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Abstract—in this paper, a partially prism-gridded finite-differ-  as not to make the algorithm unstable. Following the same
ence time-domain (FDTD) method is proposed for the analysis approach, a generalized Yee algorithm is recently proposed

of practical microwave and millimeter-wave planar circuits. ; T s
The method is featured by hybridizing the flexible prism-based g?sg,iia\.{]vg; planar circuits [5], but suffers from a similar

finite-element method to handle the region near the curved L L .
metallization boundary and the efficient rectangular-gridded The subgridding method that divides the whole solution re-

FDTD method for most of the regular region. It can be used gion into several orthogonal-gridded regions with different cell

to deal with shielded or unshielded planar components such as sjzes [6], [7] has the advantages of improved accuracy without
patch antennas, filters, resonators, couplers, dividers, vias, and gacrificing computational efficiency. In these schemes, fields
various transitions between planar transmission lines. Although . - . .

only representative structures, e.g., grounded via, through hole &r€ calculated with cent.ral f|n|te—d|ﬁer9nce formu_las and mter-

via, and coplanar waveguide to coplanar stripline transition, are Polated on the boundaries between different regions. Basically
analyzed in this paper, the underlined formulation is applicable to relying on rectangular grid, the approach may require massive
layered structures with arbitrary curved boundary in transverse  small cubic cells to model arbitrary boundary or else suffer from

direction. The accuracy of this method is verified by comparing giaircasing approximation. The small cells call for a proportion-

the calculated results with those by other methods. Also, by . s o . . .
the analysis of computational complexity, the present method is ally short time division for the stability consideration. In addi-

shown to be as efficient as the conventional FDTD method, with tion, the interpolation along region boundary may degrade the
negligible overhead in memory and computation time for handling accuracy of the results.

the curved boundary. To have a closer fit to the curved boundary, some define
Index Terms—Curved boundary, FDTD method, finite-element  the local nonorthogonal grid near the curved surfaces and
method, layered structure. transfer the fields back and forth in the overlapping region by

interpolation [8], [9]. Based on the volume integral equation in
nonorthogonal regions, a better approximation for surface inte-
gration of fields is also incorporated to improve the accuracy
HE finite-difference time-domain (FDTD) method hasf the results. Another special approach is to carefully choose
found a lot of applications in dealing with various electroa nonuniform rectangular mesh such that the curved boundary
magnetic problems. Originally developed for structures that caither coincides the mesh or intersects the mesh across the
fit well into Cartesian coordinates [1], it suffers from significantliagonal [10]. In case of a metallic boundary, it is possible to
degradation in accuracy for structures with a curved boundatgrive a modified formula for updating the magnetic field at
due to the staircasing approximation. Several attempts halie resultant triangular cell along the boundary. Usually, this
been tried to alleviate the drawback by exploiting conformitsipproach involves several graded meshes, in which, a shorter
to the solution region [2]-[15]. A curvilinear coordinatetime step is required in order to comply with the stability
system was introduced in [2] to globally model the structurgriterion.
of interest. As compared with the original FDTD, the scheme Recently, a very versatile and accurate hybrid method is pro-
requires additional memory to store the coordinates and spepdsed that employs the conventional FDTD method for most of
significantly larger computation time in updating the field, evethe regular region and introduces the tetrahedral edge-based fi-
in most of the regular region. An improved scheme is to empleyte-element method (FEM) to model the region near the curved
the locally conformed scheme [3], [4] so as to preserve tRarfaces [11], [12]. Numerical results of simulation validate that
advantages of conventional FDTD as much as possible. Relyithg hybrid method has the advantages of accuracy, flexibility,
on the integral form of Maxwell's equations, both schemesd computational efficiency.
suffer from worse accuracy due to a larger discretization errorFor most microwave devices, such as planar circuits, waveg-
of first order. In addition, special attention should be paid sgides with step transitions, and packaging interconnections, the
structures can be longitudinally divided into several building
. . , _layers inside which the material and conductors can be of ar-
Manuscript received August 25, 1998; revised December 10,1999.Th|swﬁ{rary shape in the transverse directions. In the simplest case
was supported in part by the National Science Council, R.O.C., under Gr. ,
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Institute of Communication Engineering, National Taiwan University, Taipe . .
Taiwan 10617, R.O.C. ime-domain methods capable of modeling the curved boundary
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a conformal mesh near the curved boundary and derive spe«
formulas for updating the field in the irregularly shaped cells
The solution schemes are explicit, but special care should
taken in mesh arrangement so as not to make algorithm unstal
For most general multilayer cases, Rigiialhas proposed
an approach that hybridizes a transmission-line matrix (TLN
with the mode-matching method for the enclosed region due
the housing [15]. Capable of modeling the housing region sen4
analytically, the approach can be very efficient for some layer
structures, but fails to deal with curved boundary accurately ana
efficiently. Thus, a new approach is proposed in this paper. The
mesh call for triangular cells near the curved boundary in the
x—y directions while remaining a rectangular grid in theli-
rection. It do not involve the generation of tetrahedral cells and
the relatively time-consuming matrix solution of a three-dimen-
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sional (3-D) FEM required in [12]. This novel method employs S QE [>T
two-dimensional hybrid finite-difference (FD)-FEM-time-do- i‘iﬁ%‘;’}“é Al "
main (TD) method in each layer [11] and FD method to link the .’. .

