACPS on
z-plane. (b)t-plane.

Thus, the capacitanceC1 is given by

C1 =
1

2
"0("r�1)

K(k0

1)

K(k1)
(5)

wherek1 andk0

1 are shown in (6), at the bottom of this page.
Therefore, the capacitance per unit length and the characteristic

impedance for the ACPS can be expressed as

C =C0 + C1 = "0"e�
K(k0

0)

K(k0)

Z0 =
120�
p
"e�

K(k0)

K(k0

0
)
: (7)

The effective dielectric constant"e� and the wavelength�g of the
guided wave are given by

"e� =1 +
"r � 1

2

K(k0)

K(k0

0
)

K(k0

1)

K(k1)

�g =
�0p
"e�

(8)

where�0 is the wavelength in free space.

III. ECPSAND CCPS

For the cross section of an ECPS on thez1-plane, shown in Fig. 2(a),
there are two confocal ellipses. Their semimajor axes and semiminor

(a)

(b)

Fig. 2. ECPS. (a)z -plane. (b)z -plane.

(a)

(b)

Fig. 3. ECCPS. (a) Geometry. (b) Cross section.

axes area1, a2, b1, andb2, respectively. The angles subtended by the
arc strip lines and the gap between the two strips at center are�1, �2,
and2 , respectively. The relative dielectric constant of the substrate is
"r. The dimensional relationship between the two ellipses is

c = a2
1
� b2

1
= a2

2
� b2

2
: (9)

k0 =
(w1 + w2 + 2s)s

w1w2 + (w1 + w2 + 2s)s+ w2

1
w2

2
+ 2w1w2s(w1 + w2 + 2s)

: (2)

k1 =
(w1t + w2t + 2st)st

w1tw2t + (w1t + w2t + 2st)st + w2

1tw
2

2t + 2w1tw2tst(w1t + w2t + 2st)

k
0

1 = 1� k2
1

(6)
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(a)

(b)

Fig. 4. The effective dielectric constant for ACPS changes (" = 2:5, w =
w ). (a)h=(s + w ) = 4. (b) s=(s + w ) = 0:3.

Using the transformationz2 = (z1 � z21 � c
2)=c [11], the structure

in Fig. 2(a) is mapped into the CCPS on thez2-plane, as shown in
Fig. 2(b). Their radii are given by

r1 =
a1 + b1
a1 � b1

r2 =
a2 + b2
a2 � b2

: (10)

Applying the following principle logarithmz = j ln (z2=r2)+(�=2),
the structure is mapped into the ACPS on thez-plane shown in
Fig. 1(a). Considering (9), the structure parametersw1, w2, s, h, and
w for the ECPS are given as follows:

w1 = �1 w2 = �2 s =  (11a)

h = ln
r2
r1

= ln
a2 + b2
a1 + b1

w = � (11b)

whena1 = b1 = a,a2 = b2 = b, i.e.,c = 0,h becomesh = ln (b=a),
then (11) gives the structure parameters for the CCPS.

Inserting (11) into (7) and (8), we can obtain the quasi-TEM param-
eters for the ECPS and CCPS. By the way, the expressions ofkd and
Q in [15], i.e., [15, eqs. (11) and (12)], are wrong; they should be ex-
pressed as (12), shown at the bottom of this page.

IV. ECCPS

Two infinitely long triangular arc strip lines with an elliptic cross sec-
tion are mounted on an elliptic conical substrate, as shown in Fig. 3(a).
The whole structure has two strip lines, the corresponding flare angles
�1 and�2, two extreme flare angles�3 and�4, shaped by the inner and
exterior elliptical cone, the gap between the strips2 , and a relative
dielectric constant of"r . The cross section is shown in Fig. 3(b).

The scalar Helmholtz equation for spherical-TEM waves in a spher-
ical–conical coordinate system is given by [12] and [13]

1� k22 cos2 �
@

@�
1� k22 cos2 �

@U

@�

+ 1� k02
2 cos2 '

@

@'
1� k02

2 cos2 '
@U

@'
= 0 (13)

where

U =
e�j� r

r
u(�; ') �0 = !

p
�"0"r: (14)

If �1 and�2 are the flare angles of the focus lines of the inner and
outer elliptic cones, respectively, and they satisfycos �3 tan �1 =
cos �4 tan �2, we then have [12]

k2 =(1 + tan2 �1 cos2 �3)
�(1=2)

=(1 + tan2 �2 cos2 �4)
�(1=2)

k02 = 1� k22: (15)

Taking the two transformations� = F (�; k2) � K(k2),
� = F ('; k02) � K(k02), whereF (�; k2) is the incomplete el-
liptic integral of the first kind of modulusk2, (13) becomes

@2u

@�2
+
@2u

@�2
= 0: (16)

The structure in Fig. 3 is mapped into the ACPS on thez-plane, as
shown in Fig. 1(a). The structure parametersw1, w2, s, h, andw are
given by

w1 =F ( + �1; k
0

2)� F ( ; k02)

w2 =F ( + �2; k
0

2)� F ( ; k02) (17a)

s =F ( ; k02)

h =F (�4; k2)� F (�3; k2)

w =2K(k02): (17b)

Using (7), (8), and (17), the quasi-TEM parameters for the ECCPS
are obtained.

V. NUMERICAL RESULTS

To illustrate that the method is reasonable, we first make a compar-
ison between the ACPS with infinite substrates [8] and finite substrates.

kd =

sinh (Qs)� sinh (Q(s+ 2w1) sinh (Qs)� sinh (Q(s+ 2w2)

sinh (Qs) + sinh (Q(s+ 2w1) sinh (Qs) + sinh (Q(s+ 2w2)

Q =
�

4h
: (12)
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(a)

(b)

Fig. 5. The calculated results for" andZ for ACPS (" = 10,w=h = 2,
w =h = 0:5). (a) Effective dielectric constant. (b) Characteristic impedance.

Fig. 6. Z for ECPS and CCPS changes with� =� (" = 2:5, � = 40
�,

h = ln 2).

Fig. 7. Z for ECCPS changes with� =� (" = 10, � = 25
�, � = 60

�,
� = 20

�, � = 30
�).

Fig. 4(a) and (b) give the effective dielectric constant for the ACPS
changing withs=(s + w1) andh=(s + w1), respectively. From the
curves, we can find that the effective dielectric constant for the ACPS
increase with the substrate widthw and the thicknessh. "e� of the
ACPS with a finite substrate approaches to the value of"e� of the ACPS
with an infinite substrate whenw andh are large enough. It satisfies the
fact and verifies that the method used in this paper is reasonable. Since
ECPS’s, CCPS’s, and ECCPS’s analyzed in this paper are rigorously
mapped into the ACPS with finite boundary substrates whose result is
the substratum of their analyses, their analyses are also reasonable.

Fig. 8. Z for ECCPS changes with� =� (" = 10, � = 25
�, � = 60

�,
� = 20

�, � = 30
�).

