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Fast Full-Wave Analysis of Multistrip Transmission
Lines Based on MPIE and Complex Image Theory

Joaquin Bernal, Francisco Medifdember, IEEERafael R. BoixMember, IEEEand Manuel HornoMember, IEEE

Abstract—The mixed-potential electric-field integral equation
is used in conjunction with the Galerkin's method and complex
image theory for analyzing a transmission line with multiple
strips embedded in different layers of a multilayered uniaxially
anisotropic dielectric substrate. The two-dimensional Green’s
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functions for the scalar and vector potentials are analytically
obtained in the space domain due to the approximation of its
spectral-domain version with complex images, thus avoiding
lengthy numerical evaluations. Double integrals involved in the
computation of Galerkin’s matrix entries are quasi-analytically
carried out for the chosen basis functions, which are well suited to
the problem.
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) . . Fig. 1. Cross section of the multiconductor transmission line under analysis.
Index Terms—Complex image method, integral equations, lay-

ered media, planar transmission lines.
point to get very high efficiency. In this way, the determination
of space-domain Green'’s functions is carried out via the com-
plex images technique [13]-[15], thus avoiding commonly used
HE analysis of a planar multistrip system such as thatimerical spectral 2-D Sommerfeld-type integration [16], [17].
shown in Fig. 1 has been carried out by using a varietghis method, originally intended for the analysis of a radiating
of techniques during the past three decades, including befipole in a three-dimensional (3-D) stratified medium, has been
quasi-TEM and full-wave formulations. Achieving high nu-adapted here to our 2-D problem. At this point, it should be
merical efficiency has been the goal of many recent papersifentioned that a correction to the formulation of [15], intro-
sample of this type of work in the frame of the quasi-TEM anabluced by Kipp and Chan in [18], must be also applied in the
ysis can be found in [1] and references therein. In this papgeD case. As it is well known, first- and second-kind Chebyshev
emphasis is placed on the full-wave approach. Very efficiepblynomials weighed by the proper strip edge condition are
algorithms dealing with the full-wave analysis of planar linegery suitable basis functions for the current expansion [9]. The
have been also reported, including the singular integral-equeaction integrals involving these functions and the closed-form
tion method [2], [3] and the eigenvalue approach [4] for boxesgkpression of the Green’s functions obtained with the complex
structures, the Wiener—Hopf method [5], and various enhandathges method are quasi-analytically computed. Therefore,
implementations of the spectral-domain analysis (SDAjie most time-consuming step in searching for the propagation
[6]-9]. In this paper, the authors propose a very fast analysisnstants, which is the computation of Galerkin's matrix, is
of the structure in Fig. 1 based on the mixed-potential integradastically accelerated.
equation (MPIE) [10]-[12]. The numerical performance of this
approach is drastically improved by using a suitable two-di-
mensional (2-D) space-domain representation of the potential ~ !l- FORMULATION OF THE INTEGRAL EQUATION

Green's functions and quasi-analytical computation of the | ot us consider a transmission line consistinghaf infin-

reaction integrals appearing when a Galerkin scheme is uggq\, thin strips embedded in the various layers of a multilay-
for solving the MPIE to find the s_urface currents. This fast angleq substrate (see Fig. 1). Each layer is a uniaxial anisotropic
accurate computation of Galerkin's matrix entries is the K&yelectric, with its optical axis perpendicular to the interfaces

between layers. Since we are interested in modes that propagate

, _ _ __in they-direction, we assume a common phase faetgr¥ for
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Since the sources in our structure are perpendiculé; tbe These poles can be easily removed, as will be explained later on.

MPIE has the following form: Another important topological feature of the spectral-domain
Green’s functions is the existence of branch poinfs,at +ko.

e . 8 . . These branch points are related to the free-space unbounded

zx Z {WAi(xv 7)) + <$% - yjﬁ) i (w, Zj)} =0, upper layer of the structure, and they will play an important role

i=1

in the development of the numerical approach.

