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Arbitrarily Oriented Perfectly Matched Layer in the
Frequency Domain

Xiaoming Xu and Robin Sloan

Abstract—An arbitrarily oriented perfectly matched layer (PML) is in-
troduced by using complex space mapping for more flexible meshing of mi-
crowave engineering problems. The PML can be oriented in any direction.
The discussion is extended to two-direction PML’s for matching the inter-
face between one-direction PML’s, and three-direction PML’s for two-di-
rection ones. An example having analytical solution is calculated. Numer-
ical results agree with the analytical solution very well within 0.1%.

Index Terms—Absorbing boundary, finite element, perfectly matched
layer.

I. INTRODUCTION

Berenger [1] introduced a nonphysical medium, i.e., the perfectly
matched layer (PML), for absorbing propagating electromagnetic
waves. It has been noticed that most of the theoretical discussion and
applications are limited to the orthodox PML structure oriented along
Cartesian coordinate axes. To remove this limitation from practical
PML structures, especially for flexible finite-element meshing,
arbitrarily oriented PML’s are introduced by the authors. The facets
of this kind of PML are still planes, but they can be oriented in any
direction without limitation, as shown in Fig. 1. This characteristic
provides more flexibility to construct PML structures fitting the
complex geometry of engineering problems.

II. FORMULATION

The nonphysical electromagnetic characteristics of a PML are de-
scribed mathematically. In the frequency domain, PML equations can
be represented by anisotropic complex mapping. Using the mapping
method introduced by Rappaport [2], [3], the mapping carried out along
normal directions of interfaces between free space and PML’s can lead
to an useful formulation [4], in which the whole set of equations for
the PML keeps the conventional form, except the normal mapping is
applied to space coordinate systems. Maxwell's equations are general-
ized for the PML as follows:

rg �H = j!D

rg �E = �j!B

rg �D = 0

rg �B = 0

whererg is a differential operator, similar tor0 used by other re-
searchers working on PML’s. The subscriptg declares that the oper-
ator is defined in a generalized coordinate system and also indicates
the number of mapping directions.g = 0 means that no mapping is
applied in conventional materials, andg = 1, 2, 3 means that one, two,
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Fig. 1. Two-dimensional display of arbitrarily oriented PML’s.

and three coordinates are scaled in a one-, two- and three-direction-ori-
ented PML, respectively.

A. Mapping Along Rotated Coordinates

Rotated rectangular coordinate systems are used for various orienta-
tions of PML’s. Then-axis indicates the normal direction of the inter-
face between the free space and a one-direction-oriented PML. Also,
thet and� are the first and second tangential axes, respectively.

Complex mapping is carried out along the rotated coordinate axes to
produce a complex coordinate system for the PML as follows:

@n0

@n
= sn

@t0

@t
= st

@� 0

@�
= s� : (1)

The mapping scalessm (m = n; t; �) are complex parameters with a
unit real part and negative imaginary part. When the imaginary part is
set equal to zero, the scalesm = 1 then denotes that no mapping is
applied along them-direction.

Partial derivatives along the mapped coordinates are read in a matrix
form

@

@n0; t0; � 0
= [Jm]

@

@n; t; �
(2)

where the Jacobean matrix for mapping[Jm] is diagonal as follows:

[Jm] = diag
@n

@n0
;
@t

@t0
;
@�

@� 0
= diag

1

sn
;
1

st
;
1

s�
: (3)

B. Transformation Between Coordinate Systems

In three-dimensional space, a transformation of coordinate rotation
from thex–y–z system to then� t� � system is expressed as

n

t

�
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nx ny nz

tx ty tz

�x �y �z

x

y

z

= [R]

x

y

z

: (4)

The items in the rotation matrix[R] are components of the unit vectors,
which can be defined by the cosine of the angle between the relevant
coordinate axes, such asnx = cos(n; x).

Also, the unit vectors along the rotated coordinate axesn � t � �

can be represented by components in Cartesian coordinates as

[n̂; t̂; �̂ ]T = [R][x̂; ŷ; ẑ]T : (5)

The transformation of partial derivatives reads as

@

@n; t; �
= [Jr]

@

@x; y; z
(6)
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whereJr signifies the Jacobean matrix for coordinate rotation. Obvi-
ously, the Jacobean matrix is equal to the rotation matrix

[Jr] =
@x; y; x

@n; t; �
= [R]�1

T

= [R]T
T

= [R]: (7)

C. Generalized Operator

The generalized operator for a PML is defined in the mapped coor-
dinate system, then converted to the rotated coordinates, and finally, is
reversed to Cartesian coordinates, which are the common coordinates
for various PML’s

rg = n̂
@

@n0
+ t̂

@

@t0
+ �̂

@

@� 0
= [x̂; ŷ; ẑ]T [D]

@

@x; y; z
(8)

where the whole transformation matrix for derivatives[D] includes the
operations of coordinate rotation and complex mapping for the PML

[D] = [R]T [Jm][Jr] = [dij ] (9)

dij =
ninj

sn
+

titj

st
+

�i�j

s�
(10)

wherei; j = x, y, z.

III. D ESIGN OFPML STRUCTURE

Similar to an orthodox structure, one-direction PML plates are used
to enclose a calculation domain. However, their orientations are no
longer limited along Cartesian coordinates. At an edge between two
one-direction PML plates, a two-direction PML is needed to buffer the
one-direction PML’s because they cannot match each other. Similarly,
on corners, three-direction PML’s are used.

A. One-Direction-Oriented PML

In a one-direction-oriented PML, the mapping is applied only along
itsn-direction. Therefore, the mapping scales alongt- and� -directions
should be set unityst = s� = 1. Considering the following identical
equation:

ninj + titj + �i�j = �ij =
1; wheni = j

0; wheni 6= j
(11)

(10) then reduces to

d
n
ij = �ij +

1

sn
� 1 ninj : (12)

B. Two-Direction-Oriented PML

Similar to the installation of a compatible orthodox PML structure,
two-direction-oriented PML’s are used at the edges. When setting the
mapping scale along the third direction� equal to unity,s� = 1, (10)
becomes

d
nt
ij =

ninj

sn
+

titj

st
+ �i�j (13)

but the design of mapping scales for the two-direction-oriented PML
becomes more complex this time. On the interface surface to the first
one-direction PML, the two-direction PML should fit to the interfacing
PML oriented in then1 direction. That means the mapping scale of the
two-direction PML along then1 direction must be identical to the cor-
responding one for the one-direction PML. Also, on the second inter-
face, it should fit to another one-direction PML.

In general, the orientations of the neighboring arbitrarily oriented
PML’s will not be perpendicular to each other. Therefore, care must be

Fig. 2. Arbitrarily oriented PML’s and inner boundary surface.

taken setting the mapping scales. Fortunately, there is an easy solution,
when a common mapping scale is applied to the relevant PML’s.

Considering a two-direction PML having a common mapping scale
for bothn- andt-directions,sn = st = sc. After substituting (11),
(13) becomes

d
nt
ij (sn = st = sc) =

�ij

sc
+ 1�

1

sc
�i�j : (14)

The above equation implies that all co-plane two-direction PML’s
are equivalent to each other, when a common mapping scale is applied
to both PML’s. Therefore, by applying the common mapping scale to
two neighboring one-direction PML’s and the buffering two-direction
PML, the relevant interfacing PML’s are matched to each other.

C. Three-Direction-Oriented PML

On corners, three-direction PML’s are needed, and complex mapping
is carried out along three directions.

In practice, a common mapping scale is applied for convenient
matching. Obviously, (10) reduces to

d
nt�
ij (sn = st = s� = sc) =

ninj + titj + �i�j

sc
=

�ij

sc
: (15)

This means all three-direction PML’s having a common scale are equiv-
alent to thex–y–z PML

r3(sn = st = s� = sc) = x̂
1

sc

@

@x
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1
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@

@y
+ ẑ

1

sc

@

@z
: (16)

D. Common Mapping Scale for Compatible Structure

Therefore, application of a common mapping scale to a PML struc-
ture consisting of one-, two- and three-direction PML’s will make easy
matching between interfacing PML’s.