As examples, we give the numerical results for the characteristic
impedanceZ0 for the ACPS with a finite-boundary substrate, ECPS,
CCPS, and ECCPS. Fig. 5(a) and (b) show"e� andZ0 for the ACPS
("r = 10,w=h = 2,w2=h = 0:5) as a function of the asymmetry ratio
w1=w2 for several values ofs=h. Figs. 6–8 give the changes ofZ0 for
the ECPS, CCPS, and ECCPS via the structure parameters.

VI. CONCLUSIONS

The ACPS with a finite-boundary substrate is studied as the sub-
stratum of this paper. The ECPS, CCPS, and ECCPS are rigorously
transformed into the ACPS with a finite boundary substrate using the
conformal mapping method. The computer-aided-design (CAD) ori-
ented analytical closed-form expressions for quasi-TEM parameters
for the ACPS, ECPS, CCPS, and ECCPS are obtained. The formula-
tions are both accurate and simple for microwave circuit and antenna
designs. Various numerical results are given to show the reasonable-
ness of the method and results, and the dependence of the characteristic
impedance on the structure parameters.
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Power and Noise Limitations of Active Circulators

Geert Carchon and Bart Nauwelaers

Abstract—In this paper, new simple formulas expressing the power and
noise limitations for three three-way circulator architectures and three
quasi-circulator architectures are derived. It is shown that the power-han-
dling capability of the active three-way circulators is determined by the
required transconductance of the transistors in the circuit, while the noise
is determined by the drain noise current source. The suitability of the
different active circulator architectures for transmit/receive applications
is investigated. We conclude that the quasi-circulators based on passive
isolation offer the highest performance.

Index Terms—Active circulator, MMIC, noise.

I. INTRODUCTION

Circulators are important components in many microwave systems
[1], e.g., for the separation of transmitted and received signals. They
are usually fabricated with passive nonreciprocal ferrite materials. An
alternative is to use the nonreciprocal behavior of transistors. These
active circulators [1]–[8] offer the advantage of small size and weight,
low cost, and full compatibility with monolithic-microwave integrated-
circuit (MMIC) technology. However, they also introduce excess noise
and limit the RF power-handling capability.

In Section II, new simple formulas expressing the power and noise
limitations of active three-way circulators and active quasi-circulators
are derived. In Section III, the suitability of the different architectures
for transmit–receive (Tx/Rx) applications is investigated by comparing
their power-to-noise ratios.

II. POWER AND NOISEPROPERTIES OFACTIVE CIRCULATORS

We will make a distinction between active three-way circulators and
active quasi-circulators [5]: active three-way circulators exhibit full ro-
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TABLE I
MEANING OF THE SYMBOLS USED IN THE

CALCULATIONS

tational symmetry and should be realized with some loss for stability
reasons. Active quasi-circulators on the other hand, do not pass the
signal from the receiver to the transmitter side and can be realized with
gain on transmit and receive.

It is our intension to compare the performance of active three-way
circulators and active quasi-circulators for Tx/Rx applications. As ac-
tive quasi-circulators are realized with gain on receive and three-way
circulators are not, it is necessary to calculate the noise figure (NF) of
the receiver. For simplicity, we assume that the NF of the receiver can
be approximated by the contribution of the circulator and the low-noise
amplifier (LNA).

The isolation between transmitter and receiver is assumed to be per-
fect. Therefore, the transmitter will not influence the NF of the receiver.

The explanation of the symbols used in the derivation of the power
and noise properties, is given in Table I. In the following, the transmitter
will always be located at port 1, the antenna at port 2, and the receiver
at port 3.

A. Active Three-Way Circulators

We distinguish the architecture of Tanaka [2], the THRU-element
circulator [1], and the architecture of Katzin [4]. The lossless limit of
these architectures will be analyzed.

As will be shown below, the fullgm potential of the transistor is
often not required in the design of active three-way circulators. In these
cases, an artificialgm reduction is obtained with a capacitor in series
with the gate since only a fraction of the input power appears over
the gate–source junction. This will also increase the power handling
capability as the gate–source voltage swing is the power-limiting factor.

1) Principle of Tanaka : The architecture is given in Fig. 1(a). If the
transistors are modeled withgm only, it was shown in [9] that a lossless
realization matched to 50
 requiresZD = Z =1, gm = 40mS, and
ZRC = 150
. The power can be limited by the maximum allowedVgs
andVds swing.Vgs is maximal over transistorT2, whileVds is maximal
over transistorT3. The limiting voltages are thenV T2gs = 2=3Vin and
V T3ds = 2=3Vin. If gTORm > gTargetm , we can put a capacitor in series
with the gate. If the impedance at port 1 is given byZin, the maximum
output power is given by

Pmax =
3

2
min

gTORm

40 mS
V max
gs ;V max

ds

2

2Zin: (1)

The gate and drain noise current sources of the transistor (represented
by I1, I2, andI3) and resistorZ; ZRC; ZD [seeFig. 1(a)] contribute
to the NF.

The presence of the high power amplifier (HPA) will not influence
the NF of the circulator, as the transmitter is assumed to be perfectly

0018–9480/00$10.00 © 2000 IEEE
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Fig. 1. Investigated three-way circulators. (a) Architecture of Tanaka. (b)
THRU-element circulator. (c) Principle of Katzin.

isolated from the receiver. After some calculations, we find that the NF
of the circulator is given by

NF = 1 +
2

3
+

50 


4kT0B

2

3
(jidj2 + jigj2) + 2Re (i�dig) : (2)

The term2=3 is due to the contribution ofZRC. In a first approxima-
tion, the gate noise current source and correlation can be neglected as
they are much smaller thenjidj2 [10]. We then obtain the following
overall NF:

NF = 1 +
2

3
+

50 


6kT0B
jidj2 + (FLNA � 1): (3)

2) THRU-Element Circulator :The architecture consists of three
identical building blocks (THRU elements) interconnected in a�
shape [see Fig. 1(b)]. A transistor in parallel with a transmission line
is the THRU element.

To determine the power-handling capability of the circulator, the re-
quired transconductance of the transistors has to be calculated. The de-
siredS-matrix of the circulator(SD) is given in(4). The equivalent
Y -matrix representation is referred to asYD .

SD =

0 0 x

x 0 0

0 x 0

; with x = �ej' (4)

The circulator'sY -matrix (YT ) can also be expressed in terms of the
Y -parameters of the THRU element. EquatingYT with YD gives the
following conditions:

Y THRU
11 + Y THRU

12 =
1� x3

50(1 + x3)

Y THRU
12 =

2x2

50(1 + x3)

Y THRU
21 =

�2x

50(1 + x3)

with Y THRU
ij = Y TOR

ij + Y Line
ij : (5)

For a lossless realization, the first condition is purely imaginary. For
the combination of a transistor with infiniterTORds and a lossless line,
it can be met by adding shunt stubs at the ports. The second and third
condition determine the transistor'sgm and line properties.

Fig. 2. Investigated quasi-circulators. (a) Architecture based on passive
isolation. (b) Phase cancellation concept of Cryan. (c) Divider/combiner
concept of Gasmi.

