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Abstract—In this paper, a partially prism-gridded finite-differ-
ence time-domain (FDTD) method is proposed for the analysis
of practical microwave and millimeter-wave planar circuits.
The method is featured by hybridizing the flexible prism-based
finite-element method to handle the region near the curved
metallization boundary and the efficient rectangular-gridded
FDTD method for most of the regular region. It can be used
to deal with shielded or unshielded planar components such as
patch antennas, filters, resonators, couplers, dividers, vias, and
various transitions between planar transmission lines. Although
only representative structures, e.g., grounded via, through hole
via, and coplanar waveguide to coplanar stripline transition, are
analyzed in this paper, the underlined formulation is applicable to
layered structures with arbitrary curved boundary in transverse
direction. The accuracy of this method is verified by comparing
the calculated results with those by other methods. Also, by
the analysis of computational complexity, the present method is
shown to be as efficient as the conventional FDTD method, with
negligible overhead in memory and computation time for handling
the curved boundary.

Index Terms—Curved boundary, FDTD method, finite-element
method, layered structure.

I. INTRODUCTION

T HE finite-difference time-domain (FDTD) method has
found a lot of applications in dealing with various electro-

magnetic problems. Originally developed for structures that can
fit well into Cartesian coordinates [1], it suffers from significant
degradation in accuracy for structures with a curved boundary
due to the staircasing approximation. Several attempts have
been tried to alleviate the drawback by exploiting conformity
to the solution region [2]–[15]. A curvilinear coordinate
system was introduced in [2] to globally model the structure
of interest. As compared with the original FDTD, the scheme
requires additional memory to store the coordinates and spends
significantly larger computation time in updating the field, even
in most of the regular region. An improved scheme is to employ
the locally conformed scheme [3], [4] so as to preserve the
advantages of conventional FDTD as much as possible. Relying
on the integral form of Maxwell’s equations, both schemes
suffer from worse accuracy due to a larger discretization error
of first order. In addition, special attention should be paid so

Manuscript received August 25, 1998; revised December 10, 1999. This work
was supported in part by the National Science Council, R.O.C., under Grant
NSC 87-2213-E002-059.

The authors are with the Department of Electrical Engineering, Graduate
Institute of Communication Engineering, National Taiwan University, Taipei,
Taiwan 10617, R.O.C.

Publisher Item Identifier S 0018-9480(00)02065-2.

as not to make the algorithm unstable. Following the same
approach, a generalized Yee algorithm is recently proposed
to deal with planar circuits [5], but suffers from a similar
discrepancy.

The subgridding method that divides the whole solution re-
gion into several orthogonal-gridded regions with different cell
sizes [6], [7] has the advantages of improved accuracy without
sacrificing computational efficiency. In these schemes, fields
are calculated with central finite-difference formulas and inter-
polated on the boundaries between different regions. Basically
relying on rectangular grid, the approach may require massive
small cubic cells to model arbitrary boundary or else suffer from
staircasing approximation. The small cells call for a proportion-
ally short time division for the stability consideration. In addi-
tion, the interpolation along region boundary may degrade the
accuracy of the results.

To have a closer fit to the curved boundary, some define
the local nonorthogonal grid near the curved surfaces and
transfer the fields back and forth in the overlapping region by
interpolation [8], [9]. Based on the volume integral equation in
nonorthogonal regions, a better approximation for surface inte-
gration of fields is also incorporated to improve the accuracy
of the results. Another special approach is to carefully choose
a nonuniform rectangular mesh such that the curved boundary
either coincides the mesh or intersects the mesh across the
diagonal [10]. In case of a metallic boundary, it is possible to
derive a modified formula for updating the magnetic field at
the resultant triangular cell along the boundary. Usually, this
approach involves several graded meshes, in which, a shorter
time step is required in order to comply with the stability
criterion.

Recently, a very versatile and accurate hybrid method is pro-
posed that employs the conventional FDTD method for most of
the regular region and introduces the tetrahedral edge-based fi-
nite-element method (FEM) to model the region near the curved
surfaces [11], [12]. Numerical results of simulation validate that
the hybrid method has the advantages of accuracy, flexibility,
and computational efficiency.