IV. NUMERICAL EXAMPLE

Electromagnetic fields around a straight current line along the
z-axis are calculated to verify the formulation for the arbitrarily
oriented PML. The electric field has only an axial component with
respect to one variable. The magnetic vector potentialA is read as

Az = A0H
(2)
0 (k0r) (17)

whereH(2)
0 is the Hankel function of the second kind with the lowest

order.A0 is chosen to letAz = 1 on a boundary atr = 1:0 cm in the
following finite-element calculation.

To save computational costs, only the sector betweenx- andy-axes
is meshed. The field source of the current line is modeled by a Dirichlet
condition on the inner boundary of the mesh atr = 1:0 cm. Three
blocks of the one-direction-oriented PML constitute the PML wall
interfacing free space. They are oriented along thex, y, and diagonal
directions. Two wedges of two-direction-oriented PML are used as
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Fig. 3. FE result:A alongx-axis arbitrarily oriented PML.

buffers between one-direction PML’s of different orientations. The
PML structure is placed about 2.0 cm away from the inner boundary
(x; y = 3:0 cm on coordinate axes), as shown in Fig. 2. The required
thickness of the PML depends on the frequency and mapping scale,
which both determine the absorbing rate. In the numerical example,
the main absorption is provided by the PML structure having thickness
of 1.0 cm and mapping scales = 1� j0:5 atf = 10 GHz.

Along the thickness, 12 linear finite elements are evenly installed to
model a decaying waveform. The area of free space is covered by 25
elements along the propagating direction from 1.0 to 3.0 cm and 24
elements along the arc betweenx- andy-axes.

The distribution of the magnetic vector potential calculated by the
finite-element method is displayed along thex-axis in Fig. 3. Along the
radial direction,Az decays faster within the PML owing to absorption
of the artificial material. Comparison between the finite-element result
and the analytical solution was carried out for the domain between the
inner boundary and PML walls. Very good agreement is achieved with
an error range of less than 0.1%.

V. CONCLUSION

Electromagnetic equations for arbitrarily oriented PML’s are intro-
duced using the complex space mapping method. The configuration of
a matched PML structure of arbitrarily oriented PML’s is discussed. A
simple example having an analytical solution is calculated for compar-
ison. Good agreement within 0.1% between the numerical result and
analytical solution shows that the radiation wave is absorbed by the
PML absorber.
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Design and Modeling of Twin-Spiral
Coplanar-Waveguide-to-Slotline

Transitions

Yo-Shen Lin and Chun Hsiung Chen

Abstract—A novel reduced-size twin-spiral coplanar-waveguide-to-slot-
line transition is proposed in this paper. This twin-spiral transition is
based on a modification of quarter-wavelength transformer structure. For
design purpose, a hybrid equivalent-circuit model of combining trans-
mission-line theory and full-wave simulation is established. Based on this
model, various twin-spiral transition structures are carefully examined
theoretically and experimentally. Specifically, a twin-spiral transition
with 2.26 : 1 bandwidth and one-quarter the size of conventional ones
is achieved. Being simple in fabrication and small in size, the proposed
twin-spiral coplanar-waveguide-to-slotline transition is a useful compo-
nent in uniplanar microwave integrated circuit/monolithic-microwave
integrated-circuit applications.

Index Terms—Coplanar waveguide, size reduction, slotline, transition.

I. INTRODUCTION

Uniplanar lines such as coplanar waveguide (CPW), coplanar
stripline, and slotline receive increased attention due to their potential
applications in many microwave integrated circuits [1]. In 1987,
Hirota et al. [2] proposed the “uniplanar monolithic-microwave
integrated-circuit (MMIC)” configuration, which made use of CPW's
and slotlines instead of microstrip lines. These uniplanar structures
have some exclusive features over the conventional microstrip-based
MMIC. Among the uniplanar lines, the CPW has the advantage of easy
integration with solid-state devices, but it suffers from difficulty due
to parasitic odd-mode excitation at the discontinuities, such as CPW
bending, thus, additional airbridges/bondwires are needed, which
complicate the fabrication process. Slotline has the disadvantages of
low Q and high radiation loss, and is difficult to mount devices in
series configuration; however, it is a good candidate for broad-band
antenna applications. To fully utilize the advantages of CPW's and
slotlines in a uniplanar microwave integrated circuit (MIC)/MMIC
system, implementation of broad-band, low-loss, and compact
CPW-to-slotline transition is of practical significance.

Various CPW-to-slotline transitions have been proposed and investi-
gated, and their potential applications in microwave circuits were also
reported [3]–[5]. All these transitions to date made use of a�=4 trans-
former structure [6]–[9] or a circular/unterminated slotline open [3],
[7], [10], [11]. In [6], the authors experimentally compared various
transition structures and found that the transition that made use of a
slotline-radial-open with radius of�=4 would give a wider bandwidth
of 5.5 : 1. The transition that utilized a complex combination of mul-
tiple-�=4-stub structures in [9] was attractive in improving the transi-
tion bandwidth even up to 7.7 : 1 (corresponding to 10-dB return loss).
The ideally “all pass” double-Y junction transition [10] used a cir-
cular-slotline-open, which not only occupies a large area, but also limits
the bandwidth. All these transitions reported occupy a large-circuit area
and lead to the inefficient use of high-cost substrate and active layers.
Furthermore, the broadband slotline-radial-open transition [6] also suf-
fers from the disadvantage of high radiation loss. This means that the
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(a)

(b)

Fig. 1. (a) Geometry of twin-spiral transition structure. (b) Corresponding
hybrid equivalent-circuit model.

spacing between the transition and other components in a circuit must
be large enough to avoid the crosstalk problems. Therefore, a compact
CPW-to-slotline transition with broad bandwidth and low loss is attrac-
tive in the implementation of uniplanar MIC/MMIC's.

In this study, a novel twin-spiral CPW-to-slotline transition with
small size and moderate bandwidth is proposed to provide a compact
and effective interconnection between the CPW and slotline. This twin-
spiral transition is developed based on a modification of the conven-
tional�=4 transformer structure. For design purpose, a hybrid equiva-
lent transmission-line circuit model that combines the full-wave tech-
nique and transmission-line theory is also established. Several twin-
spiral transitions with different physical dimensions are designed and
fabricated, and their performances are carefully examined.

II. TWIN-SPIRAL TRANSITION STRUCTURES

The twin-spiral CPW-to-slotline transition structure, shown in
Fig. 1(a), is the main concern of this study. Basically, reduction of the
transition size is achieved by bending the�=4 slotline short stub into
the form of a spiral structure. To give better transition performance,
two spiral lines are connected in series such that the twin-spiral
structure acts as an effective open circuit for a wider frequency range.
For suppressing the effect of coupled slotline mode excited at the
CPW–slotline junction, bondwires at suitable positions are included
in the transition structure. The twin-spiral structure is characterized by
the parameters: gapwidthwg , strip widthws, vertical and horizontal
spiral dimensionsdv anddh, spiral length̀ s, and the distance to spiral
`c. For the back-to-back configuration, the slotline length between
two CPW's is denoted bỳb.