As Y TOR
12 andRe(Y Line

12 ) = 0, we should define(�; ') such that
Re(Y THRU

12 ) = 0. For the other transistor orientationY TOR
21 = 0, we

then setRe(Y THRU
21 ) = 0. For a given loss�,' can now be calculated.

A lossless solution cannot be found, but as�! 1, gm ! 1=75S. The
power-handling capability is then given by

Pmax = �2 min
gTORm V max

gs

1
75

S
;V max

ds

2

2Zin: (6)

The NF is dominated by the drain noise current source of the transistors,
as they are directly located at the antenna and receiver ports:Id1 does
not influence the NF, while for a lossless realization,Id2 andId3 have
an identical noise contribution. If we again neglect the gate noise cur-
rent source and correlation (because they are much smaller thenjidj2

[10]), we obtain the following overall NF:

NF = 1 +
50 


4kT0B
jidj2 1 +

1

�2
+

FLNA � 1

�2
: (7)

3) Narrow-Band Circulator of Katzin :The architecture consists
of an inverting and a noninverting amplifier in parallel, together with
two 90� transmission lines [see Fig. 1(c)]. For a transistor with infi-
nite rTORds , it was shown that a lossless realization matched to 50

requiresgm = 20 mS andZc = 50 
. For narrow-band operation, the
noninverting amplifier can be realized by cascading a common-source
transistor and a 180� transmission line.

The power-handling capability is limited byV max
gs of the nonin-

verting amplifier. The dynamic load line of the noninverting ampli-
fier is a vertical line since the receiver is isolated from the transmitter
(V isolatedport

sweep = 0 orZload = 0). Pmax is, therefore, given by

Pmax = min
gTORm

20 mS
V max
gs ;V max

ds

2

2Zin: (8)

The noise sources can be represented byi1 andi3

i1 = iinvertord + inon-invertorg

i3 = inon-invertord + iinvertorg : (9)

If we neglectiinvertorg and the correlation, we obtain

NF = 1 +
50 


4kT0B
jinon-invertord j2 + (FLNA � 1): (10)

The NF is dominated byinon-invertord . Noise current sourcei1 does not
influence the NF of the circulator.
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B. Active Quasi-Circulators

In this section, we distinguish quasi-circulators based on passive
isolation, the phase-cancellation concept of Cryan [8], and the
divider/combiner concept [3].

1) Quasi-Circulator Based on Passive Isolation:A passive device
(e.g., a Wilkinson, etc.) is used to provide the isolation between trans-
mitter and receiver. The architecture based on a Wilkinson divider is
given in Fig. 2(a).

The power-handling capability and NF are given by

Pmax = (V max
ds )2 =4 � Zopt (11)

and

NF = 2FLNA: (12)

2) Phase-Cancellation Concept of Cryan :The output power of
this architecture is limited byV max

gs of transistorT2 [see Fig. 2(b)]. A
series capacitor can be used to increase the power handling capability,
but this reduces the gain on receive. The maximum output power is
given by

Pmax = V max
gs

2
=2 � Zin: (13)

If we neglect the influence ofiT2g (small compared toiT1d ) and iT2d ,
iT3d (the signal has already been amplified), the NF is given by

NF = 1 +
50 


4kT0B
jiT1d j2 + (FLNA � 1): (14)

3) Divider/Combiner Concept:Many divider/combiner combi-
nations are possible (in-phase, out-of-phase, passive, active) [5]–[7].
Only the combination presented in [7] is analyzed [see Fig. 2(c)]. For
all other divider–combiner combinations found in literature, either the
output power is very low or the noise of the HPA affects the NF of the
receiver. This architecture consists of a passive in-phase divider and
an active out-of-phase combiner.

Half of the output power of transistorT1 is dissipated in the 50-

dummy load. The output power is also limited by the maximum
drain–source voltage swing of the out-of-phase combiner (transistor
T2). This is given by

Pmax = (V max
ds )

2
=2 � Zin: (15)

TransistorT1 does not contribute to the NF if perfect isolation is as-
sumed [7]. If the transistors are modeled with theirgm only, the NF
becomes

NF = 1 +
50 


4kT0
jiRj2 + 4jigj2 +

jidj2

(gmZc)2
�
4Refi�gidg

gmZc
:

(16)
The noise contribution of the dummy load is 3 dB. An ideal noise match
cannot be guaranteed with this simple architecture. This can be im-
proved by adding additional matching elements, hereby complicating
the architecture.

III. D ISCUSSION

Using the above derived formulas, the suitability of the different cir-
culator architectures for Tx/Rx applications can be investigated. The
ratioPmax=NFreceiver will be used as comparison criterion [11]. Each
type will be compared with the Wilkinson-based quasi-circulator, as
this is the best performance that can be achieved by using a passive re-
ciprocal device to provide the necessary Tx/Rx isolation.

A. Active Three-Way Circulators

The power-handling capability can be increased by choosing a tran-
sistor with a largergm or, equivalently, a larger gatewidth. This can
be done as long as the output power is not limited byV max

ds . The NF
is each time determined byjidj2. The power-handling capability and
noise performance cannot be optimized separately, as both parameters
are related by

i2d = 4kTgmP (17)

whereP is a dimensionless parameter within the range of 1–3, de-
pending upon the technological parameters and biasing conditions [10].

Both gm and jidj2 linearly scale as a function of gatewidth. The
power-to-noise ratio, therefore, improves by choosing a larger tran-
sistor up to a point where the power is limited byV max

ds .
As a practical example, we take the following parameters:V max

gs =
0:3 V, V max

ds = 3 V, gTORm = 50 mS, andid = 34 pA (typical values
for a 2� 60µm transistor, biased at 50%Idss andVds = 3 V from the
H40 process of GEC-Marconi, Caswell, U.K.) [12].

The maximum power handling capability is then 23 dBm for the
concept of Tanaka, 19.5 dBm for the THRU-element circulator and
19.5 dBm for the concept of Katzin. IfFLNA = 3 dB, the corre-
sponding overall NF becomes, respectively, 13, 12.9, and 11.8 dB. This
givesPmax=NF = 10,6:5, and7:7 dBm. If the same output power was
delivered by the (medium power amplifier (MPA) in the Wilkinson-
based quasi-circulator, we would get 14, 10.5, and 10.5 dBm, respec-
tively.

Thus, we conclude that the lossless realization of the active
three-way circulators does not compensate for the larger NF and that
the overall performance is inferior to a Wilkinson-based quasi-circu-
lator. In practice, the lossless realization will not be possible due to
the finiterds, such that the overall performance will be even worse.

B. Phase-Cancellation Concept of Cryan

The output power is very limited asV max
gs � V max

ds . The NF is large
as it is determined byiT1d . It is, therefore, not very well suited for Tx/Rx
applications.

C. Divider/Combiner Concept of Gasmi

The Wilkinson-based quasi-circulator and the divider/combiner
concept dissipate half of the output power. The output power of
the Wilkinson-based quasi-circulator can be increased by using
power-combining networks at the transmitter side. This cannot
be done for the divider/combiner concept, as the power is limited
by the maximum drain–source voltage swing of the combiner.
Additionally, to improve the NF, transistorT2 is usually biased at
Vds < V breakdown

ds =2, hereby further limiting the maximum output
power (this is, e.g., the case for InP technologies, whereVds = 1 V is
typical for low-noise biasing). The Wilkinson-based quasi-circulator,
therefore, has a higher maximum output power.