For most microwave devices, such as planar circuits, waveg-
uides with step transitions, and packaging interconnections, the
structures can be longitudinally divided into several building
layers inside which the material and conductors can be of ar-
bitrary shape in the transverse directions. In the simplest case,
such as microstrip or stripline structures with thin substrate, the
problem can be approximated by a two-dimensional one. Some
time-domain methods capable of modeling the curved boundary
have been proposed, e.g., [13] and [14]. These methods employ
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a conformal mesh near the curved boundary and derive special
formulas for updating the field in the irregularly shaped cells.
The solution schemes are explicit, but special care should be
taken in mesh arrangement so as not to make algorithm unstable.

For most general multilayer cases, Righiet al.has proposed
an approach that hybridizes a transmission-line matrix (TLM)
with the mode-matching method for the enclosed region due to
the housing [15]. Capable of modeling the housing region semi-
analytically, the approach can be very efficient for some layered
structures, but fails to deal with curved boundary accurately and
efficiently. Thus, a new approach is proposed in this paper. The
mesh call for triangular cells near the curved boundary in the

– directions while remaining a rectangular grid in the-di-
rection. It do not involve the generation of tetrahedral cells and
the relatively time-consuming matrix solution of a three-dimen-
sional (3-D) FEM required in [12]. This novel method employs
two-dimensional hybrid finite-difference (FD)–FEM–time-do-
main (TD) method in each layer [11] and FD method to link the
relationship of fields between layers along the-direction.

Following this section, the novel hybrid method for objects
with arbitrary curved boundary in transverse direction is men-
tioned in Section II. The computational aspects such as time
marching, matrix solution, and computational complexity are
addressed in Section III. In Section IV, the present scheme is
applied to deal with problems of via interconnections and of
planar circuit transition, demonstrating its flexibility and effi-
ciency. The accuracy is also verified by comparing the calcu-
lated results with those by other methods or experiments. Fi-
nally, brief conclusions are drawn in Section V.

II. PRISM-GRIDDED FEM

A. Mesh Division

Consider an illustrative example of a microstrip line with a
cylindrical grounded via [see Fig. 1(a)]. It is natural to employ
a uniform grid in the -direction, but the staircasing approxima-
tion involved in modeling the curved via boundary in the–
plane may cause a significant error. A better remedy is to em-
ploy the triangular divisions in modeling the region near the via
while the regular FDTD grid elsewhere, as shown in Fig. 1(b).
Consequently, along the curved boundary there are four to five
layers of prism cells formed by the triangular elements in the
transverse plane together with the uniform grid in the-direc-
tion. Note that the region directly above the microstrip can be
modeled by the conventional FDTD with a regular grid. The
tangential electrical field at the surface of microstrip is zero and,
consequently, the conflict of cell shape below and above the mi-
crostrip line causes no problems.

Fig. 2 shows the field discretization in a prism cell. The trans-
verse components are located in the layers with integer
coordinates, while the longitudinal componentsin the layers
with a half-integer of . As a result, the electric-field un-
knowns near the interface between the FEM and FDTD regions
may coincide with each other exactly. No interpolation scheme
need be employed when communicating between the FEM and
FDTD solutions in the overlapping region.

(a)

(b)

Fig. 1. (a) Geometry of microstrip with a grounded via. (b) Mesh division near
and under the grounded via.

Fig. 2. Prism element and assignment of unknown fields.

B. Weak-Form Formulation in FEM Region

Starting from the source-free Maxwell’s two curl equations
in a linear isotropic region, the vector-wave equation can be
obtained as

(1)

The equation can be cast into the weak form by applying the
variational reaction theory [16], and considering the inner
product between (1) and an arbitrary testing field on one
layer of the FEM region. To be more specific, choose a trans-
versely polarized field in the plane as the testing
field. By performing integration by part and some algebraic
simplifications, one may obtain

(2a)
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Here, denotes the transverse del
operator, , the transverse components of the electric field,
and , the -component. Similarly, in the
plane, one assures that the desired field should satisfy

(2b)

for the arbitrary testing field .
Note that (2a) calls for the derivative of with respect to

in the plane. This can be accurately approximated by using
the central difference scheme, which, in the present case, re-
quires the unknowns in the and
planes. Similarly, the term in (2b) requires the trans-
verse unknowns in the and planes.