A simple transmission-line model is inadequate in characterizing the
twin-spiral structure due to the complex discontinuities introduced in
the transition. Here, we propose a hybrid equivalent transmission-line
circuit model [see Fig. 1(b)] in which the twin-spiral part is treated
by the full-wave simulation and represented by an impedance func-
tionZs, while the remaining part is handled by the conventional trans-
mission-line model. This hybrid model is based on the following as-
sumptions. First, the CPW and slotline sections are modeled as trans-

Fig. 2. Measured and simulated results for back-to-back twin-spiral transition
structure (" = 10:2, h = 1:27 mm,w = w = 0:6 mm,d = 3:6 mm,
d = 4:2 mm,` = 18:35 mm,` = 1:625 mm,` = 18:425mm).

mission lines despite of the non-TEM nature of slotline. Second, the
discontinuity effects of the CPW-slotline T-junction and bondwires
are neglected. Third, the interactions between the twin-spiral section
and the transmission lines are not taken into consideration. The char-
acteristic impedancesZcpw; Zsl and phase constants�cpw; �sl of the
CPW and slotline are calculated by the close-form formulas [12], [13].
The input impedanceZs of the twin-spiral section is calculated, using
the mixed-potential integral-equation (MPIE) full-wave simulation to-
gether with the matrix pencil technique [14]–[16]. In this full-wave
simulation, the conductor is assumed to be perfectly conducting and
of zero thickness, and the dielectric loss is not included in the calcula-
tions.

III. RESULTS

The characteristics of twin-spiral transition structure will be care-
fully examined both theoretically and experimentally. In the following
discussion, the twin-spiral structure is placed on a duroid substrate
of thicknessh = 1:27 mm and dielectric constant"r = 10:2. The
CPW used in the subsequent study has the following dimensions: strip
width = 0:45 mm and slot width= 0:8 mm, hence, its characteristic
impedance is 75
 [12]. The slotline has a slot width of 0.5 mm, and its
characteristic impedance is 75
 at 3 GHz according to the formula in
[13]. For measurement, the back-to-back twin-spiral transition struc-
ture is constructed in which the slotline length`b between two CPW's
is 18.35 mm. The measurement is done on a HP8510C Network Ana-
lyzer, and the thru-reflect-line (TRL) technique is used to calibrate out
the effect of coaxial-to-CPW transition.

Shown in Fig. 2 are the measured and simulated results for
the back-to-back twin-spiral transition structure designed with
`s = 18:425 mm, which equals to a quarter of slotline wavelength at
2.18 GHz. The transition exhibits, as expected, a bandpass behavior.
The 1-dB passband is in the 1.5–3.4-GHz frequency range, and the
corresponding relative bandwidth is 2.26 : 1. The return loss is better
than 15 dB in the 1.8–3.2-GHz frequency range. The size of this tran-
sition is (�s=12:4) � (�s=6:7) �= �2s=83, which is about one-quarter
of the conventional ones. Good agreement between measured and
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Fig. 3. Simulated results for back-to-back twin-spiral transitions with different
spiral size (" = 10:2, h = 1:27 mm, ` = 18:35 mm, ` = 1:625 mm,
` = 18:425 mm).

Fig. 4. Simulated results for back-to-back twin-spiral transitions with different
gapwidthw (" = 10:2, h = 1:27 mm, ` = 18:35 mm, ` = 1:625 mm,
` = 18:425 mm).

simulatedjS21j up to 5 GHz is observed. There is some discrepancy
in jS11j, but the simulated result is still satisfactory in predicting the
transition behavior in the first passband. In the higher frequency range,
the transmission-line assumptions of CPW and slotline may fail, also
the radiation and surface-wave losses may become serious, making the
hybrid equivalent-circuit model no longer feasible. In this model, only
the twin-spiral section is simulated by the full-wave technique, thus,
the required central processing unit (CPU) time may be drastically
reduced. This hybrid model is an effective tool for analyzing the
twin-spiral transition in the first passband, which is the frequency
range of interest.

Although Fig. 2 shows a passband centered at about 2.2 GHz, we
found from the full-wave simulation thatZs approaches infinity at
about 3 GHz. Physically, the series parasitic capacitance between the
strips in the twin-spiral section reduces the effective electrical length of
the spiral stubs, leading to an increase in the resonant frequency. In ad-
dition, the back-to-back configuration also produces a shift in passband
frequency. For a single transition, its passband center frequency will be
the resonant frequency of the twin-spiral structure, which can be found
by a full-wave simulation ofZs. Practically, to design a single twin-
spiral transition with the resonant frequency atf0, the spiral length̀s

of transition can be estimated by the formula`s �= 1:4 � (�s=4), where
�s is the slotline wavelength corresponding tof0.

The size of twin-spiral transition can further be reduced if we adopt
more turns and smaller strip widthws and gapwidthwg in the spiral
section. Fig. 3 shows the simulated responses of two back-to-back twin-
spiral transition structures with the same spiral length`s = 18:425
mm, but different spiral parameters. The size of transition withws =
wg = 0:467mm is(�s=16)�(�s=8:6),which is about 1/1.66 that of the
one withws = wg = 0:6 mm and a size of(�s=12:4) � (�s=6:7). Note
that both transitions have nearly the same center frequency at 3 GHz,
but the one with a smaller spiral size exhibits a smaller bandwidth. This
results from an increase of parasitics when the size of the twin-spiral
structure is reduced. Thus, in designing a twin-spiral transition, we have
to compromise between size and bandwidth.

Fig. 4 shows the effect of gapwidthwg on the performance of twin-
spiral transition. Three back-to-back transitions with the same spiral
length`s and equal turn number in the spiral section are simulated by
the hybrid model. The gapwidthwg is varied from 0.4 to 0.8 mm, and
other parameters such asws, dv , anddh are changed accordingly to
keep the shape of twin-spiral structure unchanged. The simulated re-
sponses of these three transitions are shown in Fig. 4 for comparison.
The one with a largerwg exhibits a broader bandwidth. This is a conse-
quence of increasing the input impedanceZs of the twin-spiral section
for largerwg.

The design of twin-spiral transitions presents a tradeoff between size
and bandwidth. With a fixed transition size, the bandwidth can be op-
timized by choosing a largerwg. The performance of transition can
easily be characterized by the proposed hybrid model.

IV. CONCLUSION

In this study, novel twin-spiral CPW-to-slotline transition structures
have been proposed and carefully examined. For design and modeling
purposes, a hybrid equivalent transmission-line circuit model has also
been established. The implementation into twin-spiral transition is an
easy and effective way to reduce the size of CPW-to-slotline transition
with size reduction factor in the order of 1/3 to 1/4. There is some
compromise between size and bandwidth, and the transition size can
further be reduced if the requirement on bandwidth may be looser. The
reduced-size twin-spiral transition structure is attractive in MIC/MMIC
applications.

ACKNOWLEDGMENT

The full-wave simulation in this study was carried out by the soft-
ware developed by Dr. F.-L. Lin. Discussions with Dr. Lin were helpful
and are very much appreciated by the authors.

REFERENCES

[1] K. C. Gupta, R. Garg, and I. J. Bahl,Microstrip Lines and Slotlines, 2nd
ed. Norwood, MA: Artech House, 1996, ch. 5 and 7.

[2] T. Hirota, Y. Tarusawa, and H. Ogawa, “Uniplanar MMIC hybrids—A
proposed new MMIC structure,”IEEE Trans. Microwave Theory Tech.,
vol. MTT-35, pp. 576–581, June 1987.



466 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 48, NO. 3, MARCH 2000

[3] H. Ogawa and A. Minagawa, “Uniplanar MIC balanced multiplier—A
proposed new structure for MIC's,”IEEE Trans. Microwave Theory
Tech., vol. MTT-35, pp. 1363–1368, Dec. 1987.

[4] C.-H. Ho, L. Fan, and K. Chang, “Broad-band uniplanar hybrid-ring and
branch-line couplers,”IEEE Trans. Microwave Theory Tech., vol. 41, pp.
2116–2125, Dec. 1993.

[5] L. Fan, C.-H. Ho, S. Kanamaluru, and K. Chang, “Wide-band re-
duced-size uniplanar magic-T, hybrid-ring, and de Ronde's CPW-slot
couplers,” IEEE Trans. Microwave Theory Tech., vol. 43, pp.
2749–2758, Dec. 1995.

