2000 IEEE.
Personal use of this material is
permitted. However, permission to reprint/republish this
material for advertising or promotional purposes or for
creating new collective works for resale or redistribution
to servers or lists, or to reuse any copyrighted component
of this work in other works must be obtained from the
IEEE.
IEEE Transactions on Microwave Theory and Techniques
Volume 48 Number 3, March 2000
Table of Contents for this issue
Complete paper in PDF format
A Tunable Cavity-Locked Diode
Laser Source for Terahertz Photomixing
Shuji Matsuura,
Pin Chen,
Geoffrey A. Blake,
John C. Pearson and Herbert M. Pickett
Member, IEEE
Page 380.
Abstract:
An all solid-state approach to the precise frequency synthesis
and control of widely tunable terahertz radiation by differencing continuous-wave
diode lasers at 850 nm is reported in this paper. The difference frequency
is synthesized by three fiber-coupled external-cavity laser diodes. Two of
the lasers are Pound-Drever-Hall locked to different orders of
a Fabry-Perot (FP) cavity, and the third is offset-frequency locked
to the second of the cavity-locked lasers using a tunable microwave oscillator.
The first cavity-locked laser and the offset-locked laser produce the difference
frequency, whose value is accurately determined by the sum of an integer multiple
of the free spectral range of the FP cavity and the offset frequency. The
dual-frequency 850-nm output of the three laser system is amplified to 500
mW through two-frequency injection seeding of a single semiconductor tapered
optical amplifier. As proof of precision frequency synthesis and control of
tunability, the difference frequency is converted into a terahertz wave by
optical-heterodyne photomixing in low-temperature-grown GaAs and used for
the spectroscopy of simple molecules. The 3-dB spectral power bandwidth of
the terahertz radiation is routinely observed to be <
1 MHz. A simple, but highly accurate, method of obtaining
an absolute frequency calibration is proposed and an absolute calibration
of 10-7 demonstrated using the known frequencies
of carbon monoxide lines between 0.23-1.27 THz.
References
-
"Metrology issues in terahertz physics and technology
", NIST, vol. 5701, p. 103, 1995.
-
E. R.
Brown, F. W.
Smith and K. A.
McIntosh,"Coherent millimeter-wave generation by heterodyne
conversion in low-temperature-grown GaAs photoconductors",
J. Appl.
Phys., vol. 73, pp. 1480-1484, 1993.
-
E. R.
Brown, K. A.
McIntosh, K. B.
Nichols and C. L.
Dennis,"Photomixing up to 3.8 THz in low-temperature-grown
GaAs",
Appl. Phys. Lett., vol. 66, pp. 285-287, 1995.
-
K. A.
McIntosh, E. R.
Brown, K. B.
Nichols, O. B.
McMahon, W. F.
DiNatale and T. M.
Lyszczarz,"Terahertz photomixing with diode-lasers
in low-temperature-grown GaAs", Appl. Phys. Lett., vol. 67, pp. 3844-3846,
1995.
-
S.
Matsuura, M.
Tani and K.
Sakai,"Generation of coherent terahertz radiation
by photomixing in dipole photoconductive antennas", Appl. Phys. Lett.
, vol. 70, pp. 559-561, 1997.
-
A. S.
Pine, R. D.
Suenram, E. R.
Brown and K. A.
McIntosh,"A terahertz photomixing spectrometer-Application
to SO2 self-broadening",
J. Mol.
Spectrosc., vol. 175, pp. 37-47, 1996.
-
P.
Chen, G. A.
Blake, M. C.
Gaidis, E. R.
Brown, K. A.
McIntosh, S. Y.
Chou, M. I.
Nathan and F.
Williamson,"Spectroscopic applications and
frequency locking of THz photomixing with distributed-Bragg-reflector diode
lasers in low-temperature-grown GaAs", Appl. Phys. Lett., vol. 71, pp. 1601-1603,
1997.
-
S.
Matsuura, M.
Tani, H.
Abe, K.
Sakai, H.