C. Basis Functions

The weak forms of (2) can be discretized into matrix forms by
choosing suitable basis functions. Here, the cross-sectional area
is subdivided into small triangular elements. The longitudinal
component inside an element is expressed by node-based
interpolation functions, i.e.,

(3)

where ’s, denote the three natural coordinates of
the element, and ’s the nodal unknowns. On the other hand,
the transverse component is expanded by

(4)

where ’s are the edge-based Whitney functions [17] and
’s the edge unknowns. For example,

is the average tangential-field component along the side
from nodes 2 to 3, and is the side length.

Taking integration with respect to the basis functions and ap-
plying the Ritz procedure, one may reduce (2) to two systems
of coupled differential equations for transverse and longitudinal
components. This is a normal FEM solution approach and can
be referred to typical textbooks, e.g., [17].

D. Matrix Equations

The remaining terms need to be discretized in (2), which
is the differentiation with respect to time. Based on the
Crank–Nicolson scheme, we apply the central FD method with
respect to the variable and, in addition, take timing average

for the first term in (2) to achieve unconditional stability [12].
The final time-marching equations in the FEM region are

(5a)

and

(5b)

in which

Here, is the stability factor, the superscript
of and stands for the time step, while the subscript
denotes the layer index in the-direction.

E. Discussion on Computational Efficiency

It is interesting to compare the computational load between
the present method and the hybrid FDTD methods proposed in
[12], [18] when applying for layered structures. For simplicity,
consider the structure shown in Fig. 1(a). The region around the
via is discretized into prism grids, as shown in Fig. 1(b), and
solved by the FEM. Note that the cross section of each layer is
identical, hence, the matrices depicted in (5) need be stored and
preprocessed for one layer only during numerical simulation.
Even for more general structures with several different kinds of
layers, the memory requirement for the present method is much
smaller than that for the other two hybrid FDTD methods.

As to the computation time, the present method that is based
on the Cholesky LU decomposition method [19] as employed
in [11], for each layer is superior to the hybrid method in [12],
which is based on the conjugate gradient method. At each time
step, the present method involves an efficient forward substitu-
tion followed by backward substitution. The operation count for
each substitution equals the number of unknowns multiplied by
the bandwidth of the matrices, which is estimated to be about
ten [11] for most structures. On the contrary, the other two hy-
brid FDTD methods, which call for matrix solution for a 3-D
problem are much more time consuming. At each time step,
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there are usually quite a few iterations of matrix vector mul-
tiplication until convergence. It also deserves mentioning that
the number of unknowns involved in the present prism gridded
mesh is about half of that in the tetrahedral gridded mesh [12]
since the tetrahedral mesh will introduce additional unknowns.
This contributes much to the advantage of the present method.

III. COMPUTATIONAL ASPECTS

A. Time-Marching Scheme

Separate time-domain analyses are employed for solving the
Maxwell’s equations in the FDTD and FEM regions. However,
some type of handshaking process is required to transfer back
and forth the computed data for the interface of the two regions.
The time-marching scheme for the hybrid method is similar to
that described in [12], except that the electric fields in the FEM
region are computed by (5) layer by layer at each time step.

For example, to obtain the transverse electric field on
the th layer at time step by (5a), one
calls for the values on neighboring layers in previous
two time steps as initial conditions or, more specifically,

at time
step and at time step . In addition, one require the
given transverse electric fields along the boundary of the FEM
region on the same layer at time step as the boundary
conditions. These boundary conditions should be provided by
the FDTD simulation in the FDTD region. Similarly, solution
for the longitudinal electric field on layer
at time step by (5b) requires
at time step and at time step , as well as the
given nodal values on the same layer at time step along
the boundary of the FEM region.