[6] C.-H. Ho, L. Fan, and K. Chang, “Experimental investigations of CPW-
slotline transitions for uniplanar microwave integrated circuits,”IEEE
MTT-S Int. Microwave Symp. Dig., pp. 877–880, 1993.

[7] W. Grammer and K. S. Yngvesson, “Coplanar waveguide transitions
to slotline: Design and microprobe characterization,”IEEE Trans. Mi-
crowave Theory Tech., vol. 41, pp. 1653–1658, Sept. 1993.

[8] V. Trifunovic and B. Joknaovic, “Review of printed Marchand and
double Y baluns: Characteristics and application,”IEEE Trans.
Microwave Theory Tech., vol. 42, pp. 1454–1462, Aug. 1994.

[9] K. Hettak, J. P. Coupez, T. L. Gouguec, S. Toutain, P. Legaud, and E.
Penard, “Improved CPW to slotline transitions,”IEEE MTT-S Int. Mi-
crowave Symp. Dig., pp. 1831–1834, 1996.

[10] V. Trifunovic and B. Joknaovic, “New uniplanar balun,”Electron. Lett.,
vol. 28, no. 10, pp. 813–815, May 1991.

[11] T. Q. Ho and S. M. Hart, “A broad-band coplanar waveguide to slotline
transition,” IEEE Microwave Guided Wave Lett., vol. 2, pp. 415–416,
Oct. 1992.

[12] C. Veyres and V. F. Hanna, “Extension of the application of conformal
mapping techniques to coplanar lines with finite dimensions,”Int. J.
Electron., vol. 48, no. 1, pp. 47–56, July 1980.

[13] R. Janaswamy and D. H. Schaubert, “Characteristic impedance of a wide
slotline on low-permittivity substrate,”IEEE Trans. Microwave Theory
Tech., vol. MTT-34, pp. 900–902, Aug. 1986.

[14] T. Itoh, “Spectral domain immittance approach for dispersion character-
istics of generalized printed transmission lines,”IEEE Trans. Microwave
Theory Tech., vol. MTT-28, pp. 733–736, July 1980.

[15] K. Sarkar, Z. A. Maricevic, and M. Kahrizi, “An accurate de-embed-
ding procedure for characterizing discontinuities,”Int. J. Microwave
Millimeter-Wave Computer-Aided Eng., vol. 2, no. 3, pp. 135–143, Mar.
1992.

[16] F. L. Lin, C. W. Chiu, and R. B. Wu, “Coplanar waveguide bandpass
filter—A ribbon of brick wall design,”IEEE Trans. Microwave Theory
Tech., vol. 43, pp. 1589–1596, July 1995.

An Efficient Characterization of Interconnected
Multiconductor-Transmission-Line Networks

A. Orlandi and C. R. Paul

Abstract—The numerical solution of the multiconductor-transmis-
sion-line (MTL) equations for lossy interconnected transmission lines
(TL’s) is investigated in this paper. The solution for the transmission-line
segments is accomplished through the finite-difference time-domain
method, whereas the terminations and interconnection networks (which
may contain nonlinearities) are characterized with an efficient state-vari-
able representation. High-frequency skin-effect losses in the TL’s are
included in the MTL equations through convolution integrals in the MTL
equations. The computation of these convolution integrals represents the
bulk of the solution effort. Two methods, the singular-value-decomposition
method and the matrix-pencil method, are shown to significantly reduce
the computation time and improve the solution accuracy.

I. INTRODUCTION

Due to increasing clock and data speeds, the spectral content of
today's high-speed digital systems extends well into the gigahertz fre-
quency range. Increasing density of integrated circuits results in smaller
interconnect cross-sectional dimensions, which increase losses. In par-
ticular, the skin-effect loss, due to the increase in the high-frequency
interconnect resistance as the square root of frequency, becomes in-
creasingly more important. This square-root-of-frequency dependence
of the line per-unit-length resistance and internal inductance presents
considerable computational problems in the time domain; its inclu-
sion into the frequency-domain characterization of the multiconductor
transmission lines (MTL’s) is trivial. In this paper, we present a com-
putationally efficient method for the solution of MTL’s that are in-
terconnected with arbitrary networks. The numerical solution of the
MTL equations is accomplished through the finite-difference time-do-
main (FDTD) method, whereas the terminations and interconnection
networks (which may contain nonlinearities) are characterized with an
efficient state-variable representation. In recent publications [1], [2], an
FDTD analysis of lossy MTL networks in the presence of general loads
and interconnection networks has been presented. In both papers, the
lines’ loads and interconnections have been described by a state-vari-
able formulation.

In this paper, the recursive convolution integral procedure imple-
mented in [1] and [2] to handle the frequency-dependent losses of the
line is improved upon. The majority of the computing time for solu-
tion of the overall network is consumed by the evaluation of the con-
volution integral. In this paper, an alternative technique is presented to
speed up such a calculation. Two methods, the singular-value-decom-
position (SVD) method and the matrix pencil (MP) method, are shown
to significantly reduce the computation time and improve the solution
accuracy.

In Section II, we summarize the FDTD model of the MTL’s of the
network. The state-variable equations of loads and interconnections are
discretized by means of the second-order Adams–Moulton method [3].
Section III contains the evaluation of a smaller and more accurate set of
coefficients to exponentially approximate the kernel of the convolution
using two methods: the SVD and MP methods. Section IV shows the
improvement for a transmission-line network.
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TABLE I
COEFFICIENTS FOR THEEXPONENTIAL APPROXIMATION (9)

II. COMPUTATIONAL MODEL

An MTL network can be considered that is made up of parts in which
the propagation of voltage and current cannot be neglected and parts
in which this can be disregarded. The former are the transmission lines
(TL’s) or tubes, and the latter are represented by lumped circuits, which
are calledjunctions. A junction connects two or more tubes. Atermi-
nation is a particular junction with only one tube connected.

Consider a tube formed by an(n+1) conductor uniform TL whose
equations for the general case of imperfect conductors immersed in an
incident field are [4]

@

@z
V(z; t) + Zi(t) � I(z; t) + L

@

@t
I(z; t)

= � @

@z
ET (z; t) +EL(z; t) (1a)

@

@z
I(z; t) +C

@

@t
V(z; t) = �C @

@t
ET (z; t) (1b)

whereV andI aren � 1 vectors of the line voltages (with respect
to the reference conductor) and line currents, respectively. The posi-
tion along the line is denoted asz. The per-unit-length parameter ma-
trices areL (inductance) andC (capacitance). The conductor losses
are represented byZi(t), which is the inverse Laplace transform of
Zi(s) = R(s) � sLi(s), wheres is the Laplace transform variable.
This conductor internal impedance contains both resistanceR and in-
ternal inductanceLi. Incident field excitation is included via the quan-
titiesET (z; t) andEL(z; t), which aren � 1 vectors containing the
components of the incident electric field that are transverse to the line
and parallel to the line conductors, respectively, with the line conduc-
tors removed [1], [4].

The finite-difference equation (FDE) of (1), obtained by using a cen-
tral difference scheme, becomes, for the interior points in which the
line's conductors are divided [1]
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�t
L+

�z

2
A+

�zp
��t

Z0(0)B I
n+3=2
k

=
�z

�t
L� �z
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+
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E
n+3=2
L;k +E

n+1=2
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V
n+1
k = Vn

k �
�t

�z
C
�1

I
n+1=2
k � In+1=2k�1 � E

n+1
T;k �En

T;k

(2b)

where we denoteVn
k � V((k � 1)�z; n�t), Ink � I((k �

1=2)�z; n�t). The transverse incident field sourcesET (z; t) are to
be evaluated at the voltage positions, whereas the longitudinal field
sourcesEL(z; t) are to be evaluated at the current positions, i.e.,
En
T;k � ET ((k � 1)�z; n�t),En

L;k � EL((k � 1=2)�z;n�t). In
(2),Z0(m) are terms stemming from the Prony's approximation of the
convolution in (1) [5]. We will show an improved method of evaluating
these contributions. The incorporation of the terminal conditions has
been extensively discussed in [1], [4], and [6].