For equal output powers, the possible gain of the divider/combiner
concept has to come from an improved NF. This is, however, not ob-
vious as it is not possible to bias transistorT2 at low drain–source volt-
ages if a large output power is required. In practice, part of the input
power will leak to the HPA, which further lowers the gain on receive
and increases the NF. Additionally, transistors with only one source
connection are to be used for layout purposes. This increasesNFmin
and decreases the associated gain of the transistors. Finally, an optimal
noise match cannot be guaranteed with the architecture in Fig. 2(c).
The latter can be seen in [7], where aNF = 5:3 dB with 4 dB gain was
simulated at 4 GHz (for this transistor,(16) predictsNF = 5 dB). If
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this transistor (NFmin = 1 dB with 11.6 dB associated gain) was used
in a Wilkinson-based quasi-circulator, an overallNF = 4 dB seems
possible.

From the previous considerations, we conclude that the overall
power-to-noise performance of the Wilkinson-based quasi-circulator
is superior to the divider/combiner concept.

IV. CONCLUSION

Simple formulas expressing the power and noise limitations for
three three-way and three quasi-circulator architectures are derived. It
is shown that the power-handling capability of the active three-way
circulators is determined by the requiredgm of the transistors in
the circuit while the noise is determined by the drain noise current
source. We conclude that active three-way circulators are not the
optimal choice for Tx/Rx applications because the theoretical lossless
realization does not compensate for the rather large NF. The best
architectures are the divider/combiner concept of Gasmi and the
Wilkinson-based quasi-circulator, with preference for the latter.
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Analysis of Elliptical Waveguides by
Differential Quadrature Method

C. Shu

Abstract—A new approach for elliptical waveguide analysis is presented
in this paper. This approach applies the global method of a differential
quadrature (DQ) to discretize the Helmholtz equation and then reduces it
into an eigenvalue equation system. All the cutoff wavelengths from low-
to high-order modes can be simultaneously obtained from the eigenvalues
of the equation system. The present solver is general, which can be applied
to elliptical waveguides with arbitrary ellipticity. It is demonstrated in this
paper that the DQ results are in excellent agreement with theoretical values
using just a few grid points and, thus, requiring very small computational
effort.

Index Terms—Eigenvalues, elliptical waveguides, generalized differential
quadrature, global method, waveguide analysis, wavelength.

I. INTRODUCTION

Elliptical waveguides have been extensively used in many engineering
problems such as radar feed lines, multichannel communication, and
accelerator beam tubes. The determination of the cutoff wavelength
of elliptical waveguides is one of the important issues for designing
the waveguide or analyzing the wave propagation in the waveguide.
The analysis of elliptical waveguides has been studied by several re-
searchers. In 1938, Chu [1] first presented the theory of the transmis-
sion of the electromagnetic waves in an elliptical waveguide. Since
then, subsequent results about the cutoff wavelengths have been re-
ported in [2]–[5]. Most of these results are from computing the zeros
of the modified Mathieu functions of the first kind. However, it is not
convenient to determine the eigenmode sequence of an elliptical wave-
guide with given ellipticity for such computations since a large number
of calculations are required. In addition, the high-order modes in eigen-
mode sequence may be missed during the computation. Thus, we need
a more direct and convenient way to compute the cutoff wavelengths
for a given elliptical waveguide.

As will be shown in this paper, the global method of differential
quadrature (DQ) offers a promising way to determine the cutoff wave-
lengths of elliptical waveguides. The accurate numerical results can be
obtained by using a considerably small number of grid points. The DQ
method was first proposed by Bellmanet al. [6] and then improved by
Shu [7] and Shu and Chew [8] in computing the weighting coefficients.
Thus far, the DQ-type methods have been successfully applied to solve
flow problems [7]–[9] and structural and vibration problems [10]–[11]
with high efficiency. This paper will show the detailed implementation
and application of the DQ method in the elliptical waveguide analysis.

II. DQ METHOD

For simplicity, the one-dimensional problem is chosen to demonstrate
the DQ method. Following the idea of an integral quadrature, it is as-
sumed that any derivative at a grid point is approximated by a linear
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summation of all the functional values in the whole computational do-
main. For example, the first- and second-order derivatives off(x) at a
pointxi are approximated by

fx(xi) =

N

j=1

aij � f(xj); for i = 1; 2; � � � ; N; (1)

fxx(xi) =

N

j=1

bij � f(xj); for i = 1; 2; � � � ; N; (2)

whereN is the number of grid points, andaij ,bij are the weighting
coefficients,fx,fxx represent the first- and second-order derivatives
of the functionf(x). The determination of weighting coefficientsaij
andbij depends on how to approximate the functionf(x). It has been
shown by Shu [7] that whenf(x) is approximated by a high-order
polynomial with the form

f(x) =

N

k=1

ck � x
k�1 (3)

whereck are constants, the weighting coefficientsaij andbij can be
computed by the following explicit formulations:

aij =
P (xi)

(xi � xj) � P (xj)
; for j 6= i (4a)

aii = �

N

j=1;j 6=i

aij (4b)

bij =2aij �aii �
1

xi � xj
; for j 6= i (5a)

bii = �

N

j=1;j 6=i

bij (5b)

where

P (xk) =

N

j=1;j 6=k

(xk � xj):

Since (4) and (5) are based on the polynomial approximation, for sim-
plicity, they are noted as the polynomial differential quadrature (PDQ).

For some problems, especially those with periodic behaviors, the
polynomial approximation may not be the best fitting. In contrast, the
Fourier series expansion can provide more accurate results. It has been
shown by Shu and Chew [8] that whenf(x) is approximated by a trun-
cated Fourier series expansion with the form

f(x) = c0 +

N=2

k=1

(ck cos kx+ dk sin kx) (6)

whereck; dk are constants, the weighting coefficientsaij ; bij can be
computed by

aij =
1

2
�

F (xi)

F (xj) � sin
xi � xj

2

; whenj 6= i (7a)

aii = �

N

j=1;j 6=i

aij (7b)

bij = aij 2aii � ctg
xi � xj

2
; whenj 6= i (8a)

bii = �

N

j=1;j 6=i

bij (8b)

where

F (xi) =

N

k=1;k 6=i

sin(xi � xk=2):

Equations (7) and (8) are based on the Fourier series expansion, which
can be noticed as the Fourier differential quadrature (FDQ) approach.
It is indicated that (4) and (5) and (7) and (8) are derived from the anal-
ysis of a linear vector space. For details, see [7] and [8]. It is also noted
that PDQ and FDQ use the same formulations to discretize the deriva-
tives. The difference of these two approaches is on the computation
of weighting coefficients. When (7) and (8) are applied to a periodic
problem, the periodic condition is automatically satisfied in the FDQ
discretization. Thus, the implementation of periodic condition is not
needed in the FDQ approach.