Once the interior fields in the FEM region are solved, the
values on the contour next to the exterior boundary of the FEM
region can be passed to the FDTD region for the updating of the
magnetic field at the next half time step. The electric fields in
the FDTD region at time step can then be obtained and
the whole time-marching procedure continues.

B. Matrix Solution

The unknown fields and in the FEM region need
be solved by (5) implicitly at each time step. The matrices
and remain the same, while right-hand-side (RHS) vec-
tors change versus time step. The Gaussian elimination method
based on Cholesky LU decomposition [19] is especially advan-
tageous for the present case of multiple RHS vectors. In the
pre-processing, the matrices and are decomposed
into multiplication of a lower triangular and a upper triangular
matrices. The matrix decomposition is time consuming, but re-
quires to be executed once. The unknown fields at each time
step can then be obtained by forward and backward substitution,
which is an explicit updating scheme like FDTD. The operation
count for each unknown by either the forward or backward sub-
stitution is proportional to the bandwidth of the matrices. For
the storage of the matrices, the skyline scheme of variable band-
width is employed. In addition, the unknowns are renumbered
appropriately by the Collin’s algorithm [20] so as to reduce the
largest bandwidth.

C. Absorbing Boundary Condition

The present hybrid method can be applied to deal with both
shielded and unshielded problems. In the shielded cases, where
the perfect electric conductor (PEC) planes coincide with the top
and bottom surfaces of the FEM region, the Dirichlet boundary
condition is employed without difficulty.

In the unshielded cases, some sort of absorbing boundary con-
ditions should be employed to reduce the wave reflection that
resulted from the artificial lattice truncation. For some exam-
ples, e.g., the grounded via structure shown in Fig. 1, the FEM
region is bounded to a finite size not only in the transverse direc-
tion, but also the -direction. As a result, all the exterior space
is modeled by the conventionally FDTD and all the available
absorbing boundary conditions can be directly resorted to. For
other examples, the FEM region may be required to extend to
the top and bottom layers where (5) is not applicable for lack of
the fields in the next layers. Some absorbing boundary condi-
tions, e.g., the perfectly matched layer method [21], may fail for
the present case in which the cell is not rectangular in the trans-
verse directions. Nonetheless, other absorbing boundary condi-
tions, e.g., the first-order Mur’s scheme [22], which rely on a
uniform division in the direction normal to the boundary, can be
employed. Additionally, on the boundary of the FDTD region
elsewhere, the super-absorbing method [23] can be incorporated
to further absorb the undesired reflections from the lattice trun-
cation boundary.

D. Computational Complexity

It is interesting to investigate the computational complexity
of the additional FEM processing as compared with the con-
ventional FDTD method. This can be treated as the overhead
required by the FEM in improving the solution accuracy. To fa-
cilitate the analysis, consider the example of the grounded via
structure shown in Fig. 1(a). Choosing a smaller FDTD division
size will increase the number of division in each direc-
tion. The total number of variables and, thus, the required
memory for FDTD in the regular region, is in the cubic order
of or written as . The number of divisions re-
quired to model the curved surface is proportional to, while
that in the normal direction remains nearly invariant. As a result,
the number of unknowns in FEM region is .
Arguably, the memory required for storing the matrices in (5)
is comparatively small. One needs to store the matrix elements
for one layer only. The memory requirement is roughly ,
where is the average bandwidth and, in this case, remains
nearly the same as increases. Therefore, the dominant part
is the storage for the additional unknowns and the FEM over-
head in memory is .

As for the computation time, the present hybrid analysis ad-
ditionally requires FEM preprocessing for the matrix setup and
the matrix solution at each time-marching step. The FEM pre-
processing includes the housekeeping management for mesh, el-
ement integration, matrix assembly, and the last, but usually the
most time consuming, matrix decomposition into the LU form.
Since it need only be done once and with the largest operation
count proportional to , the required time is negligible
as compared with the total simulation time. During the time
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Fig. 3. Transmission coefficient along a microstrip with grounded via.
Comparison between the present method and other numerical methods. The
microstrip is of width 2.3 mm and height 0.8 mm, the via diameter is 0.6 mm,
and the substrate is of dielectric constant 2.32. The solution region is basically
divided into 110� 70� 30 cells(� = 0:1 mm,� = 1:67 ps) with eight
perfectly matched layers.