The computation of (4) takes a significant part of the overall
computation time since the integrands are typically oscillatory
and slowly decaying. Since the integrands depend,dhat in-

at'fe%ral must be recalculated for every value of the propagation
constant in the root search process. Therefore, a fast method to
—A L e , evaluate (4) is of paramount importance. The complex image
Ai(x, 2) = /L K (x, 22", 7%)J (") da () method already used in the analysis of planar circuits, antennas,
i and scattering problems [13]-[15], [18] can be adapted to ac-
complish that goal. The basic idea of this method is to extract
s oed (. . o from the spectral kernel its quasi-static and surface-wave contri-
T,z i); <I%—wﬁ> J(z")d=". putions, and to approximate the remaining function by a sum of
3) complex exponentials. In the 3-D case, the Sommerfeld identity
can then be employed to evaluate in closed form the Sommerfeld
In (1)-(3), L; stands for the surface of thith conductor integrals. This leads to a very efficient glgorﬁthm provided that
placed at the plane = 2¢(i = 1, ---, N.). It is well known we h'ave'a mean to evaluate the quasi-static and surface-wave
that for a horizontally directed dipole, two components (ﬁontrlbutlons in closed f(_)rm. In th_e 2-D case, as far as th_e au-
;%Qrs know, the spectral integrals in (4) are usually numerically

(z,25)€L; (j=1,---, No) (1)

on the conducting stripsA; and ®; in (1) are the magnetic
vector potential and electric scalar potential due to the surf
current on theth conductor

D, (x, 2) :/ K%z,
L;

the vector potential are necessary to satisfy the bound - Y ;
conditions at the interfaces [20]. We have used the traditiorfculated [16], [17]. Although efficient numerical integration
gorithms are used, the procedure is not as efficient as those

Sommerfeld’'s formulation for the vector potential [21] sé&

the z component of the vector potential is chosen togethE‘?ported n [13]_[15,]' [18]. What we propose in this paper is to

with the component parallel to the source. This formulatio"i'ldap_t t'he. Complgx image mgthod to our problem. I'n order todo

is convenient for the analysis of planar structures beca , it is instructive to examine thg spectra[-domal_n version of

Kﬁy _ Kjac — 0. Moreover, the revolution symmetry of Ourbqth the vec.tor— and scqlar—potentlal Green’s function of a trav-

problem substrate around theaxis leads toK2, = K:. eling-wave line source in the free space at a heigabove a
ngund plane. These formulas can be written in the following
orm:

vy
Therefore, only one spectral integral is necessary for obtaini
the 2-D Green'’s function of the magnetic vector potential.

TN CO —2ugh
Il. K ERNEL OF THEINTEGRAL EQUATION Glho) = o (1 —c ) )

It is feasible to obtain a closed-form expression for

K2 (z, 2|2/, 2/) and K®(z, z|2’, ') in the spectral domain whereuo = V kg = k5, (ko = wy/0%0), Co = (po)/2 for the
[2'1"]’ [22], namely, K2 (k,; z|2") and f(‘l’(kp; 2|'), being #x component of the dyadic spectral Green’s function of the

i 12 A s . vector potential and’y = 1/(2¢,) for the scalar potential. The
Fo = /Ky + b = /3_ + ks (k’”_ andk, are the Cart§5|an first term in (5) corresponds to the effect of the source itself,
spectral variables and, is the radial polar spectral variable)yhereas the second term is the image contribution. Hence, it
It should be pointed out th"E‘tA'f the st[ucturej;as Cond/”Ctoééems reasonable to think that if the source is embedded in a
placed atV; different levels,KZ; (k,; z|2') and K™ (ks z[2')  gyratified medium, the spectral Green’s function is suitable to
must be evaluated for source and observation points at any,@ expressed as a quasi-static terfifuo) (which accounts
theN,l Ievels..Taking into account the reciproci_ty of the GreenRy; the near-field contribution of the source and has a singular
functions, this lead tavi(; + 1)/2 combinations of source g,ace_ domain counterpart) plus a number of images of the
and ob_s.ervatlon plan_es. ane the s_pectral version of the kere},, A(e7) /(uo). However, it is well known that a stratified
of our integral equation is known, its 2-D spatial counterPathedium is also capable of propagating surface waves, which are
can be obtained from the following spectral integral: independent of the source. The influence of these propagating