relationship of fields between layers along thdirection.
Following this section, the novel hybrid method for objects
with arbitrary curved boundary in transverse direction is men-
tioned in Section Il. The computational aspects such as time
marching, matrix solution, and computational complexity are
addressed in Section IlIl. In Section IV, the present scheme is
applied to deal with problems of via interconnections and of
planar circuit transition, demonstrating its flexibility and effiFig. 1. (a) Geometry of microstrip with a grounded via. (b) Mesh division near
ciency. The accuracy is also verified by comparing the calc@d under the grounded via.
lated results with those by other methods or experiments. Fi-
nally, brief conclusions are drawn in Section V.

(b)

Il. PRISM-GRIDDED FEM

A. Mesh Division

Consider an illustrative example of a microstrip line with @ig 2
cylindrical grounded via [see Fig. 1(a)]. It is natural to employ =
a uniform grid in thez-direction, but the staircasing approximaB. Weak-Form Formulation in FEM Region

tion involved in modeling the curved via boundary in they  giarting from the source-free Maxwell's two curl equations

plane may cause a significant error. A better remedy is 10 e 5 |inear isotropic region, the vector-wave equation can be
ploy the triangular divisions in modeling the region near the Vigyisined as

while the regular FDTD grid elsewhere, as shown in Fig. 1(b). -

Consequen.tly, along the curved bouqdary there are four.to five V x <EV % E) 1 Ca_E —o. L

layers of prism cells formed by the triangular elements in the 7 ot?

transverse plane together with the uniform grid in thdirec- The equation can be cast into the weak form by applying the

tion. Note that the region directly above the microstrip can hariational reaction theory [16], and considering the inner

modeled by the conventional FDTD with a regular grid. Thproduct between (1) and an arbitrary testing fiéld on one

tangential electrical field at the surface of microstrip is zero anhyer of the FEM region. To be more specific, choose a trans-

consequently, the conflict of cell shape below and above the mersely polarized fielo@g inthe z = kA, plane as the testing

crostrip line causes no problems. field. By performing integration by part and some algebraic
Fig. 2 shows the field discretization in a prism cell. The transimplifications, one may obtain

verse componen@p are located in the layers with integér, .

coordinates, while the longitudinal componeatsin the layers / EV X BV x B4 cBe. >E,
; : . P P pTE

with a half-integer ofA,. As a result, the electric-field un- /4 | 1 L £ o2

knowns near the interface between the FEM and FDTD regions =

may coincide with each other exactly. No interpolation scheme Fe. 9 <1VPEZ> _ 9 <l 8E,,> } ds = 0.

need be employed when communicating between the FEM and 9z \n 9z \p Oz

FDTD solutions in the overlapping region. (2a)