Fig. 4. Scattering parameters of a through-hole via. Comparison is between
the simulated results and the measured data. The microstrip is of width 1.6
mm and height 3.3 mm, the diameters of the rod and the clearance hole are
1.5 and 3.9 mm, respectively, and the substrate is of dielectric constant 3.4. The
simulation region is basically divided into 70� 80� 48 cells with� = � =
0:206 mm,� = 0:4 mm, and� = 0:333 ps.

marching, the unknowns in the FEM region at each time step
is solved by forward and backward substitution with operation
count proportional to . Since is almost indepen-
dent of , the FEM overhead in computation time turns out to
be .

IV. NUMERICAL RESULTS

A. Grounded Via

The hybrid method is employed to characterize the microstrip
with cylindrical grounded via shown in Fig. 1(a). The region
around and under the rod is modeled by prism-gridded FEM.
Fig. 3 compares the calculated scattering parameters with those
by two staircasing FDTD analyses [18], for which one staircases
the via to the inner boundary, while the other staircases the via
to the outer boundary. As expected, the results by the present hy-
brid method lie somewhere in between. The dashed curve also
shown in the figure for comparison is redrawn from the liter-
ature [24], which is based on the mode-matching method, but
assuming an outer shielding box. Good agreement can be no-
ticed.

Fig. 5. Calculated scattering parameters of a through hole via with connecting
angle� = 0 , 90 , and180 as a parameter. The microstrip is of width
0.254 mm and height 0.239 mm, the diameters of the via and clearance hole
are 0.254 mm and 0.508 mm, respectively, and the substrate is of dielectric
constant 4.3. The solution region is basically divided into 86� 56� 48 cells
with � = � = 0:02117 mm,� = 0:05959 mm, and� = 0:0353 ps.

Fig. 6. Scattering parameters versus the connecting angle� with the frequency
= 20 GHz and60 GHz. All other structural parameters are the same as those
in Fig. 5.

Fig. 7. Scattering parameters versus the diameter ratio of via to hole at
frequency= 20 GHz. The via diameter is chosen as a parameter, while all
others are the same as those in Fig. 5.

B. Through Hole Via

The second example considered here is the signal transmis-
sion across the microstrip lines on different layers by a through
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hole via, as shown in the inset of Fig. 4. The region near the
curved boundary is discretized into prism cells and solved by
the FEM, with the fields in the top and lower layers approx-
imated by first-order Mur’s boundary condition [22]. The re-
gion elsewhere is handled by the conventional FDTD, with a
super-absorbing [23] first-order Mur boundary condition for the
lattice truncation. Fig. 4 compares the calculated results with
those by the measurement [25]. Good agreement verifies that the
present method is capable of characterizing objects with curved
boundary.

It is interesting to investigate the influence on scattering char-
acteristics if the two connected lines are oriented along different
directions. The structure is shown in the inset of Fig. 5. Note that
the geometric parameters chosen here are typical for realistic ap-
plications in multichip modules. The characteristic impedance
of the microstrip is about 50. The simulation approach is sim-
ilar to the previous example. Fig. 5 shows the scattering pa-
rameters versus frequency with connecting angle , ,
and as a parameter. It is found that the transmission re-
mains good and almost independent ofat low frequencies,
say, GHz. This supports the formulation and conclu-
sions in [26], which assumes a symmetric field distribution on
the clearance hole. It is also noticed that the transmission char-
acteristics of the through-hole via degrade significantly at high
frequencies, say, GHz. The degradation is strongly
dependent on the connecting angle. In those cases, the di-
ameter of the clearance hole can be as large as one-quarter of
the wavelength. The field distribution around the via becomes
highly asymmetric and should be carefully modeled to yield ac-
curate results.