1~ o modes in the spectral-domain Green’s function is the existence
Gz, z') = o / ¢ IR E=) Gk, B)dk,.  (4) of afinite number of poles that do not appear in the free-space
T oo problem. These poles modify the spectral-domain Green’s

In (4) G and@ stand for the spatial (2-D) and spectral repref_unc'uon behavior that can no longer be exclusively expressed

sentations of any of tha/;(N; + 1)/2 Kzt and K'® functions. as asum of exponential funct_|ons. As a mean to ev,aluatmg )
. - N Lo in a efficient way, we then write the spectral Green’s function
The z-dependence is not explicitly shown since it will not pla

any role in the development thereafter. I the following approximating form:
The integrand in (4) may have several poles in the real axis

- - - 1 -
of the K ,-plane, which depend on the structure and frequency. G(k,) = Go+ Gp + u_OGGPOF' (6)



BERNAL et al: FAST FULL-WAVE ANALYSIS OF MULTISTRIP TRANSMISSION LINES 447

The G, term is the quasi-static contributiof> represents leaky regime). The integral (10) can be analytically calculated
the surface wave term, ali¢; por is the remaining term, which by using the following result [23]:
is to be expanded by a finite series of complex exponential func-

tions i A
—oo  \/ k% + a?
A. Quasi-Static Term

= 2K, (a (z— 22+ 72) (11)
The quasi-static fields are dominant when the distance
between the source and field points is small compared to tvbereKy(-) is the zeroth-order modified Bessel function of the
free-space wavelength. In such a case, the complex exporggeond kind. The integral in (10) can be seen as the limit of (11)
tial appearing in the integrand of (4) oscillates with a largeheny — 0, hence, the contribution of the quasi-static termin
period. Therefore, the behavior of the spatial Green’s functidhhe space domain is
is strongly affected by the asymptotic values of the spectral

Ak _ 4
e Tkelz—2'] dk,

IiCo

Green's functionk,. >> k). Since the integrands decrease very Go(lz — ') = —Ko(a|a: - 7'|). (12)
slowly, the following asymptotic behavior fak%, (k,; z|2)
and K (k,; z|2") must be extracted out: Note that since{o(x) ~ —In x for smallz, the 2-D space-
domain Green'’s functions have a logarithmic singularity when
f(ﬁw(k,, — 00; z|7) z = 7' and the field point approaches the source pairt{ =’).
= Moy {1’ z =2 . (7) B. Surface-Wave Poles Contribution
2ug 0, otherwise

The complex image scheme can be applied over a complex
path, thus avoiding problems related to the presence of poles on
the real axis of the complek, plane [24]. However, there are

o . . . ; .
K®(k, — oc; z|2") theoretical and numerical reasons that make it advisable to re-

_ 1 move the pole contributions from the spectral Green’s functions.
2equ0 Complex exponential functions cannot reproduce accurately in
1 o the spectral domain the behavior associated to these poles. Since

Vet nEan the spectral functions are even functiongpfthe poles always
x 2 s — appear in pairs. Consequently, we can write [14], [15]

\/Et,n—lez,n—.l + \/Et,ngz, n7 " Ny

0, otherwise Gp(k,) = 2Rpkpp (13)

