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Abstract—in this paper, a simplified nonquasi-static table-based ~ On the other hand, the extracted-model large-signal relations
approach is developed for high-frequency broad-band large-signal may not be integral path independent, thus making it difficult
field-effect-transistor modeling. As well as low-frequency disper- to quantify an unique RF model [15], [16]. This issue is more

sion, the quadratic frequency dependency of they-parameters . " : . .
at high frequencies is taken into account through the use of significant when low-frequency dispersion and nonisothermal

linear delays. This model is suitable for applications related with data collection play a major role. In this study, only GaAs-

nonlinear microwave computer-aided design and can be both based devices with relatively small low-frequency dispersion
easily extracted from dc and s-parameter measurements and and thermal related effects were considered. In this case, it is
implemented in commercially available simulation tools. Model possible to extract a viable RF model and account for these ef-

formulation, small-signal, and large-signal validation will be .
described in this paper. Excellent results are obtained from dc up fects through the use of different current sources for dc and RF

to the device fr frequencies, even wheryr is as high as 100 GHz. operation [4].
Index Terms—FET's, modeling. Empirical circuit-based models have been successfully

used to predict device behavior in the microwave and mil-
limeter-wave frequency ranges [17], [18]. For increasing the
. INTRODUCTION bandwidth of table-based models into the millimeter-wave

ABLE-BASED empirical nonlinear semiconductor devicé@nge, several nonquasi-static charge approaches have been
T models [1]-[10] have been developed as an alternatiseggested [5], [7], which make use of nonlinear delay functions.
approach to nonlinear analytical models. They are able iy these cases, the ?ncrease in model bandwidth is achieved at
accurately reproduce the complex nonlinear behavior of serffie expense of an increased number of measurements along
conductor devices from measured data tables. In most cadé§) more complex model generation and implementation
they can predict device operation under dc, small-signal, aRgpcedures.
large-signal excitations, and have been applied to MESFET’sOur goal was to extend the usefulness of basic table-based
MODFET'’s, and MISFET’s fabricated from different tech-models into the millimeter-wave range, without sacrificing the
nologies. From a practical point of view, they require afood reported behavior at low frequencies, and with two impor-

accurate and intensive experimental device characterizatfgft requirements: simplified model extraction (reduced time)

[11]. To decrease the measurements required, the extrac@i§l €asy implementation in available computer-aided design

of a dense grid of measured points only where nonlineariti€sAD) tools.

are stronger has been proposed [4]. An alternative is to use

single-frequency-parameter bias scans instead of the common

single-biass-parameter frequency scans [12]. In this paper, well. M ODELING APPROACH—MATHEMATICAL DESCRIPTION

will exploit this latter approach because it is an efficient way

of extracting our model. Recently, table-based models haveJnderlying most large-signal models is the quasi-static as-

also been extracted from large-signal RF data, as suggeste84R1Ption, i.e., the large-signal model relations are considered

[13], [14]. Most issues outlined in this work will still have tot0 be only functions of their instantaneous controllipg \./olt.ages

be taken into account when considering such an extraction. [19]- Usually, table-based models assume for the intrinsic de-
vice a black-box model in which the current at each terminal

, . _ is characterized by at least two large-signal functions, current
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due to thermal and trapping processes, the device conduc- Cgd Rgd

tive behavior is not the same under dc and RF excitations. L—L_DHW D

Low-frequency dispersion modeling is often avoided in many

large-signal models, but it must be included to obtain a precise Ces

model. Different table-based approaches have also incorporated

this type of modeling [4], [6], [8]. Root’s approach [4], for R;

example, assumes a single-pole transition between dc and

RF behavior through the use of two different drain current

state functions, thus perturbing the initially assumed drain

conductive quasi-static behavior. With that approach, model

bandwidth (frequency range in which model predictions are 5

valid) has been extended from microwaves down to dc. The @)

use of quasi-static-charge large-signal relations in [1]-[4],

however, restricts the upper bandwidth end of these models Ggg

since they cannot predict the higher order frequency behavior AW

of the devicey-parameters, especially, at high frequencies. G —1 /W D
Model bandwidth can be increased with more complex in- v—llgd Rgg