III. GOVERNING EQUATIONS AND NUMERICAL ALGORITHMS

Electromagnetic waves propagating in the elliptical waveguide are
the combination of the TM and TE waves. For the TM waves, the lon-
gitudinal components of the waves areHz = 0, Ez = �, while for
the TE waves,Hz = � andEz = 0. Here,� is the general solution of
following Helmholtz equation:

r2�+ k2c� = 0 (9)

wherer2 is the Laplacian operator given by

r2 =
@2

@x2
+

@2

@y2
(10)

andkc is the cutoff wavenumber. The TE waves satisfy the Neumann
boundary condition as follows:

@�

@n @D

=
@Hz

@n @D

= 0 (11)

while the TM waves meet the Dirichlet boundary condition

�j@D = Ez j@D = 0 (12)

where@D is the boundary of elliptical waveguide cross section, which
can be given by the following equation:

(x=a)2 + (y=b)2 = 1: (13)

Here,a andb are semimajor and semiminor axes, respectively.
Like the classical finite-difference methods, the DQ approach re-

quires the computational domain to be rectangular. To meet this, we
can use the following transformation:

x = ar � cos �

y = br � sin �:
(14)

With (14), the computational domain becomes a rectangle with0 �
r � 1, 0 � � � 2�. It is noted that the boundary of the elliptical cross
section is now represented byr = 1. r = 0 represents the center of the
cross section.

With (14), (9) can be transformed accordingly into

A
@2�

@r2
+
B

r
�
@2�

@r@�
+
C

r2
�
@2�

@�2
+
C

r
�
@�

@r
�
B

r2
�
@�

@�
+a2k2c� = 0

(15)

whereA = �2 � sin2 � + cos2 �, B = (�2 � 1) sin 2�, C = �2 �
cos2 � + sin2 �, � = a=b. Equation (15) will be used to determine the
wavenumberkc. For the TM waves, the boundary condition atr = 1 is
the same as given by (12), i.e.,� = 0 at r = 1. For the TE waves, the
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Neumann condition given by (11) can be written in the(r; �) coordinate
system as

A
@�

@r
+

B

2

@�

@�
= 0; at r = 1: (16)

In addition, (15) needs a boundary condition atr = 0. This can be
given from the consistent condition of (15) atr = 0, which can be
written as

@�

@r
= 0; at r = 0: (17)

Equation (17) will be applied to both the TM and TE waves. In the�
direction, the periodic condition is applied.

In this study, the derivatives in ther-direction are discretized by
the PDQ approach while the derivatives in the�-direction are approxi-
mated by the FDQ approach. It is supposed that there areN grid points
in ther-direction andM grid points in the�-direction. Using the DQ
method, (15) can be discretized at a mesh point(ri; �j) as

N

k=1

Ajbi;k +
Cj

ri
ai;k � �k;j

+
Bj

ri
�

N

k1=1

M

k2=1

ai;k1 � aj;k2 � �k1;k2

+

M

k=1

Cj

r2i
bj;k �

Bj

r2i
aj;k � �i;k + a2k2c�i;j = 0 (18)

where ai;k; bi;k are the weighting coefficients of the derivatives
@�=@r,@2�=@r2 computed by (4) and (5) whileaj;k; bj;k are the
weighting coefficients of the derivatives@�=@�; @2�=@�2, computed
by (7) and (8). It is indicated that (18) has to be applied at the interior
points2 � i � N � 1; 1 � j � M . Similarly, the derivatives in
the boundary conditions can be discretized by the DQ method. In the
�-direction, no numerical condition is implemented since the periodic
condition is automatically satisfied in the FDQ discretization. It is
supposed that the function values at interior points are represented
by a vectorf�Ig, and the remaining function values at the boundary
points are denoted by a vectorf�Bg. With these definitions, equation
system (18) can be written as the following matrix form:

[AIB ] � f�Bg+ [AII ] � f�Ig = 
2 � f�Ig (19)

where
2 = a2k2c . Similarly, the discretized boundary conditions can
be put in the following matrix form:

[ABB ] � f�Bg+ [ABI ] � f�Ig = 0: (20)

Substituting (20) into (19) gives the eigenvalue equation system as

[AII ]� [AIB ] � [ABB ]
�1 � [ABI ] � f�Ig = 
2 � f�Ig: (21)

Once the eigenvalue of above system
 is computed, the cutoff
wavenumberkc can easily be obtained.

IV. RESULTS AND DISCUSSION

As shown in [7], the use of nonuniform mesh in the PDQ discretiza-
tion would give a more stable numerical solution. Thus, the following
nonuniform mesh is used in ther-direction [7]:

ri =
1

2
1� cos

i� 1

N � 1
� � ; i = 1; 2; � � � ; N: (22)

The use of FDQ approach in the�-direction requires the following uni-
form mesh:

�j =
j � 1

M
2�; j = 1; 2; � � � ;M: (23)

To validate the efficiency of the DQ method, the normalized cutoff
wavelength defined by�c = 2�=kc is computed and compared with

TABLE I
NORMALIZED CUTOFF WAVELENGTHS OF

FIRST NINE TM MODES(e = 0:1)

TABLE II
NORMALIZED CUTOFFWAVELENGTHS OFFIRST NINE TM MODES(e = 0:9)

TABLE III
NORMALIZED CUTOFFWAVELENGTHS OFFIRST NINE TE MODES(e = 0:1)

analytical solution for two eccentricities. Tables I–II show the normal-
ized wavelengths of the first nine TM modes for eccentricity of 0.1, 0.9
while Tables III–IV list the normalized wavelengths of the first nine TE
modes for eccentricity of 0.1, 0.9. Also included in these tables are the
analytical solutions given by Zhang and Shen [5]. It is noted that for
each table, five mesh sizes are used to obtain the DQ results. It can
be observed from the tables that for both the TM and TE modes, the
convergence of the DQ results is very obvious. When the mesh size is
slightly increased, the accuracy of the DQ results is greatly improved.
It can also be seen from the tables that the convergence of the DQ re-
sults for the TM modes is faster than that for the TE modes. In other
words, to obtain a grid-independent DQ result, the TM modes require
less mesh points than the TE modes.

Table I shows that whene (eccentricity)= 0:1, the normalized cutoff
wavelengths of the first nine TM modes computed by the DQ method
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TABLE IV
NORMALIZED CUTOFFWAVELENGTHS OFFIRST NINE TE MODES(e = 0:9)

need seven grid points in the�-direction and 18 grid points in ther-di-
rection to match the analytical solution up to four decimal digits. When
the number of grid points is above seven in the�-direction and 18 in the
r-direction, the DQ results are independent of mesh size. Thus, 18�

7 is a minimum mesh size for a grid-independent solution of this case,
although reasonable numerical solution can be provided by a smaller
mesh size of 11� 7. It is very interesting to see from Table I that when
the number of grid points in ther-direction is less than 18, the accuracy
of most cutoff wavelengths is reduced. However, when the number of
grid points in the�-direction is less than seven, the accuracy of com-
puted cutoff wavelengths does not change, but some modes are lost
during the computation. Another interesting phenomenon is that, as the
eccentricity increases, the number of grid points required for a grid-in-
dependent solution in the�-direction also increases. However, the min-
imum number of grid points in ther-direction for a grid-independent
solution is slightly reduced. This can be seen from Table II. It shows
that whene = 0:9, the grid-independent solution needs 14 grid points
in ther-direction and 19 grid points in the�-direction.