4 2 2
(8) p=1 k k/’P

wherez, is thez position of thenth interface (see Fig. 1). OnwhereN is the number of poles;,, is the location of theth
the other hands; ; ande ., ; are the relative permittivities of the pole in thek,-plane, and, is its residue
ith layer in directions perpendicular and parallel to thaxis,

respectively. Note that we will have nonzero asymptotic terms Ry = lim Gkp)(ky — kpp)-

kp,—kyp
only when source and observation points are at the same level.
From (7) and (8), we can, in general, write Therefore, the space-domain contribution of the surface wave
poles is
~ IiCo
Go(kp) = — 9) e—Jka|o—a']
o Gr(lz—al) = Z 2R k,,p/ e

wherek is a constant that is zero #f # 2’ and whose value
depends on the cases treated in (7) and (8) if source and obser-

vation points are at the same level £ 2'). The constanCy ~ wheres? = 52 — k2, is supposed to be positive (bound regime).

was defined in (4). An analytical expression for the integral in (14) is available from
It should be pointed out that the branch points appearing [#3], in such a way that

k, = %ko in the spectral Green’s functions are also present in N
Go (9). Therefore, this term does not introduce any new branch N Bpkpp PN —
cut in thek,-plane topology [18]. In order to calculate the 2-D (|$ -t |) - Z ¢ :
space-domain version of (9), the following spectral integral p=t
must be carried out: Note that, in contrast with the 3-D case [13], [14], the con-
o ikulo—s] tribu_tion from the sqrface—vyave poles in our 2-D situation doe§
G0(|a: _ 37/|) _ %Co e dke, (10) not introduce any S|_ngul<'_:1r|ty. Thus,_the treatmentg reported in
\ /k2 [25] or [26] to deal with this problem is not required in our case.
Therefore, we can directly extract the surface-wave contribution
wherea? = 32 — w?ugeo. O is supposed to be positive sinceérom the complex image expansion, obtaining a well-behaved
we are interested only in the bound regime (as opposite to @ygproximation for any value of the spatial variable. This makes

(14)

(15)
p
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an important difference between the transmission and radiatitve propagation constagpt is changed many times, but those

problems. changes are automatically taken into account by (17). If a nu-
o merical integration scheme is applied to solve for (4), the inte-
C. Application of the Complex Image Method grals have to be recomputed for each new guess valdeTie

We have found closed-form expressions that allow us to ewse of our approach obviously implies important central pro-
tract the asymptotic and surface wave terms of the spectral-gessing unit (CPU) time savings.
main Green'’s function and to recover them in the 2-D space do-
main. The remaining spectral —domain function is now suitable IV. APPLICATION OF GALERKIN'S METHOD

to be expanded as a finite sum of complex exponential functionsOnce the space-domain kernel of the integral equation has

by using, for instance, the general pencil of function (GPOR}e, efficiently obtained, we can apply the Galerkin's method.

method [27] A well-established set of basis functions for planar-type struc-
N o N Non tures has been chosen. In fact, for a planar strip of wigtnd
Garor = ug (G — Gy — Gp) = Z aze” e (16) whose central point coordinatesg, the basis functions for the
i=1 components of the current density have been taken to be

where N,,, is the number of employed complex images. It is np—1 3
expected that a short numbgr of _images is enoug_h for pragtical Jo(z) = Z i /1 _ <a: — a:o> U, <a: — a:o) (18)
purposes because of the suitability of the expanding functions: = w/2 w/2

they are the spectral version of cylindrical waves.
In order to obtain the unknown coefficients and ~;

appearing in (16), we have sampled our spectral functions on a ny T <ﬂ)

path in thek,-plane, which avoids the poles and branch point J,(z) = Z I w/2 (19)
singularity. To ensure an optimum result, we have applied =0 ! r—xz0\°

a two-step procedure that makes it possible to take more - < w/2 )

samples near the origin, where, owing to the proximity of the

branch point, the spectral function presents fast variationgheren; is the number of basis functions employed for the
This two-step approach has been proposed by Aksun in [2ddnsverse component of the current dengjtfone more basis