trinsic circuit topologies. In the case of linear models, an eight-

e!ement intrinsic topology [soe Fig. 1(a)] is sufficient Fo pr.edlct Ggs % Cos lgm (> = %Gds

high-frequency device behavior, at least ugitd18]. R; in this

topology accounts for quadratic frequency dependences of the

small-signaly-parameters. In the case of nonlinear models, be-

sides considering the bias dependency of these elements, e.g.,

gm, Cgs, €1C, it is necessary to add the nonlinear diodes con-

ductances to account for forward and breakdown behavior [see S

Fig. 1(b)] [17]. There are table-based approaches whose large- (b)

signal topology has explicit [10] or “implicit” [S], [7; terms. ig. 1. Conventional intrinsic FET topologies. (a) Eight elements. (b) Ten

Daniels’s proposal [5], [22] (similar to [7]) is a charge-base ements. The dependent current souggeis usually controlled by the voltage
approach able to model higher order frequency effects throug@bp acros<,..

the use ohonquasi-staticharges. These charges are described
by means of nonlinear delay functions and quasi-static chargplications in which harmonic generation at microwaves and
functions at each terminal. However, model extraction and/afillimeter waves plays a major role in circuit behavior, as in
implementation in these cases is complex and appropriate siffe case of power amplifiers, frequency multipliers, etc, thus,
plifications could be desirable. this formulation along with an approximateg value is all that
The starting point in this study is a model combining botls required.
Daniels’ nonquasi-static charge definition and Root'’s low-fre- The nonquasi-static chargé}'? are expressed as [5]
guency dispersion modeling, with the latter applied, for model g
completeness, to the input and output of the device. Inthis case,  r4(+) = QU(V,, Vi) — 7:(Vis, Vs )in () 2)
A ) A . i i\ Ygs, Vds Ti\Vgs, Vds
current at;th terminal can be expressed in the time domain as dt
follows [16], [23]: where Q¢ (charge relation) and; (delay relation) are quasi-
static functions of nodal voltages; represents a time for re-
d17Y o a1 d Ligh distribution of charge aith terminal. A nonquasi-static model
Li(t) = [1 + Twa} L+ [1 + Twa} T“’@Ivi based on substituting (2) into (1) will be addressed as model 1.
dQ(t) _ After Iineo_rizating model 1 around a given bias point (small-
i (1) signal conditions), the resulting (common sourgglarameters
are [23]
In (1), we are using a similar notation as in [24], in which i jwr.
1 and 1" are two-dimensional functions of node voltages Yix = — = g H%(g?,f — g+
Ves and Vg, [1 + 7, d/dt] represents a (pseudo) differential Uk JWTa
operator that is applied to the large-signal current relatignss, where
arelaxation time modeling thermal and traps time constants, and
i = g,d. As a consequence of this formulatiai;” and 7;"s"

+

Jweik

1+ jwr; )

s =01 jov,

are the low- and the high-pass filtered components, respectively. gix =01 [0V,
T, is related with the cutoff frequency of the filtering process cirk =0Q1 )9V},
and is in the kilohertz-megahertz range. In most applications, Vi =V, Vi

an accurate estimation ef. or the need for a more complex
(multipole) function to model traps and thermal influence in the, = vy, vas (SMall-signal voltagesj; (small-signal currents),
device frequency response is not necessary. We are interesteahithc = gs, ds.
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As an alternative, consider an approximation of (2), as sug- Cgd,pad
gested in [9], [16] (following partly [25]) 0
q
Q(E) & Vi, Vi) — (Vi V) S0 0) gy Ly R o Rate |
o~ WA o
A nonquasi-static model based on substituting (4) into (1) will Intrinsic
Table-based
be addressed as model 2. model
In this case, we obtain the followingparameters [23]: si
Yip = gix + %(gfﬁ — giK) + jw(l — jwr)ci. (5) Cgs.pad Ry Cds,pad
These models can be applied to the extrinsic field-effect Ls
transistor (FET), but because of the reduction in useful band-
width that would result, we will apply these models only to ds
the intrinsic device. Fig. 2(a) shows the basic extrinsic circuit @
topology used in this work (completed with extra cells when
required by the device). An approximate intrinsic topology . bi
1

corresponding to models 1 and 2 when, > 1 is shown in

Fig. 2(b). Qq(t-g) Q7
Equations (3) and (5) can be analyzed in the following three

different cases.