In case of an arbitrary connecting angleother than 0, 90 ,
and 180, no proper rectangular grid in the FDTD region can
fit the two microstrip lines simultaneously. The problem is di-
vided into two subregions, one is above the ground plane, while
the other is below the ground plane. In general, the FDTD grids
for the two subregions are tilt from each other. Notice that the
two subregions overlap on the clearance around the via on the
ground plane. Through the present method, we can carefully ar-
range different buffer meshes in these two subregions so that
the identical triangular mesh on the clearance area can match
to their individual FDTD grid on the outer boundary. Hence,
the communication between those two subregions can be estab-
lished by transferring the values of the unknowns on the clear-
ance area to each other at each time step. Fig. 6 shows the calcu-
lated scattering parameters versus the connecting anglewith
the frequency GHz and GHz as a parameter.

Fig. 7 shows the calculated scattering parameters at 20 GHz
with the diameter of the via as a parameter while fixing

mm. The conventional FDTD may find difficulties
in modeling both the via and hole accurately with such an
arbitrary aspect ratio. However, the present hybrid method
can model planar structures of a curved boundary and yield a
satisfactory resolution. It can be found that better transmission
can be resulted by a thinner via, as depicted in [26].

C. CPW to CPS Transition

The final example to be analyzed here is the coplanar wave-
guide (CPW) to coplanar stripline (CPS) transition with the

Fig. 8. (a) Layout of a CPW to CPS transition. (b) Comparison of the
calculatedjS11j andjS21j with measured data. The substrate is of height 25
mil and dielectric constant 9.8.

layout shown in Fig. 8(a). This transition was proposed by [27],
aiming at maximizing the bandwidth and minimizing the inser-
tion loss. In this simulation, the spatial increments is 0.01524
mm and time increments are 0.0254 ps. The prism-gridded FEM
is applied to deal with the region near the taper boundary, while
the conventional FDTD is employed elsewhere, including the
staircase approximation for the bond wires. Two PEC planes
are placed 30 cells away from the planar circuit on the upper
and lower boundaries, which do not exist in the measurement
[28]. Roughly speaking, the whole simulation region is divided
into 260 80 60 cells with eight perfectly matched layers
imposed on all the other walls. For the measurement, the tran-
sition structure of interest is placed in a back-to-back configu-
ration. Fig. 8(b) compares the calculated scattering parameters
with the measured data. Good agreement is obtained.

D. Numerical Experiment for Computational Complexity

The experiment on computational efficiency of the present
hybrid method is finally addressed. Due to the incorporation
of the FEM, the method requires additional computation time
and memory in mesh generation, matrix calculation, and ma-
trix decomposition during the preprocessing, as well as in the
matrix solution during the time marching. The grounded via
problem described above is used as an example for a numerical
experiment by tuning the division number per direction. Table I
compares the required central processing unit (CPU) time and
memory storage to those in the conventional FDTD algorithm.
It is clearly verified that the overhead in the memory and CPU
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TABLE I
COMPARISON OF THECOMPUTATION TIME AND MEMORY BETWEEN THEPRESENTMETHOD AND THE CONVENTIONAL FDTD METHOD

time for the present hybrid method is relatively insignificant and
becomes smaller for a finer mesh.

V. CONCLUSIONS

The prism-gridded FEM has been successfully incorporated
with a conventional FDTD method to deal with planar circuits
with transversely curved boundary. This approach has been ap-
plied to characterize problems such as vias in packaging inter-
connections and transition between different transmission lines.
In essence, it can also be generalized to deal with various struc-
tures such as planar circuits, waveguides with step transition,
and whatever can be longitudinally divided into several building
layers. Owing to the flexibility provided by the FEM, the present
scheme can easily model structures with objects of arbitrary as-
pect ratio in shape, which is hard to access by the conventional
FDTD.

The additional computational load of the present method
in comparison with the conventional FDTD method has been
analyzed both theoretically and numerically. In theory, the
overhead of the FEM in memory and the CPU time require-
ment is inversely proportional to the division number per di-
rection and, thus, negligible for fine mesh. In practice,
simulation results depicts that the present method remains
very efficient, with computational overhead 15% smaller for
most applications.
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