for approximating 3-D Green'’s functions (although this authdunction must be used for the axial component of the current
does not extract the surface-wave contribution). The use of ttiensity.J, to ensure that the total current fulfills the continuity
two-step algorithm is also advantageous to deal with structueguation).7;(-) and U;(-) stand for first- and second-kind
having very thin layers. The reasons for that are explain€&hebyshev polynomials, respectively. These functions mimic
in [28] in the context of the quasi-static analysis of coplandine real behavior of the currents near the edge of the conducting
waveguide (CPW) structures. On the other hand, it is worttrips and are quasi- orthogonal for the space kernel we are
noting that although we could also expand €iepor term as using. This allows us to attain accurate results while using very
a sum of complex exponentials in the ; = ,/k2 — ke, ; few basis functions. . .

) . The next step is to calculate the convolution and inner product
or uz,i = \/(&:i)/(‘?w)k% — kijet,i variables, this would jhtegrals by using the basis functions in (18) and (19) and the
introduce a new branch point in thg, plane topology and, kernel in (17). Thanks to the relationship between first- and
therefore, the expansion would fail to approximate the actugdcond-kind Chebyshev polynomials [29], we only need to com-
function in a correct way [18]. pute integrals involving first-kind polynomials. The functiffy

Now, the last term in (6) can be transformed into the 2-D spgresents a logarithmic singularity that might cause problems
tial domain by using (11). Therefore, we can write the followingh the convolution integral. Fortunately, the contribution to the
expression for the whole 2-D space domain Green’s functiongonvolution integrals of this singularity can be handled in closed

#Cl form, such as explained in [1]. The rest of the kernel is regular
G(|ﬂlj — 'l /3) = TKo(Oé|3j - 37/|) and does not generate integration problems. Due to the type of
singularity present in the basis functions, low-order Chebyshev

N
+ Z a; Ko <a (& — x')? + 712) quadratures are suitable to accurately carry out the integrations
i=1

involving the regular part of the kernel. In this way, the elements

No oo of Galerkin’s matrix are generated both very accurately and ef-
+> % e~ trle=all (17) ficiently.
p=1 p

The 2-D spatial-domain Green'’s functions are obtained as a V. NUMERICAL RESULTS

sum of radial waves (plus the surface-wave contribution) in tAde first step for checking the performance of the proposed
same way as spherical waves are obtained for the spatial-donagproach is to verify that the approximation for the 2-D
3-D Green'’s functions [13]. Note that (17) has the important adpace-domain Green’s functions is correct. These functions
vantage of being an explicit function of the propagation constasttow an exponential decay with the distance between source
B througha andé, (p = 1, ---, No). In the root searching and field points, which is quite different from that obtained
process involved in the resolution of the eigenvalue problemn, the 3-D case. This decaying is faster for large valueg.of
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We have compared in this paper the space-domain Green 10 e

functions computed by direct integration a combination of the 9 1
Romberg’'s method, and the weighted averages method 8
ported in [11] has been used against those obtained by usir 7
the technique in this paper. In this way, Fig. 2 sha@$ for 6
the two-layer structure depicted in the figure. The relative 5
4
3
2

L 101

- 102

<

difference between numerical and GPOF results is plottec %
The GPOF has been applied with and without pole extrac g P
tion (but always with extraction of the quasi-static term). For 1 & . P T
the 9-GHz case [see Fig.2(a)], we can see that the GPO 4 ==~ £ R L
approximation is very accurate (but fairly better if pole ex- 04 3 ¢
traction is applied) in the whole range of interest. Relative | // TR - 10
error is large only for those regions where the values ol | ?d‘
the approximated function is negligible. In Fig. 2(b), similar oy I v T i e
data are plotted for a frequency of 33 GHz (two poles are -2.00 -1.75 -1.50 -125 -1.00 -0.75 -0.50 -0.25 0.00 025
involved in this case). Note that if poles are not removed, log, o|(x-x')/2]
large errors are obtained, while a very good approximation is @
achieved after removing them. Therefore, removing the poles
is strongly advised, after all, it is neither difficult nor time 10
consuming to find them [30], while numerical benefits are
important. It is worth mentioning that the example considerec
in Fig. 2 corresponds to a configuration having a very thin
dielectric layer. This could cause serious numerical problems
which have been overcome thanks to the application of th
two-step scheme used in our study. Although we have concel
trated our attention o ®, similar conclusions are valid for
K: . This study has been carried out for many combination:
of substrates and source and field point locations (coplan
and noncoplanar). The overall conclusion is that the two-ste
approach in conjunction with the quasi-static term and pole
extraction provide an excellent space-domain representation
the required 2-D Green'’s functions. S