high,
w — 0 (dc case): in both approaches . I8 Vs Vas) |
1 high(v, V40 [
g gs Vds
Yir & giy.- (6) Si
|
W, > 1: (b)

nonquasi-static model 1: Fig. 2. (a) Model structure including a simplified parasitic network. (b)

Approximate intrinsic topology whear, > 1.
(7
all the nonlinear tabled functions versus voltages. As a conse-
nonquasi-static model 2: guence, there is a great increase in the amount of data required
. ) e ) ) over quasi-static charge approaches, in which single-frequency
Yir & gix + jw(1 — jomi)cix = gi +w Ticik + jweik. bias dependent RF data is required. Besides model extraction,
(8) implementation is also not straightforward. For this reason, we
investigated the use of linear delay functions, as a compromise
wt, > landwr; < 1 between accuracy in the high-frequency regime and ease in ex-
In both models traction and implementation (which will also affect simulation
time and memory requirements).

JWeik

Yie ® g% + ——.
wRIET T Fon

Yin & g3 + jweir. 9

I1l. M ODEL GENERATION—SMALL -SIGNAL DEVICE

Equation (9) is a quasi-static charge formulation (as in [4]) CHARAGTERIZATION

whenwr, > 1.

Equation (8) is just a truncation of (7) wherfr? < 1. In The extraction of a table-based model for large-signal appli-
both cases [i.e., (7) and (8)], higher order frequency dependeations requires measurements covering as much of the opera-
cies can be modeled, and are good enough for predicting exdilnal voltage range of the device as possible. For this reason,
lent results up tgfr. besides the linear and saturation regions oflthécurves, we

If we compare the nonquasi-static model 2 with a quasi-staperformed measurements in the pinchoff and forward regimes.
charge model [given in (9)], the only difference is just one ternBreakdown modeling is also very important, but unfortunately
the real part of thej-parameters shows a quadratic frequencgpecial measurements (e.g., pulsed measurements) are required
dependence. That implies that both models will have appraw-feed the model with data covering that region. An alternative
imately the same displacement currents, but they will differ iwe have investigated is to extend the model conductive behavior
the real currents. Hence, model 2 will be able to model high-fredth some analytical functions (e.g., exponential behavior for
quency quadratic dependencies of thearameters, as givensoft breakdown, as in [26]) only in those regions with lack of
by (8), while the quasi-static charge approach will model onlyata and when required by the application.
linear dependencies. The extraction of the parasitic network was performed fol-

In the formulation of models 1 and 2, the delay functionlewing the well-known procedure based on cold-FET measure-
are also two-dimensional functions of voltage, thus requiringents [27], [28]. To obtain accurate parasitic capacitances, we
the processing of bias- and frequency-dependent data to extremte measured FET'’s with different gatewidths to remove the
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undesired intrinsic contribution to the overall extracted capac- 3+
itances. Channel resistance has also been taken into account
under forward bias conditions [16], [27], [28]. Once parasitics 2

were known, parasitic cells were deembedded to get the intrinsic
y-parameters (as in [29]) required to directly fit the small-signal
nonlinear model equations [(7)—(9), depending on the model or
the frequency range]. It was also necessary to shift the voltage
reference planes to the intrinsic level [24], taking into account dc
voltage drops in parasitic resistances and measurement system
bias tees. o ;
The current relationg*™ were directly obtained from the T I I I I
measured dé¢-V’s of the device. The high-frequency current 0 200 400 600 800
and charge relationg"¢" and Q? were determined from the Ips (mA/mm]
small-signal conductanceg: and capacitances; by a con- ()
tour integration process [see (10) and (11)] [4], [5], [16], [23].

s [ps]