It was found that the accuracy of computed cutoff wavelengths for
the TE waves is less than that for the TM waves when the same mesh
size is used. This can be seen from Tables III–IV. Table III shows that
whene = 0:1, the computed cutoff wavelengths ofTE3, TE4, TE5,
TE6, TE7, TE8, TE9 modes can match the analytical solution up
to four decimal digits by using 12 grid points in ther-direction and
nine grid points in the�-direction. However, the computed cutoff wave-
lengths ofTE1, TE2 modes can only match the analytical solution up
to one decimal digit. Even when the number of grid points in ther-di-
rection is increased to 31, the computed cutoff wavelengths ofTE1,
TE2 modes just match the analytical solution up to two decimal digits.
When the number of grid points in ther-direction is fixed at 12, the in-
crease of grid points in the�-direction above nine will not improve the
accuracy of numerical solution. The above phenomenon also appears
in Table IV. The convergence of computed cutoff wavelengths for the
TE3, TE4, TE5, TE6, TE7, TE8, TE9 modes is much faster than
that for theTE1, TE2 modes. It was found that the slow convergence
of TE1,TE2 modes is attributed to the numerical boundary condition
imposed at the center of cross sectionr = 0. In this study, the Neu-
mann condition is imposed atr = 0. With this condition, all the cutoff
wavelengths can be computed in a regular sequence although the ac-
curacy ofTE1, TE2 modes is not so good. It was found that when a
Dirichlet condition(� = 0) is imposed atr = 0, the accuracy ofTE1,
TE2 modes can be greatly improved. For example, whene = 0:1, the
use of only seven grid points in ther-direction can match the computed
cutoff wavelengths ofTE1 andTE2 modes to the analytical solution
up to four decimal digits. The drawback is that the cutoff wavelengths

of some modes are lost in the computation. Thus, it is believed that the
use of Neumann condition atr = 0 is more reasonable.

Since an accurate DQ solution can be obtained by using very coarse
mesh, the required computational effort is extremely small. All the re-
sults shown in Tables I–IV are obtained by running the program on
an IBM compatible PC Pentium 75. For all the results shown in Ta-
bles I–IV, the run time for each case is less than 2 min.

V. CONCLUSIONS

In this paper, a new approach is proposed for elliptical waveguide
analysis. The present approach discretizes the Helmholtz equation by
the global method of the DQ and then reduces it to a standard eigen-
value equation system. All the cutoff wavelengths can be computed
simultaneously by a standard eigenvalue solver. The present solver is
general, which can be applied to elliptical waveguides with arbitrary
eccentricity. It was found that accurate numerical results can be ob-
tained by the DQ method using a considerably small number of grid
points. As a consequence, very small computational effort and virtual
storage are needed. For all the results shown in Tables I–IV, the run
time of the DQ results for a given eccentricity is less than 2 min on an
IBM compatible PC Pentium 75. It was also found that the Neumann
condition imposed at the center of the cross section is more reasonable
than the Dirichlet condition. In summation, it can be concluded that the
DQ is a very efficient method for elliptical waveguide analysis.
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Time-Domain Modeling of High-Speed Interconnects by
Modified Method of Characteristics

Qinwei Xu, Zheng-Fan Li, Pinaki Mazumder, and Jun-Fa Mao

Abstract—In this paper, a new model of lossy transmission lines is pre-
sented for the time-domain simulation of high-speed interconnects. This
model is based on the modified method of characteristics (MMC). The char-
acteristic functions are first approximated by applying lower order Taylor
series in the frequency domain, and then a set of simple recursive formulas
are obtained in the time domain. The formulas, which involve tracking per-
formance between two ends of a transmission line, are similar to those de-
rived by the method of characteristics for lossless and undistorted lossy
transmission lines. The algorithm, based on the proposed MMC model, can
efficiently evaluate transient responses of high-speed interconnects. It only
uses the quantities at two ends of the lines, requiring less computation time
and less memory space than required by other methods. Examples indicate
that the new method is having high accuracy and is very efficient for the
time-domain simulation of interconnects in high-speed integrated circuits.

Index Terms—Interconnects, modeling, modified method of characteris-
tics, recursive calculation, transient simulation, transmission line.

I. INTRODUCTION

In modern high-speed VLSI chips and multichip modules (MCM’s),
interconnects play an increasingly important role. Due to the rapid in-
crease in operating speed and decrease in feature sizes, the electrical
length of interconnects is now a significant fraction of the wavelength
of signals. At high signal speeds, interconnect effects such as signal
delay, reflection, dispersion, and crosstalk may deteriorate the system
performance and even cause malfunction of the circuits if improperly
designed [1]. Consequently, modeling of a distributed transmission line
is very important for the design of a reliable high-speed integrated cir-
cuit (IC) system and accurate estimation of the system performance.

As the lossy transmission lines are traditionally modeled and ana-
lyzed in the frequency domain, well-known methods, such as the con-
volution technique and the fast Fourier transform (FFT), have been
widely used [2], [3]. These approaches have a major difficulty when the
analysis has to span a large time interval. Asymptotic waveform evalu-
ation (AWE) [4]–[6], a moment-matching process using Padé approx-
imation, has been shown to be an efficient technique for obtaining the
approximate transient response of linear networks. However, the mo-
ment-matching process can lead to instability due to critical properties
of Padé approximations, which means that it may generate right half-
plane poles, albeit the systems handled are stable. Recently, the Padé
moment-matching methods have been further augmented to avoid the
instability [7], [8]. In the literature [7], a multipoint moment-matching
technique, called complex frequency hopping (CFH), provides a new
method of generating the exact poles of a linear network containing
distributed and lumped elements. As a result, the instability properties
of Padé approximations are bypassed and no unstable right half-plane
poles are generated.

The method of characteristics (MC) is very efficient for the solution
of hyperbolic partial differential equations such as the Telegrapher’s
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equations describing transmission lines [9], [10]. The main idea of the
MC is to transform the original partial differential equations into or-
dinary differential equations along the characteristic lines. It is well
established that the MC can deal with a lossless transmission line very
accurately. Also, if the transmission lines have the propertyLG = RC,
which are called undistorted lines, the solutions of the Telegrapher’s
equations can be obtained analytically. In both cases, the MC enables
circuit simulation to be very efficient, with the quantities at transmis-
sion-line ends related by closed-form formulas. In such cases, the ter-
minal voltages and currents of the transmission line can be determined
recursively in the time domain. However, if transmission lines are lossy
andLG 6= RC, the results cannot be derived analytically. In that event,
the equations should be solved numerically; the voltage and current to
be computed are not limited to the two ends of the line, but various
points along the line must be sampled for numerical computation [11].