Once we are certain about the accuracy of the 2-D space-d -2.00-1.75 -1.50 -1.25 -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75
main Green'’s functions computed via (6), we have evaluated th log l(x-x')/A|
global performance of our method. First of all, we have checked ®)
the accuracy and convergence properties of the reaction inte-
grals defining the entries of Galerkin’s matrix. We have corg. 2. Magnitude of K (solid line) and relative difference between
fitmed that these entries are computed with extreme accurdfls"el iegraton somputaton and compiex mages computaor wi
(more than six correct figures) using very low-order Chebysh@wz. bata:d; = 1 mm,d, = 0.01 mm, e,y = ., = 10,2,2 = 2.25, and
guadratures and closed-form evaluation of the logarithmic sifys = 1.5
gularity contribution. On the other hand, we have carried out
exhaustive comparisons with propagation constants computed ) TABLE |
using numerical evaluation of the Green's function and USING.._ 1.« s o mmrm e hop ecre. = 50
enhanced versions of the SDA [31]. The agreement betwe@n= (.635 mm,anD =, = 9.8. LEFT-HAND-SIDE COLUMN: WITH SURFACE
the various results is total and we only detect differences in thePoLE EXTRACTION. RIGHT-HAND-SIDE COLUMN: NO POLE EXTRACTION

- 103

Relative error for |K’|

T

L 107
L 100
L 10+
L 102

¥
=
=)
ke

- 102

Relative error for |K¢ |

L 104

O =2 N W A OO N ® ©
L . " L L L A L N "

L 105

o

-~ 106

computational effort (CPU time). It has been verified that pole W
. . . L ¥
extraction is necessary for many cases because otherwise the :
error in the space Green’s functions meaningfully affects the ' (Ih
final result for the propagation constants. As an example, some
numerical results for the fundamental and first two higher order f(CHz) EH, EH, EH,
modes of a simple microstrip line are included in Table I. Those 150 3235 ;:g; - N
. . . . 2.895 | 2. - - - -

resu_lts have been obtained by using four basis functions for the 5 |oe4n | 2005 | 1280 | 1.200
longitudinal current and three functions for the transverse one 20 | 2977 | 2979 | 2.066 | 2.065
(three and two are enough for the fundamental mode) with and 25 | 3.006 3020} 2395 2.306 | - | -

ithout pole extraction. Extraction of poles is clearly necessar 30 | 30263028 | 2579 2581 | 1.331 1.333
wi pole ' P y >ary 35 | 3.042 | 2.981 | 2.696 | 2.701 || 1818 | 1.817
for frequencies above 35 GHz. Otherwise results are not reliable 40 | 3.054 | 2.900 || 2.778 | 2.829 || 2.110 | 2.090
because they are strongly dependent on the number of images, 45 | 3.064 ) 3.011 ) 2.836 | 2.901 || 2.306 | 2.384