Prism element and assignment of unknown fields.
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Here,V, = #(8/0x) + §(9/dy) denotes the transverse defor the first term in (2) to achieve unconditional stability [12].
operator,E,, the transverse components of the electric fieldhe final time-marching equations in the FEM region are

andE., thez-component. Similarly, in the = (k + (1/2))A. n _— _ N + o
plane, one assures that the desired field should satisfy [Gm} leadi™ =2 [GW} {ephi = [GW} {epdk
R =[Ol ({Cz}2+(1/2) - {CZ}Z—(1/2)>
1 o . OPE. 1 o OF, B B i
VB VoE teBL T = SV B + Dol ({en}ia — 2endit + i)
dS=0 (2b) (5a)

for the arbitrary testing fieldz2. and

Note that (2a) calls for the derivative &f. with respect to: + ntl — - n _|at n—1
inthek A, plane. This can be accurately approximated by usirLG”} tes h+(/2) ’ [G”} {Cé}k“l/?) [G”} {Cé}k“m)
the central difference scheme, which, in the present case, re- +C,. " ({ep}Z+1 - {ep}z) (5b)
quires thez. unknowns in th¢k+(1/2)) A and(k—(1/2))A.
planes. Similarlyﬁ the terd £, /9= in (2b) requires the trans- in which
verse unknowngz, in the kA and(k + 1)A. planes.
[G,{;} = / e {WHWNT ds
C. Basis Functions a4 .
The weak forms of (2) can be discretized into matrix forms by + % / —{V, x WH{V, x W}T ds
choosing suitable basis functions. Here, the cross-sectional area ”f For
is subdivided into small triangular elements. The longitudinal [C,.] = K? / —{W}{VPA}T ds
componentt, inside an element is expressed by node-based A Hr

interpolation functions, i.e., [D,,] = > / i{I/f/}{I/f/}T ds
A Hr
: 6] = [ et as
E(D)|o=eriy2na. = Y NilPezi = A ez a2 [ } 4
i=1 K 1 T
- - /A VAN dS.

where);(p)’s, i = 1, 2, 3 denote the three natural coordinates dflere,x = (A:/\/1oeoA) is the stability factor, the superscript
the element, and.;’s the nodal unknowns. On the other handof {c,} and{c.} stands for the time step, while the subscript
the transverse componea, is expanded by denotes the layer index in thedirection.

E. Discussion on Computational Efficiency

3
E(P)lemta. =Y WilP)ep = (W} e, (4 Itis interesting to compare the computational load between
i=1 the present method and the hybrid FDTD methods proposed in
[12], [18] when applying for layered structures. For simplicity,
whereW;(p)’s are the edge-based Whitney functions [17] angonsider the structure shown in Fig. 1(a). The region around the

e,i'S the edge unknowns. For example, via is discretized into prism grids, as shown in Fig. 1(b), and
solved by the FEM. Note that the cross section of each layer is
W1(5) = la3(A2V Az — A3V A2) identical, hence, the matrices depicted in (5) need be stored and

preprocessed for one layer only during numerical simulation.
is th i tial-field t al the si ven for more general structures with several different kinds of
¢p1 1S he average langentiai-lield component along the SIggq g the memory requirement for the present method is much

from n_ode_s 210 3 anég Is the side length. . . smaller than that for the other two hybrid FDTD methods.
Taking integration with respect to the basis functions and aP-As to the computation time, the present method that is based

plying the R.'tz progedure, one may reduce (2) to two SfySt?rBﬁ the Cholesky LU decomposition method [19] as employed
of coupled dlffergnt.lal equations fortransyerse and Iongltudlnﬁl [11], for each layer is superior to the hybrid method in [12],
components. Th|5_ is a normal FEM solution approach and S@ich is based on the conjugate gradient method. At each time
be referred to typical textbooks, e.g., [17]. step, the present method involves an efficient forward substitu-
) ) tion followed by backward substitution. The operation count for
D. Matrix Equations each substitution equals the number of unknowns multiplied by
The remaining terms need to be discretized in (2), whigche bandwidth of the matrices, which is estimated to be about
is the differentiation with respect to time. Based on theen [11] for most structures. On the contrary, the other two hy-
Crank—Nicolson scheme, we apply the central FD method withid FDTD methods, which call for matrix solution for a 3-D
respect to the variable and, in addition, take timing averag@roblem are much more time consuming. At each time step,