The characterization of the lumped circuits inside the junctions is
accomplished by the state-variable formulation [1]–[3]

_X(t) =MX(t) +NU(t) (3a)

I(t) = OX(t) +PU(t) +Q _U(t) (3b)

where “dots” indicate time derivatives. The vectorX contains the state
variables of the junction, the vectorU contains the input sources of
the network, and the vectorI contains the designated outputs: the cur-
rents at the connection nodes between junctions and tubes. The central
difference scheme used for the FDE (2) is accurate to orderO(h2);
to maintain the same order of accuracy within all the procedure, the
second-order Adams–Moulton scheme is used to obtain the FDE asso-
ciated with (3). This is a single-point, single-step, implicit, and uncon-
ditionally stable scheme. By applying this method to (3), they become,
for themth junction,

X
n+1
m = Xn

m +
�t

2
Mm X

n+1
m +Xn

m

+
�t
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Nm U
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m +Un

m (4a)
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Pm U

n+1
m +Un

m

+
1

�t
Qm U

n+1
m �Un

m (4b)

where vectorUm = [SmVm]t contains the inputs for the state-vari-
able representation: the independent sources inside the junctionSm

and the tube voltagesVm = [Vm;iVm;jVm;kVm;l]
t at the connec-

tion nodes between attachedI , j, k, andl tubes and the junction. The
vectorsIm contain the line currents of the tubes connected to the junc-
tion m evaluated at the connection nodes.
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III. EXPONENTIAL APPROXIMATION FOR THECONDUCTORLOSSES

CONVOLUTION TERM Zi(t) � I(z; t)

In the evaluation of the FDE associated with (1), a significant por-
tion of the computing time is spent in evaluating the convolution of the
transient impedanceZi(t) and the currentI(z; t) in (1a). A common
way of representing the skin-effect losses of the conductors is [7]

Zi(s) = A+B
p
s (5)

and, hence,

Zi(s)I(z; s) = AI(z; s) +B
1p
s

sI(z; s)

m
Zi(t) � I(z; t) = AI(z; t)

+
1p
�
B

t

0

1p
�

@

@(t� �)
I(z; t� �)d� :

(6)

The convolution in (1a) is approximated in the following manner
where the functionF(t) (which represents the derivative of the line
current in the MTL equations) is approximated as constant over the�t
segments [4]:
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where

Z0(m) =
(m+1)

m

1p
&
d& = 2

p
m+ 1�pm (8)

If Z0(m) is approximated by a series of exponentials

Z0(m) =

N

i=1

aie
� m (9)

the convolution in (6) is evaluated using a recursive algorithm [8]. In
order to determine the coefficientsai and the time constants�i in (9),
different techniques can be used. In [5], Prony's method is applied to
(8) for M = 500 samples andN = 10 terms. The resulting coeffi-
cients are reported in Table I. Fig. 1 shows the relative error between
the exact value ofZ0(m) in (8) and the approximation (9) by using the
coefficients in [5]. Significant error is associated with the first 50–60
samples; in particular, the exact value ofZ0(0) from (8) is equal to
two. However, by using the coefficients proposed in [5, pg. 174], one
obtains from (9)

Z0(0) =

10

i=1

ai = 1:4114280601:

An error inZ0(0) and in the subsequent values ofZ0(m) has two main
repercussions: it affects all the values of the lines' currents because of
the term(�z=�t)Z0(0)B in (2a) [9] and the early-time response of
the convolutionZi(t) � I(z; t) when the frequency-dependent losses
of the conductors have the most important role. Although not shown in
the figure, the relative error for the values ofZ0(m) extrapolated for
m > M is even worse. The solution of a least-square problem directly
from thenormal equationsin the Prony method is rather susceptible
to roundoff error and to the condition number of the coefficients ma-
trix [10]. An alternative technique is the SVD [11]. SVD produces a
solution of an overdetermined problem that is the best approximation
in the least-square sense; it also fixes the roundoff problems for the
first samples (as demonstrated by the values ofZ0(m) in Table I) and

Fig. 1. Relative error between the exact value ofZ (m) from (8) and that
evaluated in [54](N = 10), evaluated by Prony–SVD(N = 8), by MP-8
(N = 8), by MP-5(N = 5), and by MP-4(N = 4).

is suitable for dealing with nearly singular matrices. Following these
considerations, a Prony's method with SVD (Prony–SVD) has been
implemented and an eight-exponential-term approximation of (8) was
computed. Fig, 1 also shows the relative error between the exact values
given by (8) and the Prony–SVD approximation.

To improve the estimation ofai and�i, in order to have a better
approximation ofZ0(m) with a least numberN of terms in (9), the
MP method [12] is used. In this method, the�i coefficients are found
in one step as the solution of a generalized eigenvalue problem. This
process is more computationally efficient and accurate compared to the
Prony method, which is a two-step procedure in finding the polese� m.
Fig. 1 also compares the previously computed relative errors between
the exact functionZ0(m) and the approximation given by [5] and by
Prony–SVD with the same relative errors associated with (9) by using
the coefficients evaluated by MP withN = 8 (MP-8),N = 5 (MP-5),
andN = 4 (MP-4). As expected, the approximation MP-8 is much
better than [5] (which hasN = 10) and the Prony–SVD that usesN =
8 terms. MP-5 shows a better fitting ofZ0(m) than [5] in the initial
values and the same order of error for the late time. It is interesting
to point out that MP-4 also gives a better early-time approximation of
Z0(m) than [5]; unfortunately, the late-time error is not acceptable.
Table I summarizes the coefficients proposed by [5] and evaluated by
Prony–SVD and MP forN = 8 andN = 5. In the last row of the
table, the values ofZ0(0) computed by means of (10) are given.

In the following calculations of the transient response of an MTL
network, the MP method is used to evaluate the coefficientsai and�i
withN = 5 terms in the exponential approximation. This significantly
reduces the computation time as reported in Table II.

IV. COMPUTED RESULTS

The above formulation is applied to the prediction of crosstalk and
the transient response of an MTL network. Although the excitations in
the above formulation can be either independent sources internal to the
junctions/terminations or external incident electromagnetic fields, the
following example uses lumped sources. The FDTD model is validated
for incident field excitation, as well as other configurations in [1], [2],
and [4].

A network configuration that is typical of clock distribution struc-
tures on printed circuit boards is shown in Fig. 2. All of the tubes are
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Fig. 2. MTL network considered (node numbering and junctions/terminations
lumped circuits).

0.245-cm long and the per unit length parameter matricesC andL are
tubesT1 andT5 (n = 1)

L1 = L5 = 0:930767 �H/m

C1 = C5 = 11:9541 pF/m

TABLE II
NUMBER OF COEFFICIENTSVERSUSRELATIVE COMPUTING TIME

(a)

(b)

Fig. 3. (a) Transient voltageV evaluated by means of the coefficients:a in
[5], b from MP-5, andc from Prony-SVD (see Table I). (b) Normalized errors
e ande .

tubeT2 (n = 3)

L2 =

0:930767 0:160944 0:069314

0:160944 0:930767 0:160944

0:069314 0:160944 0:930767

�H/m

C2 =

12:3486 �2:03716 �0:056735

�2:03716 12:6586 �2:03716

�0:056735 �2:03716 12:3486

pF/m
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tubesT3 andT4 (n = 2)

L3 = L4 =
0:930767 0:160944

0:160944 0:930767
�H/m

C3 = C4 =
12:3226 �2:13076

�2:13076 12:3226
pF/m:

The resistances inside the junctions/terminations are one of the three
following values:

Ri =

50 
; i = 1; 3; 4; 8; 9; 10; 11; 12; 14; 17

25 
; i = 2; 5; 6; 7; 13; 15; 16

279 
; i = 18

and the capacitances and inductances have one of the two following
values:

Ci =
5:5 pF; i = 1; � � � ; 6

10 pF; i = 7; 8

Li =
80 nH; i = 1; 3; � � � ; 6

15 nH; i = 2; 7:
(10)

Vs1 in junction 2 is a trapezoidal pulse having a rise/fall time�r =
�f = 100 ps and pulsewidth of� = 500 ps. Fig. 3(a) compares the
transient voltage at node 15 evaluated by using the exponential approx-
imation in (9) with the coefficients in [5] and those evaluated by MP-5
and Prony–SVD (see Table I). The first two are perfectly overlapped
and a slight difference among these two waveforms and the third one is
observable on the “tails” of each reflection wavelets (4 ns� t � 7 ns,
8:5 ns� t � 10 ns). This difference is better pointed out in Fig. 3(b),
where the normalized errorsen1 anden2 among the transient data of
V15 computed via [5] and those computed via MP-5 or Prony–SVD are
shown as follows:

en1 =
V
[5]
15 � V MP-5

15

V
[5]
15;max

en2 =
V
[5]
15 � V

Prony�SVD
15

V
[5]
15;max

V. CONCLUSION

A computationally efficient method for the solution of intercon-
nected MTL networks has been presented in this paper. The numerical
solution of the MTL equations is accomplished through the FDTD
method, whereas the terminations and interconnection networks
(which may contain nonlinearities) are characterized with an efficient
state-variable representation. The computation of the convolution
integral, which is due to skin-effect losses of the line conductors,
was made more efficient and accurate through the use of the SVD
and MP methods. The accuracy of each method was demonstrated
via a complicated MTL network. These new methods of evaluating
the convolution integral also provided a significant reduction in the
computation time.
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A Simplified Procedure to Calculate the Power Gain
Definitions of FET's

Claudio Paoloni

Abstract—A graphical method to easily derive the power gain definitions
of field-effect transistors (FET's) is proposed in this paper. This method is
applicable to MESFET's and high electron-mobility transistors described
by the typical -model. A new set of simple expressions of the -param-
eters, functions of the circuit elements of the FET complete model, is de-
rived. These expressions are presented in graphic form to quickly compute
the modules of the FET -parameters and then the power gains. The ac-
curacy of this approach has been proven by comparison with simulations
of the FET complete model.

Index Terms—Microwave FET amplifiers, microwave FET’s, scattering
parameters.

I. INTRODUCTION

To evaluate field-effect transistor (FET) performance, different def-
initions of power gain can be used. The well-known expressions are
reported here for reference [1].

Transducer power gain in 50-
 system

GT = jS21j2: (1)

Manuscript received October 13, 1998; revised December 10, 1999.
The author is with the Department of Electronic Engineering, University of

Roma “Tor Vergata,” 00133 Roma, Italy.
Publisher Item Identifier S 0018-9480(00)02061-5.

0018–9480/00$10.00 © 2000 IEEE



IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 48, NO. 3, MARCH 2000 471

Maximum stable gain(k < 1)

Gms =
jS21j

jS12j
: (2)

Maximum available gain(k > 1)

Gma =
jS21j

jS12j
(k �

p
k2 � 1) (3)

wherek is the stability factor

k =
1�jS11j2�jS22j2+jDj2

2jS12jjS21j ; whereD = S11S22 � S12S21:

Maximum unilateral transducer power gain

GTUmax =
jS21j2

(1� jS11j2)(1� jS22j2) : (4)

Power gain with input conjugate matched

G =
jS21j2

1� jS11j2 : (5)

Available power gain with output conjugate matched

GA =
jS21j2

1� jS22j2 : (6)

To calculate the power gain according to (1)–(6), the modules
of the FET S-parameters are required. The FET complete model
[see Fig. 1(a)] is often available to designers and, therefore, the
S-parameters must be derived from this model. Of course, due to
the complexity of the equations, this must be performed by using a
simulation program. It could be useful, especially in a preliminary
design phase, when the active devices for the amplifier design must be
chosen, to have a method that allows evaluation, in an easy manner
and using nothing other than a pocket calculator, of the power gain
performance. To make this possible, three circuits simpler than the
FET complete model have been introduced. The purpose of each of
these circuits is to obtain the same electrical behavior of one or two
of the FETS-parameters. The circuit elements of each simple circuit
are a function of the FET complete model elements. This allows the
generation of expressions describing theS-parameters simpler than
the corresponding expressions for the FET complete model. These
expressions are also suitable for presentation in graphic form, allowing
an immediate calculation of the power gain definitions by (1)–(6).

II. THEORY AND RESULTS

The S-parameter modulesjS11j, jS22j, jS21j, and jS12j must
be calculated to obtain the FET power gains by (1)–(6). To gen-
erate expressions of theS-parameters simpler than the expressions
for the FET complete model, some approximations must be per-
formed. The method consists of finding a simple circuit whose
frequency behavior is similar to the frequency behavior of the de-
sired FETS-parameters. The circuit elements of the simple circuit
are defined, after some algebraic manipulations, as functions of
the elements of the FET complete model.

The design-oriented FET model previously proposed in [2] is suit-
able to obtain accurate and simple expressions ofS21 andS11. The
expressions to derive the design-oriented FET model from the FET
complete model are listed in Fig. 1(b). The expression ofS21 for the de-
sign-oriented FET model is shown in (7), at the bottom of the following

Fig. 1. (a) FET complete model. (b) Design-oriented FET model. (c) New
simple circuit describing the FETS . (d) New simple circuit describing the
FET S .

Fig. 2. S-parameters of typical 0.5-�m gate-length MESFET.

page, wheregm is the FET transconductance,Cgse, Cdse, Rdse, and
Rie are the elements of the design-oriented FET model,R0 = 50 


Rio = R0 +Rie

Rdso =
RdseR0

Rdse +R0

:

The expression ofS11 for the design-oriented FET model is

S11 =

1 + j2�f (GHz)Cgse (pF)(Rie �R0)10
�3

1 + j2�f (GHz)Cgse (pF)(Rie +R0)10�3
: (8)

The circuit that better describes the FETS22 frequency behavior has
the topology shown in Fig. 1(c). The analytical expression of the
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Fig. 3. Chart to derive the termjS j=g (S)R as a function ofC
(pF)R f (GHz) withC (pF)R f (GHz) as the parameter.

impedanceZh of this simple circuit and the FET complete model
output impedance were compared. The output impedance of the FET
was calculated neglectingrs, rg , rd, andRi in the complete model.
After some algebraic manipulation, the new simplified expression of
S22 is (9), shown at the bottom of this page, where

Cgdh (pF)= Cgd (pF) 1 + gm(S)R0 + Cds (pF)=Cgd (pF)

Cgsh (pF)= Cgdh (pF):

Rdsh = rs+ rd+Rds(1+gmrs).Rdsh is the output resistance of the
FET complete model calculated assuming low-frequency conditions.

The same method was used to obtain a simple expression ofS12. The
circuit chosen to derive theS12 of the FET is shown in Fig. 1(d). The
S12 of the FET complete model was calculated neglectingrs, rg , rd,
andRi. Comparing the expression forS12 of the circuits in Fig. 1(d)

Fig. 4. Chart to derive the term1�jS j as a function ofC (pF)f (GHz)
with R as the parameter.

and of the FET complete model [see Fig. 1(a)], after some simplifica-
tions, the approximate expression ofS12 is (10), shown at the bottom
of this page, where

Cgsw (pF)= Cgd (pF)R0 gm(S) + 1=Rds

+Cgs (pF)(1 +R0=Rds) + Cds (pF):

In all the cases, the parasitic inductancesLg, Ld, andLs were ne-
glected.Lg andLd are normally absorbed in the matching networks.
Ls affects the accuracy of the results, but can be neglected without sig-
nificant error.

The validity of the new expressions of theS-parameters is demon-
strated by comparing theS-parameters derived from the FET complete
model (typically extracted from measurements).Lg andLd were not
included in the FET complete model.