50 3.071 | 3.032 | 2.881 | 2.996 || 2.445 | 2.558

sample points, and quadrature points. Moreover, spurious solu-
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tions may appear. Eight complex images in the approximation 30

of the Green’s functions and four quadrature points in the eval-

uation of the reaction integrals have been used in this table. 25 1
In order to illustrate CPU time saving, we have compared

the technique proposed in this paper with numerical eval- 20 1

uation of the space-domain Green’s function. Even though

the integration scheme we have used to generate the nu- 15 |

merical samples of the Green’s function is very efficient,
the application of the method proposed here still yields an
important reduction of CPU time. Moreover, complex im-
ages have not to be recomputed whens changed in the
root searching process, whereas new numerical integrations
would be required for new values @f. Hence, the relative
impact of using this approach in the analysis of transmission ) ) 3 4 5
lines (eigenvalue 2-D problem) is probably stronger than the
impact of using a similar technique in a 3-D planar problem
since, in the latter case, the generation of the Green’'s fumgy. 3. CPU time ratio for a microstrip analysis using numerical generation
tions is a small fraction of the total numerical effort. A<f the Green’s function and the technique in this paper as a function of the
an example, Fig. 3 shows the ratio of CPU times using nfl475! f s, Longldne) and uansyerse cuteni have been approited
merical integration against the method reported here as=&.635 mm,e, = 9.8. Strip width= 3 mm. Strip separation: 1.5 mm.
function of the number of strips (the same number of basis
functions has been used in each strip so as to keep the 10
same accuracy level). CPU time reduction is significant for
any case, becoming more important as the complexity of the
multistrip system increases.

As a final example, Fig. 4 shows the dispersion curves for
the fundamental modes of the five conductor microstrip trans-
mission line depicted in the figure. Two cases are considered:
in Case A, the strips are in the air-dielectric interface; in Case
B, the center conductor resides on the top interface of a very
thin cover layer. Dispersion curves of the configuration (A)
were published by Kitazawa in [32] and later reproduced by
Hsu in [33]. Results for the configuration B are given in [33].
Kitazawa uses a variational method, whereas Hsu employs
an MPIE scheme solved in the space domain by using the
method of moments with piecewise linear basis functions and
numerical computation of the spectral integrals. The agreement
between our results and those presented in [32] and [33] is
very good, as can been seen in the graphical representation. In , . .
order to reproduce those data, we have used three longitudinal 000 002 004 008 008 010 012
and two transverse basis functions along with four quadrature difig
points and eight complex images for approximating the regular
part of the spectral-domain Green’s functions. Many othe&fg. 4. Dispersion curves of the five fundamental modes of the structure of
results reported in the literature have been reproduced with &t figure. Dielectric data as in Fig. & = 1 mm,s = 0.2 mm. Case (A):

. . d, = 0. Black squares: results in [32] and [33], solid line: our results. Case (B):
method, but they are not included here for the sake of breV|tyd2 = 0.01d.. White squares: results in [33], dash line: our results.

As a final comment on the accuracy and robustness of the
proposed method, we have to say that very accurate results are
also obtained for the current distribution. A systematic increase
of the number of basis functions does not introduce numer-A new method has been proposed for the computation of
ical instabilities and all the coefficients of the current exparhe dispersion curves of multilevel multiconductor planar trans-
sion are computed with very good accuracy (five correct figuresission lines embedded in a uniaxially anisotropic stratified
are easily obtained for the expansion coefficients). This is mamedium. The approach is based on the complex image technique
significant regarding the quality of the employed technique thamd MPIE formulation. We take advantage of a closed-form
propagation constant results [9]. To sum up, our many numerickgrivation of the 2-D space-domain Green’s function and of the
experiments confirm that the developed method works propenlge of a suitable set of basis functions to obtain a fast and ac-
providing very accurate results and important computational-efdrate computer code. The evaluation of Galerkin’s matrix en-
fort savings. tries is performed in a very efficient way. Numerical results have

CPU time ratio

10 -

Number of strips

Case A
———— CaseB

Eeff

VI. CONCLUSIONS
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been presented and compared with data available in the litergs]
ture and supplied by other methods. Very good agreement has
been found in all cases by using very modest computational ré%‘”
sources.
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