342 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 48, NO. 3, MARCH 2000

there are usually quite a few iterations of matrix vector muts. Absorbing Boundary Condition
tiplication until convergence. It also deserves mentioning that
the number of unknowns involved in the present prism gridd

mesh is about half of that in the tetrahedral gridded mesh [
since the tetrahedral mesh will introduce additional unknow
This contributes much to the advantage of the present meth

The present hybrid method can be applied to deal with both
ielded and unshielded problems. In the shielded cases, where
; perfect electric conductor (PEC) planes coincide with the top
%ﬁd bottom surfaces of the FEM region, the Dirichlet boundary
condition is employed without difficulty.

Inthe unshielded cases, some sort of absorbing boundary con-
ditions should be employed to reduce the wave reflection that
A. Time-Marching Scheme resulted from the artificial lattice truncation. For some exam-

Separate time-domain analyses are employed for solving HJS_S’ €.9., the grounded via s_tructure shpwn in Fig. 1, the '.:EM
egion is bounded to a finite size not only in the transverse direc-

Maxwell's equations in the FDTD and FEM regions. Howevel! S :
o0, but also the:-direction. As a result, all the exterior space

some type of handshaking process is required to transfer bg . .
and forth the computed data for the interface of the two regioﬁ 'modgled by the conven_tl|0nally FDTD_and all the available
sorbing boundary conditions can be directly resorted to. For

The time-marching scheme for the hybrid method is similar h | he FEM reai b ired q
that described in [12], except that the electric fields in the FE er exarg[:t))es, t ? riglon may be reql:_lrebltofexltenk t]?
region are computed by (5) layer by layer at each time step. the top and bottom layers where (5) is not applicable for lack o

For example, to obtain the transverse electric field Otﬁle fields in the next layers. Some absorbing boundary condi-
the kth layer {c,}, at time stepn + 1 by (5a), one tions, e.g., the perfectly matched layer method [21], may fail for
calls for the vaflues on neighboring layers in 'previou@e present case in which the cell is not rectangular in the trans-
two time steps as initial conditions or, more specifically/€"Se directions. Nonetheless, other absorbing boundary condi-
(e emts fe, b e binss Te Yo {e./},; Ly at time tions, e.g., the first-order Mur's scheme [22], which rely on a
Stépn ar;d'{gr }; atptime été[gi __1( /In):';\d(jkitioﬁ( én)e require the uniform division in the direction normal to the boundary, can be

PR . ]l . .
given transverse electric fields along the boundary of the FERfPloyed. Additionally, on the boundary of the FDTD region

region on the same layer at time stept 1 as the boundary els}ewzere,;he sbu;;]er—abdsor@ndg mf?thqd [23]:] can ﬁe :ncprporated
conditions. These boundary conditions should be provided urther absorb the undesired reflections from the lattice trun-

the FDTD simulation in the FDTD region. Similarly, solution® tion boundary.
for the longitudinal electric field ok +-(1/2) layer{e. }xy(1/2) ' '
attime step+ 1 by (5b) requiregc. }i.4(1/2), {¢p}x, {ep tuqr  D- COmputational Complexity

attime stepr and{e: }r4(1/2 attime stepr — 1, aswellasthe ¢ 5 interesting to investigate the computational complexity
given nodal values on the same layer at time step1 along ot the additional FEM processing as compared with the con-
the boundary of the FEM region. _ ventional FDTD method. This can be treated as the overhead
Once the interior fields in the FEM region are solved, thr':"equired by the FEM in improving the solution accuracy. To fa-
values on the contour next to the exterior boundary of the FEMiate the analysis, consider the example of the grounded via

region can be passed to the FDTD region for the updating of t§g,cture shown in Fig. 1(a). Choosing a smaller FDTD division
magnetic field at the next half time step. The electric fields ig;e A will increase the number of divisiol . in each direc-

the FDTD region at time step + 2 can then be obtained andyjon The total number of variable¥ and, thus, the required
the whole time-marching procedure continues. memory for FDTD in the regular region, is in the cubic order
of Na or written asV = O(NN3). The number of divisions re-
quired to model the curved surface is proportionaMg, while