However, if the transmission lines are undistorted, i.e.,LG = RC,
the solutions of the Telegrapher’s equations can be obtained analyti-
cally in the time domain by the MC. Based on the analytical solution, a
new algorithm named the modified method of characteristics (MMC)
is presented in this paper. This method deals with lossy transmission
lines withLG 6= RC. Lower order Taylor series is at first employed
to approximate the characteristics function in the frequency domain,
and then the inverse Laplace transform results in a set of recursive for-
mulas, which describe the time-domain model of the transmission line.
The recursive formulas have the form similar to those derived by MC
for lossless or undistorted lossy transmission lines. As only the quanti-
ties at the ends of the lines are needed for the computation, and neither
FFT nor convolution is employed, this method is expected to reduce
the computation time as well as save the memory storage space.

II. MC FOR TRANSMISSIONLINE WITH LG = RC

At first, we deal with single transmission line for simplicity. LetR,
L, C, andG be the resistance, inductance, capacitance, and conduc-
tance per unit length (PUL). The Telegrapher’s equations in the time
domain are

@

@x
v(x; t) = �L @

@t
i(x; t)�Ri(x; t) (1a)

@

@x
i(x; t) = �C @

@t
v(x; t)�Gv(x; t): (1b)

The transmission line stretches from 0 tod in thex-direction, where
d is the length of the line.v(x; t) is the voltage at pointx at timet;
i(x; t) is the current at pointx at timet.

Let

� = x + t=
p
LC and � = x� t=

p
LC:

The Telegrapher’s equations in (1a) and (1b) can be transformed into
the following form:

d

d�
v(x; t)� Z0

d

d�
i(x; t) = � 1

2
GZ0v(x; t)�Ri(x; t)

d

d�
v(x; t) + Z0

d

d�
i(x; t) = � 1

2
GZ0v(x; t) +Ri(x; t)

whereZ0 = L=C is thecharacteristic impedanceof the transmis-
sion line. If the transmission line islossless(R = 0 andG = 0) or

0018-9480/00$10.00 © 2000 IEEE
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if it is undistorted line(LG = RC), there exist the following simple
recursive solutions:

v(0; t)�Z0i(0; t) = e�GZ d v(d; t��)�Z0i(d; t��) (2a)

v(d; t)+Z0i(d; t) = e�GZ d v(0; t��)+Z0i(0; t��) (2b)

where� = d
p
LC is the delay time. In (2), by adding the boundary

conditions and selecting a proper time step, the responses in the time
domain can be obtained through recursive computation.

In such cases, the voltages and currents at two ends of the line are
given by simple closed-form equations. However, for general lossy
transmission lines withLG 6= RC, the simple relations no longer exist,
but, a set of closed relations between the terminal responses can still be
obtained by means of appropriate approximation.

III. N EW MODEL USING MMC

Assuming that the initial conditions are all zeros, there exist the fol-
lowing well-known relations for the general lossy transmission line in
the frequency domain:

Y0V (0; s)� I(0; s) = Y0V (d; s)� I(d; s) e�
d (3a)

Y0V (d; s) + I(d; s) = Y0V (0; s) + I(0; s) e�
d (3b)

whereV (0; s)andI(0; s)denote the Laplace-domain voltage and cur-
rent at the near end of transmission line, respectively, andV (d; s) and
I(d; s) are the counterparts at the far end. The term


 = 
(s) = (sL+R)(sC +G) (4)

is thepropagation constant, and

Y0 = Y0(s) = (sC +G)=(sL+R) (5)

is thecharacteristic admittanceof the line.
For lossless lines withR = G = 0, it may be observed thatY0 =
C=L and
 = s

p
LC, and for undistorted lines withLG = RC, the

propagation constant is given by
 = s
p
LC+GZ0, while the charac-

teristics admittance value remains the same as in the case of the lossless
lines. In either case, (3) can be directly transformed into (2) through the
inverse Laplace transformation. In the general case ofLG 6= RC, if
we define the following terms:

� =G=C �R=L

� =R=L

and

u =
�

s+ �

then it follows:

Y0 = Y00(1 + u)1=2 (6)

whereY00 = C=L. Obviously,� is a measurement of the departure
from undistorted condition, and for an undistorted line,� = 0. Under
the definitions, (6) can be expanded into Maclaurin series in the fol-
lowing form:

Y0 =Y00

1

n=0

cnu
n

=Y00 1 +
1

2
u� 1

8
u2 +

1

16
u3 � � �+ cnu

n + � � � (7)

where

cn =
1

n!

dn

dun
p
1 + u

u=0

: (8)

As (4) can also be represented by the form
 = L(s + �)Y0, by
substituting (7) in to it, we obtain


 =Y00L(s+ �)

1

n=0

cnu
n

= s
p
LC + Y00L� + Y00L(s+ �)

1

n=1

cnu
n: (9)

According to (7) and (9), (3) becomes

V (0; s)Y00

1

n=0

cnu
n � I(0; s)

= V (d; s)Y00

1

n=0

cnu
n � I(d; s) e�s�Q(s) (10a)

V (d; s)Y00

1

n=0

cnu
n + I(d; s)

= V (0; s)Y00

1

n=0

cnu
n + I(0; s) e�s�Q(s) (10b)

where

Q(s) = exp �d Y00L� + Y00L(s+ �)

1

n=1

cnu
n : (11)

Let

I1(0; s) = V (0; s)Y00u (12a)

I1(d; s) = V (d; s)Y00u (12b)

Ij+1(0; s) = V (0; s)Y00u
j+1 = Ij(0; s)u (13a)

Ij+1(d; s) = V (d; s)Y00u
j+1 = Ij(d; s)u; j = 1; 2; � � � :

(13b)

If we take the firstN +1 items in (7) and then take the inverse Laplace
transform of (10)–(13), the following equations in the time domain can
be obtained:

Y00v(0; t)� i(0; t) +

N

n=1

cnin(0; t)

= Y00v(d; t� �)� i(d; t� �) +

N

n=1

cnin(d; t� �)

� L�1(Q(s)) (14a)

Y00v(d; t) + i(d; t) +

N

n=1

cnin(0; t)

= Y00v(0; t� �) + i(0; t� �) +

N

n=1

cnin(0; t� �)

� L�1(Q(s)) (14b)

�Y00v(0; t)

= �i1(0; t) +
d

dt
i1(0; t) (15a)
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�Y00v(d; t)

= �i1(d; t) +
d

dt
i1(d; t) (15b)

�ij(0; t)

= �ij+1(0; t) +
d

dt
ij+1(0; t) (16a)

�ij(d; t) = �ij+1(d; t) +
d

dt
ij+1(d; t); j = 1; 2; � � � ; N � 1

(16b)

whereL�1(Q(s)) is the inverse Laplace transform ofQ(s) and * is
the operator of convolution integration.

The above equations represent the solution of the MMC. In compar-
ison with the normal characteristic method for lossless and undistorted
conditions, the so-called additional current termsI1; I2; � � � ; IN and
i1; i2; � � � ; iN are added in the formulas. However, the recursive rela-
tion of voltages and currents between two ends of the line still holds.