Provided that some relations are held (integrability conditions 3
[16]), uniqueness in the model is assured. 5
VL = g Vs + 005 Vs T TV,
VQ! = igs Vs + ias Vs (10) R T
¥ o Vps 1V :
o= | Sneay o TR
Q= [ var-av. D 2
If we consider for a moment the use of nonlinear delay func- (l) 2(!)0 4<|)0 6(|)0 S(I)O
tions, g7¢, c;x, andr; could be determined at each bias point Ipg [mA/mm]
by relating the right-hand side of (7) or (8) to theparame- ()

ters extracted from measurements in the frequency range where

; g ; -ig. 3. Delay functions versuk,s at three fixed values dfps for a 4 x 60
Wy > 1._We have per_fo_rn?ed this curve fltIlng usmg_robust esim width pHEMT with 2 0. 15m gate length. (a3, (b) 7.
timation, in order to minimize the contributions of noisy data to

the generation process. Once these parameters were obtajned N . .
versus bias, it is possible to generdﬁégh and Q through ]!OI’ a GaAs pseudomorphic high electron-mobility transistor

the integration process. This extraction procedure, however, E@HEMT) device. In most of thé-V range, the extracted delay

quires multifrequency-parameter measurementsin a fine mesﬁmtIons are approximately constant, thus consistent with

of bias points; this is a very time-consuming process. To avo? Iosv?r?srgsgt?gﬁ A more exhaustive test is performed in the

this, a constant; function is proposed [23], which allows for 0
simplified model extraction, generation, and implementation. |

7, is considered as a constant, we can directly exyggctnd IV‘ MODEL VALIDATION UNDER DC AND SMALL SIGNAL UP

¢ir. from single-frequency measurements, in the range for which 70 120 GHz

wT, » 1 andwr; < 1 hold, using (9) in both models (as The linear delay nonquasi-static models 1 and 2 have been
in a quasi-static charge approach). These measurements caimpéemented in MDS (HP-EEsof) using symbolically defined
quickly performed using single-frequency bias scans [12], [23]evices (SDD’s). The linear delay assumption allows for a
In addition, for extracting an effective value fey, it is only very simple implementation of both approaches. In fact, the
necessary to perform a reduced set of measurements over tirgaslation of each model from the time to frequency domain is
guency at various bias points, fitting (7) or (8) (for models &traightforward, and only simple frequency transformations are
and 2, respectively) by using robust estimation. Therefore, thexjuired. During simulation time, table-formatted large-signal
use of linear delay reduces considerably the amount of measuggations are interpolated using the standard spline routines
ments required. available in MDS.

In this caseﬁlih‘gh andQ? are directly extracted from thepa- Model extraction and validation have been performed
rameters, and there is not an intermediate step to fit the intrinsising single- and double-delta-doped AlGaAs/InGaAs/GaAs
model to a conventional small-signal circuit topology, asin oth@HEMT devices fabricated at the Fraunhofer Institut fur
large-signal models. The only fitting process required (througkngewandte Festkorperphysik (Fraunhofer IAF), Freiburg,
(7) or (8)) is to extract the constant values, and it has to be Germany. We have chosen devices from different wafer
performed only at a few bias points to get an effective value. designs, withfr values of approximately 30 and 100 GHz.

As a first test to the validity of the linear delay assumptiory-parameter measurements in the 0.5-118.5-GHz range have
Fig. 3 shows the measured bias dependence of these delsmmsn performed to extract the parasitics values, and for model
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; — 0.10—] & sim Vpsl Ao
30 + measured & 2 meas Vpg 1.5 a Y
- <=~ sim_mod2 § 005 | + simVpgL5 B %
p& — sim_mod]1 : )
JOoCt | :
= | — - sim_quasistaticQ = g, ;
S ! B 0.00— N
3 ALE
= 10 -0.05 — I
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Fig.5. Measured and simulatgeparameters real parts for 2460 m width
(b) pHEMT with a 0.15xm gate length. (aYz: . (b) Y22. Frequency: 2 GHz. Note
the good predicted behavior at this low frequency.
Fig. 4. Measured and simulated intrindig; for a 2 x 60 zm width pHEMT
with a 0.15¢m gate length. (a) Real part. (b) Imaginary pafts = 0.3V,