S21 =
2gm(S)Rdso

1 + j2�f (GHz)Cgse (pF)Rio10�3 1 + j2�f (GHz)Cdse (pF)Rdso10�3
(7)

S22 =

1 + j4�f (GHz)Cgd (pF)R010
�3 Rdsh

1 + j2�f (GHz)Cgdh (pF)(2R0 +Rdsh)10�3 � 2�f (GHz)Cgdh (pF)10�3
2

R0Rdsh

(9)

S12 =
j2�f (GHz)Cgd (pF)R010

�3

1� 2�f (GHz)R010�3
2

Cgsw (pF)Cgd (pF)+ j2�f (GHz) Cgsw (pF)+ 2Cgd (pF) 10�3R0

(10)
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(a) (b)

Fig. 5. Chart to derive the termjS j as a function ofC (pF)f (GHz) withR as the parameter.

Fig. 6. Chart to derive the term1� jS j as a function ofC (pF)f (GHz)
with C (pF)f (GHz) as the parameter.

Fig. 2 shows theS-parameters for a typical 0.5-�m gate-length
MESFET up to 20 GHz. As further comparison, theS-parameters
derived from the FET unilateral model (same topology in Fig. 1(b)
assumingRdse = Rds, Rie = Ri, Cgse = Cgs, andCdse = Cds) are
also shown. Good agreement, in amplitude and phase, is demonstrated.

Since the purpose of this paper is to provide a fast manner to com-
pute the modules of theS-parameters for evaluating the different power
gains, a graphic presentation is proposed. Four sets of curves are suffi-
cient to calculate theS-parameter modules.

The termjS21j=gm(S)Rdso as a function ofCgse (pF)Riof (GHz)
with Cdse (pF)Rdsof (GHz) as the parameter is plotted in Fig. 3. The
term 1 � jS11j

2 as a function ofCgse (pF)f (GHz) with Rie as the
parameter is plotted in Fig. 4. The term1 � jS22j

2 as a function of
Cgdh (pF)f (GHz) withRdsh as the parameter is plotted in Fig. 5(a)
and (b). In this case, the figure is split to simplify the evaluation of the
term 1 � jS22j

2. Finally, the termjS12j as a function ofCgd (pF)f
(GHz) withCgsw (pF)f (GHz) as the parameter is plotted in Fig. 6. In
Table I are listed all the terms necessary to calculate the modules of the
S-parameters from the charts in Figs. 3–6.

The range of the parameters to plot Figs. 3–6 is chosen to permit the
computation ofS-parameter modules for typical MESFET's and high
electron-mobility transistors (HEMT's). Furthermore, an approximate
expression of the stability factork is also given to calculateGma and
to find the frequency that limits the FET instability zone

k =
1� jS11j

2 � jS22j
2 + jS11j

2jS22j
2 + jS12j

2jS21j
2

2jS12jjS21j
: (11)

Once the elements of the design-oriented FET modelCgse,Cdse,Rdse,
Rie, and the terms in Table I are calculated, the modules of theS-pa-
rameters for the required frequencyf are obtained from the charts in
Figs. 3–6.

To show the effectiveness of this method, an example of amplifier
design is described. The MESFET whoseS-parameters are reported in
Fig. 2 is used. The design goal is more than 18-dB gain in 13–14-GHz
frequency band with�12 dB of return loss. The first step of the design
is verifying the stability of the active device. If this condition is verified,
thenGma will be calculated. The transducer gain of the whole ampli-
fier must be lower than the sum ofGma (Gma is equal to the maximum
transducer gain) of each FET, calculated at the highest frequency of the
band. This allows to evaluate the number of stages necessary to get the
design goal. Table II(a) lists the values of the FET complete model ele-
ments. Table II(b) lists the values of the terms constant with frequency
from Table I. In Table II(c), the calculatedS-parameter modules at the
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TABLE I
TERMS TO DERIVE THE S-PARAMETER

MODULES FROM THECHARTS IN FIGS. 3–6

TABLE II
EXAMPLE OF AMPLIFIER DESIGN

edges of the frequency band are shown (arrows in Figs. 3–6 indicate
the corresponding values). Finally, in Table II(d), the various gains and
stability factor calculated by theS-parameters in Table II(c) are listed.

The stability of the MESFET is assured as reported in Table II(d).
A Gma = 9:25 dB at 14 GHz is obtained. A two-stage amplifier can
theoretically provide a transducer gain of about 18.5 dB in the whole
frequency band. The simulation of the circuit using Touchstone shows
a gain of 19�0.3 dB. In particular, a gain of 18.7 dB at 14 GHz results,
very close to the value predicted by this method.

III. CONCLUSION

A set of new, simple, and accurate expressions for computing FET
S-parameters as a function of the circuit elements of the FET complete
model has been presented in this paper. The fast calculation of theS-pa-
rameter modules by four charts permits straightforward evaluation of
the main definitions of FET power gain. The accuracy of this simplified
procedure was demonstrated by comparisons with the results from sim-
ulation of the FET complete model. This method permits the designer
to evaluate the FET performance by using only a pocket calculator.
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Dual-Mode Helical Resonators

R. S. Kwok and S. J. Fiedziuszko

Abstract—High performance and compact size are the most important
criteria in filter-based products for satellite communication systems. Suc-
ceeding the superconducting and dielectric resonators, the conventional
single-mode helical resonator ranks favorably on its high unloaded- per
volume. Improvement of the performance has been demonstrated by oper-
ating the helical resonator at a higher order( 0) mode. In addition,
these resonators can also be fabricated onto a high dielectric-constant ma-
terial to further reduce the size of the filter structure. Detailed design con-
siderations of the dual-mode wire-wound helical resonator filter, as well
as implementation of the dual-mode dielectrically loaded helical resonator
filter structure, are presented in this paper.

I. INTRODUCTION

Helical filters have been used extensively in RF and low microwave
frequencies in which the conventional lumped-element filters are too
lossy and the quarter-wave coaxial resonators are too large. These
helices are designed to operate in their cylindrically symmetric
fundamental mode(n = 0). Details of such technology have been
reviewed by a number of authors [1]–[3]. To further reduce the size of
the single-mode helical filters, dielectric-loaded helices have recently
been introduced [4]. At the same time, a higher order dual-mode
helical filter was also proposed. Design of this higher order helical
resonator is very complicated and not yet fully understood, mainly be-
cause of the absence of an analytical solution. In this paper, we present
the design concept, the approximation used, and the experimental
realization of a half-wavelength dual-mode helix loaded cavity filter.
Similar to the single-mode resonators, the dual-mode helices can also
be fabricated onto a high dielectric-constant material. Results of these
newly developed dual-mode dielectric-loaded helical resonators will
also be discussed.
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Fig. 1. Dispersion relation and phase velocity of a sheath helix operating at
n = 1 mode.

Fig. 2. Oscillating electric-field pattern for the two orthogonal modes of an
n = 1 half-wave helical resonator.

II. SHEATH MODEL

The sheath model is a popular mathematical description of a helix
because of its simplicity and ability to account for many helical prop-
erties. A sheath helix is basically a cylindrical tube assumed to have in-
finite conductivity in the direction of the original helical winding and
zero conductivity in a direction normal to the turns of the winding.
Excellent literature on the sheath model [5]–[8] are readily available,
including a detailed 1995 review by Sensiper.

Following the derivations outlined by Collin [5] and Sensiper [6] for
an nth-order sheath helix, one would obtain a transcendental eigen-
value equation

K0

n
(ha)I 0

n
(ha)

Kn(ha)In(ha)
= �

(h2a2 + n�a cot�)2

K2
o
a2h2a2 cot2 �

(1)

whereko is the free-space phase constant(=!=c), � is the axial phase
constant(=!=v), v is the phase velocity of the wave,h is the radial
phase constant defined by�2 = h2 + k2

o
, � is the pitch angle,In and

Kn are the modified Bessel functions of ordern, and the primes are the
derivative of the Bessel functions with respect to the argumentha. The
guided wavelength can then be approximated by numerically solving
this eigenvalue equation. Similar to the dielectric resonator, the lowest
order eigenstate of a helical resonator that displays the duality nature

Fig. 3. Spectrum forn = 0, 1, and 2 modes of a helical resonator
approximated by the sheath model.