Let us focus on how to get the itemL�1(Q(s)).Q(s) is matched to
a Padé approximation with both the numerator polynomial and denom-
inator polynomial of the same degreen; i.e.,

Q(s) =
ans

n + an�1s
n�1 + � � �+ a1s+ 1

bnsn + bn�1sn�1 + � � �+ b1s+ 1

=
an
bn

1 +

n

i=1

qi
s� pi

(17)

soQ(s) can be transformed into the time domain [5].
The complexity for direct computation of (14) is considerable be-

cause of the convolution integration. It is also found that the single-
point Padé approximation in (17) cannot guarantee the stability. How-
ever, if we further simplify the approximation of (7), the instability will
be avoided, and the computation will be very efficient.

IV. THE FIRST-ORDERAPPROXIMATION OF THEMMC MODEL

If only the first two items are taken in (7), i.e.,N = 1, the simplified
macromodel can be obtained, which is called thefirst-order model. In
such a case, the only fixed pole iss = �� and no right half-plane poles
occur, while the process of (17) is bypassed. Accordingly, the following
equations in the time domain are obtained:

Y00v(0; t)� i(0; t) + c1i1(0; t)

= Y00v(d; t� �)� i(d; t� �) + c1i1(d; t� �) Q0 (18a)

Y00v(d; t) + i(d; t) + c1i1(0; t)

= Y00v(0; t� �) + i(0; t� �) + c1i1(0; t� �) Q0 (18b)

and

�Y00v(0; t) = �i1(0; t) +
d

dt
i1(0; t) (19a)

�Y00v(d; t) = �i1(d; t) +
d

dt
i1(d; t) (19b)

where

Q0 = exp � Y00Ld(� + �=2) :

Fig. 1. Transmission line characteristics model.

Equations (18) and (19) represent the first-order approximation of
the MMC model. There is only one additional current termi1 in the
formulas. The simplified model is illustrated in Fig. 1, where

ie1 = Y00v(d; t� �)� i(d; t� �) + c1i1(d; t� �) Q0

ie2 = Y00v(0; t� �) + i(0; t� �) + c1i1(0; t� �) Q0:

In the process of recursive operations, a queue of memory is needed
to store the previous voltage and current values, and the data preceding
t � � can be deleted from the queue. In fact, high accuracy can be
obtained when the simplified macromodel is employed, thus the algo-
rithm remains efficient for general uniform lossy transmission lines.

Next, we show that the first-order model can satisfy the required
accuracy. The errors of (18) and (19) occur due to the truncation error
of the Maclaurin series in (7). In the extreme case, whenG = 0, the
error ofY0, Err(Y0), is given by

Err(Y0) =Y00

1

n=2

cnu
n

=
C

L
�

1

8

R=L

s+R=L

2

�

1

16

R=L

s+R=L

3

� � � :

The PUL parametersL andC usually vary within a small range,
and are determined by the material and geometry of transmission lines,
while R is generally determined by the size of the cross section of an
interconnection conductor. For any parameters, Err(Y0) is related to
the parameterR and

lim
R!0

Err(Y0) = 0:

For lossless lines withR = 0, we find thatErr(Y0) = 0. This case is
shown by (2).

As the errors in (18) and (19) are owing to onlyErr(Y0), it is shown
that the smaller the value ofR is, the less the value of the error will
occur, i.e.,Err(Y0) will be smaller. For interconnects on MCM’s, the
typical value of characteristic impedanceZ0 = 1=Y0 varies from
50–100
. Take Fig. 1 as an example. Let us assume that the left-
hand-side end of the transmission line is connected to a voltage source
having a source resistance of 50
, and that a load resistance of 50

terminates the right end of the line. If the cross section of conductor is
25 µm × 8 µm, and the resistivity of material is about� = 2 � 10�8


�m, then the PUL parameterR is about 100
�m. Let us assume
that the parameters of transmission line areL = 360 nH/m, C =
100 pF/m,d = 0:08 m, G = 0, and the value ofR varies as 100,
200, 300, and 500
/m, respectively. Let the applied voltage be a pulse
having 0.5-ns rise and fall times and 3-ns width.

Fig. 2 shows the results of this method and those of the FFT method.
Fig. 2 shows that the results from this approach are in accordance with
those from the FFT method whenR is not too large. The parameterR
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Fig. 2. Results for various resistances.

Fig. 3. Example circuit.

can vary to a large extent. For example,R can be as high as 300
/m,
and the results of this method are still in accordance with those of the
FFT method.

For multiconductor coupled lines, the PUL parametersL,C,R, and
G become matrix parameters andv(x; t) andi(x; t) are represented
by vectors accordingly. As long as such Telegrapher’s equation can be
decoupled intoM modes, each of them is similar to a single transmis-
sion line; therefore, they can be handled in similar manners.

If LLL, CCC, RRR, andGGG are Toeplitz matrices, the method can directly
apply to this case. There is another case to which the method can be
applied easily. In this case, the dielectric media is homogeneous, and
RRR is a diagonal matrix, while all the elements of matrixGGG are zero
[9]. In reality, this situation represents that of the MCM. The method
has its own advantages, but it also has its limitations. The method is
highly efficient only if the coupled lines can be decoupled. Otherwise,
the numerical method of characteristic should be used [11].

V. NUMERICAL RESULTS

Let us assume that a circuit is composed of lossy-coupled transmis-
sion line, as shown in Fig. 3. The length of the line is 0.1 m. Other
parameters are

LLL =

494:6 63:3 0

63:3 494:6 63:3

0 63:3 494:6

nH/m

CCC =

62:8 �4:9 0

�4:9 62:8 4:9

0 �4:9 62:8

pF/m

RRR =

50 10 0

10 50 10

0 10 50


=m

(a)

(b)

Fig. 4. Results for example circuit. (a) Waveform ofA. (b) Waveform ofB.

GGG =

0 0 0

0 0 0

0 0 0

:

The applied voltage is a pulse of width 2 ns and amplitude 1 V having
a 0.5 ns rise/fall time. The results are shown in Fig. 4(a) and (b), along
with the results of the FFT. In Fig. 4(b), it can be seen that the FFT is
not as accurate as the MMC in evaluating the delay time.

VI. CONCLUSIONS

In this paper, a new time-domain model of lossy transmission lines
has been proposed using the MMC, and its first-order approximation
has been applied to simulate high-speed single and multiple intercon-
nects in the time-domain. The proposed MMC model is based on the
classical MC, and it uses simple recursive algorithm. The algorithm of
the first-order approximation of the model reduces the computational
complexity of interconnect simulation. Taking the appropriate time
step, the transient responses in the time domain can be obtained simply
through recursive operations. In the MMC model, only the quantities
at two ends of the transmission lines are utilized in the calculation,
thereby requiring considerably less storage area for the computation.
Since the MMC does not employ any convolution, the algorithm of the
simplified model retains high efficiency as well as that it guarantees
absolute stability. Numerical experiments confirm that the model
of first-order approximation can, in general, yield results with high
accuracy.
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