andVps = L5 V. these approaches. As can be seen, they predict the quadratic
behavior observed ireal Y7; and the linear one observed in
validation purposes, of the 100-GHf- devices, using the imag_Y7;. Only small differences between both models can be
system described in [18]. In the case of the 30-Gizlevices, observed at very high frequencies, confirming that model 2 is a
these measurements were performed in the range of 0.5va0d simplification of model 1, even at these high frequencies.
GHz. In both approaches, models 1 and 2, and for all devicd$ie behavior of a pure quasi-static charge approach extracted at
single-frequencys-parameter measurements at 2 GHz wer2GHz is also shown in Fig. 4(a), confirming its erroneous pre-
used to extract;"¢" and Q¢. For extractingr; values, mea- diction of the measuretkal_Y;; frequency response.
surements were performed in the 0.5 range to approximatelyin addition, the ability of these models to predict device
40 GHz (for all devices) at several bias points. Those delagshavior at different bias points is clearly shown in Fig. 5,
could be also used as fitting parameters and be optimized tositich plots the measured and simulated at 2 Géd Yo, and
the measured-parameters. real Y5, versus gate bias for different drain voltages.
Small-signal validation involves checking the ability of these These models, therefore, account for both the necessary fre-
models to predict the proper or s-parameters at each biasquency- and bias-dependent behavior required to predict the
point and at those frequencies in the desired bandwidth. If weall-signals-parameters at the different bias points.
consider, for instance, the frequency dependence of the mearig. 6(a) shows the good agreement obtained comparing mea-
sured real part o¥7;, real_Y7; [see Fig. 4(a)], an approximatesured and simulated, using modekdparameters in the range of
quadratic behavior with the frequency can be observed. The siin5—48 GHz for a device with & of 30 GHz. To demonstrate
plified approaches proposed in this paper present a mathentlat this good agreement holds even in the case of devices suit-
ical formulation which, in theory, can model such behavior. Oable for applications in the millimeter-wave range, Figs. 6(b),
the other hand, Fig. 4(b) shows a nearly linear behavior with and 8 show a similar plot, but in the 0.5-118.5-GHz range
frequency for the imaginary part &, imag_Y71, as extracted for two different devices. Excellent agreement can be observed
from measured-parameters. Assuming the use of the same dep to 118.5 GHz, being important to note that the devifes
lays; in both nonquasi-static models, Fig. 4 also shows the im this case is 100 GHz. On the other hand, using model 1 [see
trinsicreal Y7; andimag_Y7; versus frequency modeled using-ig. 7(a)] or model 2 [see Fig. 6(b)] for simulating the same de-
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— sim
Meas  Ereq: 0.5 to 48 GHz

@

S21 radius =8 ... S12 radius = 0.2

sim
meas
Freq:0.5t0 118.5 GHz

(b)

S3; Radius = 8-S, Radius = 0.2

— sim
meas

Freq: 0.5t0 118.5 GHz
@

SZ] Radius = 13

— sim A
meas
Freq: 0.5 to 118.5 GHz

(b)

Fig. 7. Measured and simulated using modetdarameters. (a) For a:2 60
Fig. 6. Measured and simulatedparameters. (a) For a 2 50 pm width  ;mwidth pHEMT with a 0.15«m gate lengthl/:s = 0.3 VandVps = 1.5 V.
pHEMT with a 0.6xm gate length} s = —0.5 VandVps = 2 V, simulated  (b) For a 4x 60 um width pHEMT with a 0.15=m gate lengthV s = 0.0 V
using model 1. (b) For a & 60 ym width pHEMT with 0.15x¢m gate length, andVps = 1.5 V.

Vas = 0.3 VandVps = 1.5V, simulated using model 2.

vice does not make any important difference in bandwidth, thus,
from this point, it will not be addressed the specific model used
in each figure, both give similar predictions. It is also important

to note that these models were extracted in these cases at 2 GHz,
and the bandwidth is achieved by the nonquasi-static charge for-
mulation based on linear delays.

We have also observed that a proper selection of the inte-
gration path can enhance the accuracy over a given region of
operation. We have used this knowledge to improve model be-
havior for special applications, like class-B amplifier operation
(see Fig. 8).