Fig. 4. Dual-mode helical resonator loaded cavity filter (copper helix on
Teflon core in bare aluminum cavities).

Fig. 5. Measured quasi-elliptical response of a dual-mode helical resonator
loaded cavity filter (four pole 10-MHz bandwidth, 1.8-dB insertion loss, realized
unloadedQ of 1400).

of the electromagnetic-field pattern is then = 1 mode, even though
the field distributions of the two cases are quite different.

For a helix of 4.5 turns, 2-in diameter, and 1-in height, (1) has been
solved numerically for the case ofn = 0, 1, and2. The resulted disper-
sion relation and the phase velocity forn = 1 mode (shown in Fig. 1)
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Fig. 6. Measured response of the same filter in Fig. 4 with silver-plated
elements and new coupling probes (quasi-elliptical response, 15-MHz
bandwidth, 0.96-dB insertion loss, realized unloadedQ of 1800).

Fig. 7. Helical patterns fabricated onto dielectric resonators of 1-in diameter
and 0.8-in height.

is similar to those of the fundamental mode [5]–[8]. For largekoa, the
wave can be thought of as spiraling along the helix and, consequently,
the phase velocity is reduced by the geometric factor ofsin�.

The corresponding field distributions obtained is similar to that of
theHE11 hybrid mode of a dielectric resonator with the following no-
ticeable differences.

1) The field intensity is mostly concentrated around the circumfer-
ence and is minimal at the center.

2) The field direction spiral along the helix.
3) The radial electric field inside and outside of the helix are oppo-

site in direction.

By imposing a reflective boundary at each of the two ends, a spiral
standing wave is formed as illustrated in Fig. 2 for the case of using
perfect magnetic walls. One can see that two independent sets of solu-
tions exist (solid and dashed lines) in Fig. 2 corresponding to the two
orthogonal modes. Depending on how the boundaries are physically
implemented, electric walls can also be used provided a 180� phase
shift is included upon reflection. Nevertheless, the following discus-
sions apply to either condition.

Finally, spectrum of thenth-order helical resonator mode can be ap-
proximated by equatingL to an integer multiple of�g=2. The esti-
mated resonant frequencies of the sheath helix forn = 0, 1, and2

Fig. 8. Measured response of the dual-mode dielectric loaded helical resonator
in Fig. 7 (single resonator, 12-MHz bandwidth, 2.2-dB insertion loss, realized
unloadedQ of 500).

Fig. 9. Realized unloadedQ of the dual-mode cavity resonators with various
loading (open circles:r=a = 1:3, solid squares:r=a = 2:0).

modes are shown in Fig. 3. The fundamental spectrum(n = 0) is
similar to those recently reported [9], in which the frequency-depen-
dent transverse impedance was explicitly taken into account. Utilizing
this result, dual-mode helical resonators were discovered. Cavity filters
loaded with such resonators were built and tested. Details of the exper-
iment are described in the following section.

III. D UAL-MODE HELICAL RESONATORLOADED CAVITY FILTERS

The helical resonators used for the dual-mode filters (Fig. 4) and its
measured response of a four-pole Chebyshev filter was previously re-
ported [4]. The quasi-elliptical response of the modified filter is shown
in Fig. 5. The center frequency of the filter is around 1.65 GHz, which is
somewhat lower than the 2 GHz estimated from the spectrum in Fig. 3.
This is due to the oversimplification of our model, in which neither the
loading of the cavity, dielectric holder, and coupling mechanism nor
the fringing effects are taken into account. The realized unloadedQ of
the filter is measured to be 1400. When silver-plated housing, wire, and
tuning screws are used, the realized unloadedQ factor is enhanced to
1800 (see Fig. 6).

Fig. 3 suggests that there are many spurious around the desired fre-
quency, which was observed in a dual-mode resonator. However, with
an increased number of resonators, most of the spurious are suppressed.
Furthermore, helices with different geometry can be mixed together in a
way that the unwanted resonant frequencies of each helix are not co-lo-
cated. Altogether, the spurious can be managed to an acceptable level.
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Fig. 10. Maximum strength of the unperturbed electric field components of a
n = 1-mode sheath helix.

IV. DUAL-MODE DIELECTRIC LOADED HELICAL RESONATORS

To further reduce the size of the helical resonator, we fabricated
helical patterns onto dielectric resonators, as demonstrated in Fig. 7.
This can be achieved by using chemical or laser etching, thick silver
painting, or electroplating processes. A dielectric resonator of"r = 20,
1-in diameter, and 0.8-in height, with four turns of metallic strip was
placed inside a cavity of 1.3-in diameter. The first detectable dual-mode
resonant is at 1.7 GHz. The realized unloadedQ is about 500–680, as
shown in Fig. 8. For a comparison, various types of dual-mode res-
onators [10]–[13] with the same overall dimensions were measured in
the same cavity and the realized unloadedQ are displayed as open cir-
cles in Fig. 9. Although this might not be the best way to compare the
different technologies because theQu is also a function of frequency,
it does provide a good reference and is certainly the most economical
method. The empty cavity and dielectric resonator loaded cavity have
aQu of over 10 000. The conductor-loaded cavity is about half of that,
and for a four-turn wire-wound helix of 1-in inside diameter, aQu of
850 is obtained, which is much too low for that frequency.

In reviewing the electric-field intensity of the sheath model (Fig. 10),
we realized that the first filter built has ar=a ratio of 1.6 and aQu of
1800. This smaller helix has a ratio ofr=a = 1:3, where the unper-
turbed electric field is still quite substantial and, consequently, theQu

is much lower(=850). Fig. 10 then implied that the cavity should be
chosen such thatr=a is almost equal to or greater than two. The above
experiment was repeated with a larger cavity of 2-in diameter (denoted
as solid squares in Fig. 9). TheQu of the same wire-wound helix was
increased to 2880. Note that both the air cavity and conductor-loaded
cavity had improved theirQu to 16000 and 8700, respectively, while
the dielectric resonator and dielectric loaded helix varied only slightly
in Qu and resonant frequency because the electric field is mostly con-
centrated inside the dielectric. Since theQu is not limited by thetan �
of the dielectric, one could, in principle, use a higher dielectric con-
stant and a smaller cavity to significantly further reduce the size of the
helical resonator.

TheQu of the resonators reported here are not optimized to their full
potential. The realizedQu is measured by the filter response, which
includes all the losses from the structure and coupling mechanisms.
With an increased coupling, the measuredQu can be reduced substan-

tially. The helical resonators under study required very strong coupling,
which, in turn, limited theQu. Different coupling mechanisms should
be investigated to maximize the availableQu of these filter structures.

V. CONCLUSION

Novel configurations for dual-mode wire-wound and dielectric
loaded helical resonator filters have been demonstrated. Excellent
experimental results have been obtained in this initial work and
substantial improvement is expected. However, significant theoretical
work needs to be completed to explore the full potential of the helix
structures.

To include the helical symmetry explicitly in our approximations, a
tape model [6], [7] was also considered. A periodic dispersion relation
was resulted from this periodicity imposed. Nonetheless, our prelimi-
nary study indicated that this model does not offer more critical infor-
mation than the simpler sheath model. Full-wave analyses of more pre-
cise representations are needed to fully understand the observed prop-
erties such as the helix-orientation dependence of the measurement.
Much of the helical resonator characteristics are still not well under-
stood; this opens a new area for theoretical and experimental investi-
gation of these very promising microwave structures.
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