The unknown fieldse, } and{¢.} in the FEM region need thatin the normal direction remains nearly invariant. As aresult,
be solved by (5) implicitly at each time step. The matrigg$,] the number of unknowns in FEM region Mgy = O(N3).
and[G7.] remain the same, while right-hand-side (RHS) vedrguably, the memory required for storing the matrices in (5)
tors change versus time step. The Gaussian elimination metimdomparatively small. One needs to store the matrix elements
based on Cholesky LU decomposition [19] is especially advafor one layer only. The memory requirement is rougBly/Na,
tageous for the present case of multiple RHS vectors. In tivhere B is the average bandwidth and, in this case, remains
pre-processing, the matricgs'} | and[G7,] are decomposed nearly the same a¥» increases. Therefore, the dominant part
into multiplication of a lower triangular and a upper triangulais the storage for the additional unknowns and the FEM over-
matrices. The matrix decomposition is time consuming, but reead in memory i©)(1/Na) = O(N~1/3)),
quires to be executed once. The unknown fields at each timeAs for the computation time, the present hybrid analysis ad-
step can then be obtained by forward and backward substitutiditionally requires FEM preprocessing for the matrix setup and
which is an explicit updating scheme like FDTD. The operatiotihe matrix solution at each time-marching step. The FEM pre-
count for each unknown by either the forward or backward suprocessing includes the housekeeping management for mesh, el-
stitution is proportional to the bandwidth of the matrices. F@ment integration, matrix assembly, and the last, but usually the
the storage of the matrices, the skyline scheme of variable banubst time consuming, matrix decomposition into the LU form.
width is employed. In addition, the unknowns are renumber&ince it need only be done once and with the largest operation
appropriately by the Collin’s algorithm [20] so as to reduce theount proportional td3? - Na, the required time is negligible
largest bandwidth. as compared with the total simulation time. During the time

Ill. COMPUTATIONAL ASPECTS

B. Matrix Solution
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or present method
—— -~ mode matching method
5 FDTD staircasing to inner boundary
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Fig. 3. Transmission coefficient along a microstrip with grounded via.

Comparison between the present method and other numerical methods. The
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microstrip is of width 2.3 mm and height 0.8 mm, the via diameter is 0.6 mrfig. 5. Calculated scattering parameters of a through hole via with connecting
and the substrate is of dielectric constant 2.32. The solution region is basicalfgle# = 0°, 90°, and 180° as a parameter. The microstrip is of width

divided into 110x 70 x 30 cells(A = 0.1 mm, A, = 1.67 ps) with eight
perfectly matched layers.

0.254 mm and height 0.239 mm, the diameters of the via and clearance hole
are 0.254 mm and 0.508 mm, respectively, and the substrate is of dielectric

constant 4.3. The solution region is basically divided intox866 x 48 cells
with A, = A, =0.02117 mm,A. = 0.05959 mm, andA, = 0.0353 ps.
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Fig. 4. Scattering parameters of a through-hole via. Comparison is between -1 e e ToR L TORE TS U T W

the simulated results and the measured data. The microstrip is of width 1.6
mm and height 3.3 mm, the diameters of the rod and the clearance hole are
1.5 and 3.9 mm, respectively, and the substrate is of dielectric constant 3.4. The
simulation region is basically divided into 2080 x 48 cells withA, = A, =
0.206 mm, A, = 0.4 mm, andA; = 0.333 ps.

o(degree)

Fig.6. Scattering parameters versus the connecting églth the frequency

= 20 GHz and60 GHz. All other structural parameters are the same as those
in Fig. 5.
marching, the unknowns in the FEM region at each time step _
is solved by forward and backward substitution with operation s
count proportional t@B - Nrgy. SinceB is almost indepen-
dent of N5, the FEM overhead in computation time turns out to
be O(2BNrpm/N3) = O((1/Na)) = O(N—G/3)),