V. MODEL VALIDATION UNDER LARGE-SIGNAL CONDITIONS

S, Radius = 0. 5

meas  Preq: 0.5 to 118.5 GHz

Large'-S|gnaI FET Qperatlon can be charapterlzed using tﬂ@ 8. Measured and simulateegbarameters for a % 60 m width pHEMT
conventional harmonic output power versus input power, gaiith a 0.15xm gate lengthVas = —1V andVps = 1.5 V (class B).

and efficiency versus input power or impedance terminations.

Recently, it has also been addressed the necessity of charatégistics, input dynamic trajectory, etc. With this information, we
izing the large-signal device dynamic behavior [30]: input angket a better knowledge of device behavibV regions where

output waveforms, dynamic loadline, dynamic transfer chargeewer saturation takes place, optimum terminations for max-
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10 4 Pfund_meas ¢ —~ 15 20 — Pfund_meas & asa g
PHarm2_meas + PHarm?2_meas + I~
5 _|PHarm3_meas a & 1~ 10 10 —{ PHarm3_meas O
- Pfund_sim — R _ Pfund_sim — 0
g o_|PHam2 sim - et 5 g E 0—PHarm2_sim - g ™
= PHarm3_sim - - : . =1 2 PHarm3_sim # ?Qgg‘m |E’
A - | - _ ] .
E 5 & 0% E 10 d ~-10 2
T 4 L5 & T 20 Ll =
5-10 # & g 20 &
S Fp —-105, S 30— ES
i B
-15 — {4 L .15 -40 - 30
d P4
204 © - - 20 -50
| | 1 | | | T T | |
30 20 -10 0 10 20 3 20 10 0 10
Pin [dBm] Pin [dBm)]
a,
Fig. 9. Measured and simulated fundamental (16 GHz), second (32 GHz) and @
third (48 GHz) harmonic output power for a4 60 pm width pHEMT with a 0—
0.15um gate lengthVgs = —0.5 V andVps = 1.5 V (class AB). n
L4 )
.10 -{ PHarm4_meas +
imum output power [31], etc. This characterization can be per- g PHarm5_meas o ;
. R .. % PHarm4_sim — e +
formed with the Microwave Transition Analyzer (MTA)-based = 20—~ PHarm5_sim ---- %
systems [32]-[34]. E ¢
In this study, large-signal measurements have been done T 30
using an on-wafer vector-calibrated large-signal measurement QS_
system based on the MTA [33]. Fig. 9 compares measured -40 —
and simulated output power levels versus input power for the .,
fundamental (16 GHz), second (32 GHz), and third harmonics -50 — | — | |
(48 GHz, out of the system guaranteed bandwidth). Figs. 10 30 20 -10 0 10
and 11 show similar plots for the same device, but at different Pin [dBm]
fundamental frequencies and bias points. In general, excellent ()

results have been obtained with different devices in the range
of fundamental frequencies checked (from 2 to 20 GHz). Fi_g. 10. Meas_ured and simulated harmonic output povyer fora @0 pm
. . . width pHEMT with 0.15¢m gate lengthV,s = —1 VandVps = 1 V (class

Fig. 12 shows the measured and simulated input and outg{lta) Fundamental (8 GHz), second and third. (b) Fourth and fifth.

dc currents versus input power in a class-B bias point and at a

fundamental frequency of 8 GHz. As can be seen, the device 20 — 0

self-biasing behavior is accurately predicted. Pfund_meas o
Fig. 13 shows a comparison between measured and simu- PHarm2_meas +

lated large-signal input and output waveforms, measured and llzgl:ﬁg;gm o

simulated dynamic loadline and transfer characteristics at a fun-

damental frequency of 8 GHz (five harmonics have been used

for waveform construction). Not only the RF global behavior

can be perfectly predicted using both models, but also the RF

dynamic behavior and the static dc bias point (due to the in-

clusion of the low-frequency dispersion modeling, as discussed s

above). It is important to note the shape of the measured load- -20 4 I | ki | i~ -20

line. Clearly, even if the measurement system is nominally a 30 20 10 0 10

50-2-load system, the load presented at the device also has re- Pin [dBm]

active components. To account for this fact, we have used the

information obtained from the calibration coefficients to get thigg- 11. Measured and simulated fundamental (20 GHz) and second harmonic