Ozeki and S.
Saito,"High resolution THz spectroscopy by a compact
radiation source based on photomixing with diode lasers in a photoconductive
antenna",
J. Mol. Spectrosc., vol. 187, pp. 97-101, 1998.
-
K. G.
Libbrecht and J. L.
Hall,"A low-noise high-speed diode laser
current controller", Rev. Sci. Instrum., vol. 64, pp.
2133-2135, 1993.
-
R. W.
Tkach and A. R.
Chraplyvy,"Regimes of feedback effects in 1.5
µ m distributed feedback lasers",
J. Lightwave
Technol., vol. LT-4, pp. 1655-1661, Nov. 1986.
-
R. V.
Pound,"Electronic frequency stabilization of microwave
oscillators",
Rev. Sci. Instrum., vol. 17, pp. 490-505, 1946.
-
R. W. P.
Drever, J. L.
Hall, F. V.
Kowalski, J.
Hough, G. M.
Ford, A. J.
Munley and H.
Ward,"Laser phase and frequency stabilization
using an optical resonator", Appl. Phys. B, Photophys. Laser Chem., vol. 31, pp. 97-105, 1983.
-
L.
Hollberg, V. L.
Velichansky, C. S.
Weimer and R. W.
Fox,
"High-accuracy spectroscopy with semiconductor
lasers: Application to laser-frequency stabilization," in Frequency Control of Semiconductor
Lasers, M. Ohtsu, Ed. New York: Wiley, 1996, pp.
73-93.
-
S.
Matsuura, P.
Chen, G. A.
Blake, J. C.
Pearson and H. M.
Pickett,"Simultaneous amplification of terahertz
difference frequencies by an injection-seeded semiconductor laser amplifier
at 850 nm", Int. J. Infrared Millim. Waves, vol. 19, pp.
849-858, 1998.
-
D.
Wandt, M.
Laschek, F. v.
Alvensleben, A.
Tünnermann and
H. Welling,
"Continuously tunable 0.5 W single-frequency diode laser source
",
Opt. Commun., vol. 148, pp. 261-
264, 1998.
-
S.
Verghese, K. A.
McIntosh and E. R.
Brown,"Highly tunable fiber-coupled photomixers
with coherent terahertz output power",
IEEE Trans. Microwave Theory and Tech.
, vol. 45, pp. 1301-1309, Aug. 1997.
-
S.
Matsuura, G. A.
Blake, R. A.
Wyss, J. C.
Pearson, C.
Kadow, A. W.
Jackson and A. C.
Gossard,"A traveling-wave THz photomixer
based on angle-tuned phase matching", Appl. Phys. Lett., 1999.
-
H. M.
Pickett,"Determination of collisional linewidths and
shifts by a convolution method", Appl. Opt., vol. 19, pp. 2745-2749,
1980.
-
R. G.
De Voe, C.
Fabre, K.
Jungmann, J.
Hoffnagle and R. G.
Brewer,"Precision optical-frequency-difference
measurements", Phys. Rev. A, Gen. Phys., vol. 37, pp. 1802-1805,
1988.
-
I.
Nolt, J. V.
Radostitz, G.
Dilonardo, K. M.
Evenson, D. A.
Jennings, K. R.
Leopold, L. R.
Zink and A.
Hinz,"Accurate rotational constants of CO,
HCl and HF-Spectral standards for the 0.3 to 6 THz
(10 cm-1 to 200 cm-1 )
region",
J. Mol. Spectrosc., vol. 125, pp. 274-287, 1987.
-
L. Y.
Lin, M. C.
Wu, T.
Itoh, T. A.
Vang, R. E.
Muller, D. L.
Sivco and A. Y.
Cho,"Velocity-matched distributed photodetectors with
high saturation power and large bandwidth", IEEE Photon. Technol. Lett., vol. 8
, pp. 1376-1378, Oct. 1996.
-
Y. R. Shen,
Principles of Nonlinear Optics, New
York: Wiley, 1984.