IV. NUMERICAL RESULTS
A. Grounded Via o °

The hybrid method is employed to characterize the microstrip
with cylindrical grounded via shown in Fig. 1(a). The region
around and under the rod is modeled by prism-gridded FEM. A L
Fig. 3 compares the calculated scattering parameters with those
by two staircasing FDTD analyses [18], for which one staircases
the via to the inner boundary, while the other staircases the w¥ig. 7. Scattering parameters versus the diameter ratio of via to hole at
to the outer boundary. As expected, the results by the present ency= 20 GHz. The via diameter is chosen as a parameter, while all
brid method lie somewhere in between. The dashed curve a%s are the same as those in Fig. 5.
shown in the figure for comparison is redrawn from the liter-
ature [24], which is based on the mode-matching method, it Through Hole Via
assuming an outer shielding box. Good agreement can be nofhe second example considered here is the signal transmis-
ticed. sion across the microstrip lines on different layers by a through

$11,521(dB)

0.62

0.54 0.58
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hole via, as shown in the inset of Fig. 4. The region near the unit : mil bond W‘V\

curved boundary is discretized into prism cells and solved b 1e-e

the FEM, with the fields in the top and lower layers approx- 20 <0

imated by first-order Mur’'s boundary condition [22]. The re- 14.s Jo-o =

gion elsewhere is handled by the conventional FDTD, with ¢  1.e 1s

super-absorbing [23] first-order Mur boundary condition for the y 13! — 1.2
15

lattice truncation. Fig. 4 compares the calculated results witl 4 14.=
those by the measurement [25]. Good agreement verifies that tf I

present method is capable of characterizing objects with curve
boundary. (a)

Itis interesting to investigate the influence on scattering char
acteristics if the two connected lines are oriented along differer
directions. The structure is shown in the inset of Fig. 5. Note tha
the geometric parameters chosen here are typical for realistic a
plications in multichip modules. The characteristic impedance
of the microstrip is about 5Q. The simulation approach is sim-
ilar to the previous example. Fig. 5 shows the scattering pa
rameters versus frequency with connecting amigie 0°, 90°,
and 180° as a parameter. It is found that the transmission re
mains good and almost independentfoét low frequencies,
say,f < 10 GHz. This supports the formulation and conclu-
sions in [26], which assumes a symmetric field distribution on
the clearance hole. It is also noticed that the transmission cha
acteristics of the through-hole via degrade significantly at higf
frequencies, sayf > 60 GHz. The degradation is strongly
dependent on the connecting andleln those cases, the di-
ameter of the clearanf:e ho_le (?an _be as large as O_ne'quartq{ig(.)f& (a) Layout of a CPW to CPS transition. (b) Comparison of the
the wavelength. The field distribution around the via becomesculated 11| and|521| with measured data. The substrate is of height 25
highly asymmetric and should be carefully modeled to yield agil and dielectric constant 9.8.
curate results.

In case of an arbitrary connecting anglether than 0, 9¢°, layout shown in Fig. 8(a). This transition was proposed by [27],
and 180, no proper rectangular grid in the FDTD region caaiming at maximizing the bandwidth and minimizing the inser-
fit the two microstrip lines simultaneously. The problem is dition loss. In this simulation, the spatial increments is 0.01524
vided into two subregions, one is above the ground plane, whitem and time increments are 0.0254 ps. The prism-gridded FEM
the other is below the ground plane. In general, the FDTD gridsapplied to deal with the region near the taper boundary, while
for the two subregions are tilt from each other. Notice that tlike conventional FDTD is employed elsewhere, including the
two subregions overlap on the clearance around the via on #taircase approximation for the bond wires. Two PEC planes
ground plane. Through the present method, we can carefully are placed 30 cells away from the planar circuit on the upper
range different buffer meshes in these two subregions so that lower boundaries, which do not exist in the measurement
the identical triangular mesh on the clearance area can mdi28]. Roughly speaking, the whole simulation region is divided
to their individual FDTD grid on the outer boundary. Hencdanto 260 x 80 x 60 cells with eight perfectly matched layers
the communication between those two subregions can be estaiposed on all the other walls. For the measurement, the tran-
lished by transferring the values of the unknowns on the cleaition structure of interest is placed in a back-to-back configu-
ance area to each other at each time step. Fig. 6 shows the caiation. Fig. 8(b) compares the calculated scattering parameters
lated scattering parameters versus the connecting é@nglth  with the measured data. Good agreement is obtained.
the frequencyf = 20 GHz andf = 60 GHz as a parameter.