. . . 40,GHz) output power levels for a # 60 pm width pHEMT with 0.15xm
actual impedance values presented at device terminals at e[‘%aaqguengthyas =0VandVps = 1.5 V (class A).
harmonic frequency. These values were, therefore, applied to

:jr;ﬁoiiing]termlnals in the simulations under large-signal “Facted and validated these modeling approaches in the same

. . r{1easurement system [32], [35]. Excellent results have been ob-
It is important to note that, when comparing measuremenis ; - .
. . . o ained under different load conditions and class-B device oper-
and simulations under large-signal conditions, the effect of th(ta
- . . ) X ; ation [32], [35].
uncertainties (calibration differences, bias tees resistances un-
certainties, probe tips position, etc.) associated with the use of
two different measurement systems, to extract and validate these
models, must be considered. To get a more accurate compaiScaling of the nonlinear models with gatewidth is also

ison in which these uncertainties can be avoided, we have ex- important issue. To achieve this, we must first be sure

[dBm]
=
]

[tgp] punyinog

Pout_Harm

VI. SCALABILITY
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Fig. 12. Measured and simulated input and output dc currents versus input @)
power for a 4x 60 pm width pHEMT with 0.15¢m gate length. Fundamental .
frequency: 8 GHzVgs = —1 V andVpg = 1.0 V (class B). — Pfund_sim
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] 3 using a simplified nonquasi-static scalable model extracted fronx &8 p:m
E 100 — £100 - F width pHEMT with 0.15¢m gate lengthls = 0 VandVps = 1.5 V (class
50 — - A). (a) 2 x 60 pm device, fundamental frequency: 20 GHz. (b)x445 um
04 0 Bt device, fundamental frequency: 8 GHz.
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00 05 In this study, we have checked the scalability of the model

under large-signal conditions. For that purpose, we extracted a
(d) scalable model from a 4 60 »m width device (four fingers,

Fig. 13. Measured and simulated waveforms forxa 80 ¢m width pHEMT and 60ﬂm unit f'nger width) and scaled 't.to d'ﬁ_erent d.eVICe.
with 0.157:m gate length. (a) Input voltage and current. (b) Output voltage a@eometries. In Fig. 14, the results of the simulations using this
current. (c) Measured and simulated dynamic transfer charactétistiersus model scaled to 2m x 60 um [see Fig. 14(a)] and % 45 ;m

Vis). (d) Measured and simulated dynamic loadlidg versusVy,). Vas = . . .
5V and Vi = 1.0V (class B). Fundamental frequency 8 GHR,. = 6 [seehFd|g. _14(b)] devices are compared with the measurements of
such devices.

dBm andP,,; (fundamental}= 10 dBm.

VII. A PPLICATION TO MONOLITHIC-MICROWAVE

that technology is experimentally scalable (e.g., comparin
9y P y (e.g P 9 INTEGRATED-CIRCUIT DESIGN

gatewidth-normalized dd-V curves from devices having
different widths), and that the proper scaling rules for device The simplified nonquasi-static models discussed in this
parasitics are used (e.g., check parasitics with linear modpbper have been successfully used for monolithic-microwave
for different gatewidths). The scalability of the models dentegrated-circuit (MMIC) designs for applications in the mil-
veloped in this work has been checked previously by thieneter-wave region. As an example, different configurations
authors by comparing gatewidth-normalized current and char@ngle-ended and balanced) GaAs pHEMT frequency doublers
large-signal relations from devices having different gatewidtloperating at 76 GHz have been designed with MDS and
[15]. Also, the ability of the scaled model to predict theealized in coplanar technology demonstrating state-of-the-art
small-signals-parameters of devices with different gatewidthperformance [36].

has been confirmed [15]. The scaling of the parasitics haveFig. 15(a) shows the good agreement obtained between the
been performed following first-order generally accepted scalimgeasured and simulated second harmonic (76 GHz) output
rules. power versus the input power (38 GHz) for a frequency doubler



FERNANDEZ-BARCIELA et al. BROAD-BAND LARGE-SIGNAL NONQUASI-STATIC TABLE-BASED FET MODEL

403

can be scaled with gatewidth and successfully used in MMIC
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