2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Microwave Theory and Techniques
Volume 48 Number 3, March 2000

Table of Contents for this issue

Complete paper in PDF format

A Tunable Cavity-Locked Diode Laser Source for Terahertz Photomixing

Shuji Matsuura, Pin Chen, Geoffrey A. Blake, John C. Pearson and Herbert M. Pickett Member, IEEE

Page 380.

Abstract:

An all solid-state approach to the precise frequency synthesis and control of widely tunable terahertz radiation by differencing continuous-wave diode lasers at 850 nm is reported in this paper. The difference frequency is synthesized by three fiber-coupled external-cavity laser diodes. Two of the lasers are Pound-Drever-Hall locked to different orders of a Fabry-Perot (FP) cavity, and the third is offset-frequency locked to the second of the cavity-locked lasers using a tunable microwave oscillator. The first cavity-locked laser and the offset-locked laser produce the difference frequency, whose value is accurately determined by the sum of an integer multiple of the free spectral range of the FP cavity and the offset frequency. The dual-frequency 850-nm output of the three laser system is amplified to 500 mW through two-frequency injection seeding of a single semiconductor tapered optical amplifier. As proof of precision frequency synthesis and control of tunability, the difference frequency is converted into a terahertz wave by optical-heterodyne photomixing in low-temperature-grown GaAs and used for the spectroscopy of simple molecules. The 3-dB spectral power bandwidth of the terahertz radiation is routinely observed to be <1 MHz. A simple, but highly accurate, method of obtaining an absolute frequency calibration is proposed and an absolute calibration of 10-7 demonstrated using the known frequencies of carbon monoxide lines between 0.23-1.27 THz.

References

  1. "Metrology issues in terahertz physics and technology ", NIST, vol. 5701, p.  103, 1995.
  2. E. R. Brown, F. W. Smith and K. A. McIntosh,"Coherent millimeter-wave generation by heterodyne conversion in low-temperature-grown GaAs photoconductors", J. Appl. Phys., vol. 73, pp.  1480-1484, 1993.
  3. E. R. Brown, K. A. McIntosh, K. B. Nichols and C. L. Dennis,"Photomixing up to 3.8 THz in low-temperature-grown GaAs", Appl. Phys. Lett., vol. 66, pp.  285-287, 1995.
  4. K. A. McIntosh, E. R. Brown, K. B. Nichols, O. B. McMahon, W. F. DiNatale and T. M. Lyszczarz,"Terahertz photomixing with diode-lasers in low-temperature-grown GaAs", Appl. Phys. Lett., vol. 67, pp.  3844-3846,  1995.
  5. S. Matsuura, M. Tani and K. Sakai,"Generation of coherent terahertz radiation by photomixing in dipole photoconductive antennas", Appl. Phys. Lett. , vol. 70, pp.  559-561, 1997.
  6. A. S. Pine, R. D. Suenram, E. R. Brown and K. A. McIntosh,"A terahertz photomixing spectrometer-Application to SO2 self-broadening", J. Mol. Spectrosc., vol. 175, pp.  37-47, 1996.
  7. P. Chen, G. A. Blake, M. C. Gaidis, E. R. Brown, K. A. McIntosh, S. Y. Chou, M. I. Nathan and F. Williamson,"Spectroscopic applications and frequency locking of THz photomixing with distributed-Bragg-reflector diode lasers in low-temperature-grown GaAs", Appl. Phys. Lett., vol. 71, pp.  1601-1603,  1997.
  8. S. Matsuura, M. Tani, H. Abe, K. Sakai, H. Ozeki and S. Saito,"High resolution THz spectroscopy by a compact radiation source based on photomixing with diode lasers in a photoconductive antenna", J. Mol. Spectrosc., vol. 187, pp.  97-101, 1998.
  9. K. G. Libbrecht and J. L. Hall,"A low-noise high-speed diode laser current controller", Rev. Sci. Instrum., vol. 64, pp.  2133-2135, 1993.
  10. R. W. Tkach and A. R. Chraplyvy,"Regimes of feedback effects in 1.5 µ m distributed feedback lasers", J. Lightwave Technol., vol. LT-4, pp.  1655-1661, Nov.  1986.
  11. R. V. Pound,"Electronic frequency stabilization of microwave oscillators", Rev. Sci. Instrum., vol. 17, pp.  490-505, 1946.
  12. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley and H. Ward,"Laser phase and frequency stabilization using an optical resonator", Appl. Phys. B, Photophys. Laser Chem., vol. 31, pp.  97-105, 1983.
  13. L. Hollberg, V. L. Velichansky, C. S. Weimer and R. W. Fox, "High-accuracy spectroscopy with semiconductor lasers: Application to laser-frequency stabilization," in Frequency Control of Semiconductor Lasers, M. Ohtsu, Ed. New York: Wiley, 1996, pp.  73-93. 
  14. S. Matsuura, P. Chen, G. A. Blake, J. C. Pearson and H. M. Pickett,"Simultaneous amplification of terahertz difference frequencies by an injection-seeded semiconductor laser amplifier at 850 nm", Int. J. Infrared Millim. Waves, vol. 19, pp.  849-858, 1998.
  15. D. Wandt, M. Laschek, F. v. Alvensleben, A. Tünnermann and H. Welling, "Continuously tunable 0.5 W single-frequency diode laser source ", Opt. Commun., vol. 148, pp.  261- 264, 1998.
  16. S. Verghese, K. A. McIntosh and E. R. Brown,"Highly tunable fiber-coupled photomixers with coherent terahertz output power", IEEE Trans. Microwave Theory and Tech. , vol. 45, pp.  1301-1309, Aug.  1997.
  17. S. Matsuura, G. A. Blake, R. A. Wyss, J. C. Pearson, C. Kadow, A. W. Jackson and A. C. Gossard,"A traveling-wave THz photomixer based on angle-tuned phase matching", Appl. Phys. Lett., 1999.
  18. H. M. Pickett,"Determination of collisional linewidths and shifts by a convolution method", Appl. Opt., vol. 19, pp.  2745-2749,  1980.
  19. R. G. De Voe, C. Fabre, K. Jungmann, J. Hoffnagle and R. G. Brewer,"Precision optical-frequency-difference measurements", Phys. Rev. A, Gen. Phys., vol. 37, pp.  1802-1805,  1988.
  20. I. Nolt, J. V. Radostitz, G. Dilonardo, K. M. Evenson, D. A. Jennings, K. R. Leopold, L. R. Zink and A. Hinz,"Accurate rotational constants of CO, HCl and HF-Spectral standards for the 0.3 to 6 THz (10 cm-1 to 200 cm-1 ) region", J. Mol. Spectrosc., vol. 125, pp.  274-287, 1987.
  21. L. Y. Lin, M. C. Wu, T. Itoh, T. A. Vang, R. E. Muller, D. L. Sivco and A. Y. Cho,"Velocity-matched distributed photodetectors with high saturation power and large bandwidth", IEEE Photon. Technol. Lett., vol. 8 , pp.  1376-1378, Oct.  1996.
  22. Y. R. Shen, Principles of Nonlinear Optics, New York: Wiley, 1984.