Fig. 7 shows the calculated scattering parameters at 20 GlPiz Numerical Experiment for Computational Complexity
with the diameter of the via as a parameter while fixing The experiment on computational efficiency of the present
b = 0.508 mm. The conventional FDTD may find difficulties hybrid method is finally addressed. Due to the incorporation
in modeling both the via and hole accurately with such asf the FEM, the method requires additional computation time
arbitrary aspect ratio. However, the present hybrid methegd memory in mesh generation, matrix calculation, and ma-
can model planar structures of a curved boundary and yieldrix decomposition during the preprocessing, as well as in the
satisfactory resolution. It can be found that better transmissigiatrix solution during the time marching. The grounded via
can be resulted by a thinner via, as depicted in [26]. problem described above is used as an example for a numerical

. experiment by tuning the division number per direction. Table |
C. CPW to CPS Transition compares the required central processing unit (CPU) time and

The final example to be analyzed here is the coplanar wavaemory storage to those in the conventional FDTD algorithm.

guide (CPW) to coplanar stripline (CPS) transition with thé is clearly verified that the overhead in the memory and CPU

=X

$11/521(dB)

present method
————— measured

0 15 20 25 30 35 40
frequency(GHz)
(b}
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TABLE |

345

COMPARISON OF THECOMPUTATION TIME AND MEMORY BETWEEN THE PRESENTMETHOD AND THE CONVENTIONAL FDTD METHOD

mesh pre-processing time marching FEM overhead
A | Ny x Ny x N, || method || time | memory || time/steps | memory || time | memory

1.00 | 110 x 70 x 30 | hybrid || 0.34 92 43.63/80 6580 14.42% | 8.51%
FDTD - - 38.13/80 6064

0.80 | 138 x 87 x 38 | hybrid | 0.41 112 99.63/100 | 12296 | 12.08% | 6.59%
FDTD - - 88.89/100 11536

0.67 | 165 x 105 x 45 || hybrid | 0.63 142 196.72/120 | 20544 10.01% | 5.33%
FDTD - - 178.82/120 | 19504

0.57 | 193 x 122 x 53 || hybrid || 0.78 164 353.69/140 | 32020 9.18% | 4.20%
FDTD - - 323.94/140 | 30728

0.50 | 220 x 140 x 60 || hybrid || 0.92 180 575.76/160 | 47072 7.94% | 3.77%
FDTD - - 533.42/160 | 45364

time for the present hybrid method is relatively insignificant and [7]
becomes smaller for a finer mesh.
(8]
V. CONCLUSIONS

The prism-gridded FEM has been successfully incorporated[9]
with a conventional FDTD method to deal with planar circuits [10
with transversely curved boundary. This approach has been ap-
plied to characterize problems such as vias in packaging inter-
connections and transition between different transmission linegl1]
In essence, it can also be generalized to deal with various struc-
tures such as planar circuits, waveguides with step transition2]
and whatever can be longitudinally divided into several building
layers. Owing to the flexibility provided by the FEM, the present[13]
scheme can easily model structures with objects of arbitrary as-
pect ratio in shape, which is hard to access by the conventiongl4]
FDTD.

The additional computational load of the present method15]
in comparison with the conventional FDTD method has been
analyzed both theoretically and numerically. In theory, thef16]
overhead of the FEM in memory and the CPU time require-
ment is inversely proportional to the division nhumber per di-
rection Na and, thus, negligible for fine mesh. In practice,[
simulation results depicts that the present method remairi$s]
very efficient, with computational overhead 15% smaller for
most applications.
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