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Abstract—A synthesis procedure, based on a distributed param-
eter model, for the design of microwave filters is presented in this
paper. The frequency response of the filter is described in terms of
the characteristic polynomial 21 = 11 21 where 11 and 21

are the scattering parameters of the filter. Starting from the desired
polynomial 21, the design scheme directly yields the scattering
parameters of the various junctions, which can be realized by any
kind of discontinuity. The capability of synthesizing an arbitrary
frequency response allows one to introduce the concept of a “pre-
distorted” characteristic polynomial in order to compensate for the
degradations caused by multimodal interactions, frequency dis-
persion, etc. Comparison with measured data of a Chebyshev-like
eight-pole -plane filter confirms the validity of the method also
in presence of losses.

Index Terms—Electromagnetic modal analysis, filter design, mi-
crowave filters, waveguide discontinuities.

I. INTRODUCTION

T HE design of microwave and millimeter-wave devices re-
quires more and more accurate synthesis procedures to sat-

isfy the increasingly stringent specifications of modern commu-
nication systems [1]. In particular, as far as microwave filters are
concerned, both in the past [2]–[9] and in recent years [10]–[13],
a great effort has been devoted to the development of efficient
design procedures.

Most of the available synthesis techniques are based on
models that do not conveniently describe the physical behavior
of the filter (as, e.g., in the case of low-pass prototypes).
Generally, the frequency response of the structure designed by
these techniques does not match the specifications so that a
numerical optimization process is necessary to obtain the final
configuration of the filter. In recent times, the availability of
high-power computational resources has made this approach
possible and has lead to the development of computer-aided
design (CAD) tools based on different methods, such as the
mode-matching method [14]–[17], the adjoint network method
[18], and the space-mapping technique [19].

The synthesis technique presented in this paper, on the con-
trary, does not require any numerical optimization process be-
cause it is based on an accurate model, where the disconti-
nuities are described by their-parameters [20]. As is well
known, an -resonator waveguide filter can be seen as a cas-
cade of discontinuities interconnected by transmis-
sion lines corresponding to the fundamental waveguide mode.
The discontinuities can be irises, thick slots,-plane
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septa, etc. and more complex structures such as input/output
coaxial-waveguide transitions, or even composite junctions, as
in the case of multiplexer configurations. Starting from the de-
sired response and on the basis of this distributed model, the
synthesis procedure directly yields the scattering parameters of
the various discontinuities and the lengths of the resonators. The
procedure is based on the properties of the elements of the trans-
mission matrix of the filter: (i.e., the character-
istic polynomial) and , where and are the
relevant scattering parameters.

The method allows to synthesize an arbitrary frequency re-
sponse by suitably positioning the roots that correspond
to the reflection zeros of the filter. This possibility becomes
very useful when the phenomena that at first are ignored in the
synthesis procedure cause significant effects. These phenomena
are: 1) the frequency dispersion of the-parameters of the var-
ious discontinuities; 2) the multimodal interactions between dis-
continuities; and 3) the material losses. Their effects are gener-
ally important in the following cases: filters with large band-
width, discontinuities with high excitation coefficients of the
evanescent modes, input/output junctions with complex config-
uration (e.g., multiplexers with a rapidly varying frequency re-
sponse), and finally, when the insertion loss introduced by the
filter is significant. In order to find a way to compensate for the
degradations produced by these phenomena, the complete de-
sign process is phrased in the language of system theory. By
means of a system identification technique, the response to be
synthesized is predistorted in such a way that the final full-wave
analysis of the filter meets the specifications exactly.

II. EXTRACTION PROCEDURE

As far as the fundamental mode is concerned, an-pole mi-
crowave filter can be described by the equivalent two-port net-
work shown in Fig. 1. is the 2 2 scat-
tering matrix of the th discontinuity and is the
length of the modal transmission line with propagation constant

corresponding to theth resonator. Differently from what
was assumed in [20], the various resonators can be waveguides
with different cross sections (rectangular, circular, coaxial, or
with the same geometry, but with different dimensions). For this
reason, the propagation constant of the fundamental waveguide
mode in each resonator is labeled with the index.

Consider the transmission matrix of theth discontinuity, de-
fined as

(1)

where and are the incident and scattered power waves.
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Fig. 1. Two-port network equivalent circuit of anN -resonator filter.

In the case of a reciprocal and lossless structure, this matrix
can be written as follows:

(2)

where , , and are

the phases of the scattering parameters and is the de-
terminant of . The length of the waveguides corresponding
to the th cavity can be described by the following transmission
matrix:

(3)

According to (2) and (3), the transmission matrix of the whole
filter can be expressed as follows:

(4)

where the complex variable is defined as

(5)

It is to be noted that the complex variableis not a function
of the index and its phase is related to the frequency through
the propagation constants and the phases of the scattering
parameters of the junctions. Hence, the unknown phase
terms have been introduced in order to compensate for the
different phase behavior of the resonators and to guarantee the
possibility of synthesizing arbitrary frequency responses, as will
be explained later.

Since only the amplitude of the transmission matrix elements
is of interest, it is convenient to drop the phase factors in (4) and
to regard the following expression:

(6)
as the transmission matrix of the whole filter.

From (6), it is easy to recognize that the elements of the trans-
mission matrix are -degree polynomials in the complex
variable . In particular,

(7)

is the characteristic polynomial of the filter,
which efficiently describes the frequency response both in the
passband (where ) and in the stopband (where

). It can be interpreted as the array factor of a linear dis-
tribution of radiators or, alternatively, as the response of a dig-
ital filter. According to the first interpretation, the filter reflec-
tion coefficient in the passband corresponds to the level of the
secondary lobes of the array factor, whereas the maximum in-
sertion loss in the stopband corresponds to the main lobe level.
According to the second interpretation, can be identified as
the -transform of the impulse response of a finite-impulse re-
sponse (FIR) digital filter. In both cases, well-established syn-
thesis techniques can be used to obtain the desired array factor
[21] or the FIR transfer function [22]. Once the polynomial
has been defined according to the required specifications, an ex-
traction procedure is applied to determine the scattering matrix
of the various junctions.

In order to carry out the extraction procedure, it is necessary
to know also the element of the transmission ma-
trix of the filter. For this purpose, one recalls that, in the case of
a reciprocal and lossless structure, the difference between the
squared magnitudes of and is one for , i.e., for
real values of frequency

(8)

This relationship can be analytically continued in the whole
complex plane by noting that on the circle .
Hence, one obtains

(9)

On the basis of this equation, can be determined from a
specified . It is, in fact, easy to recognize that the
roots of the left-hand side of (9) occur in pairs ,
where are the roots of the polynomial . The identi-
fication of the is very simple noting that they are the poles
of , and, hence, lie inside the circle
because of the stability condition. The magnitude of the

th degree coefficient can be determined by evaluating (9) at
an arbitrary point, e.g., at . As for its phase, it must be
equal to that of the coefficient of the polynomial with
the same degree, as explained below.

In general, the determination of the roots of (9) is per-
formed through numerical algorithms and the precision of the
computation must be increased as the magnitude range of the
polynomial on the circle increases. However,
in the special cases of Butterworth- and Chebyshev-type re-
sponses, the roots can be expressed in closed form. For a
Butterworth-type response, where the reflection zeros (roots of

) are all coincident at , the roots of are

(10)
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where

with (11)

Here, is the 3-dB electrical bandwidth in radiants.
In the case of a Chebyshev-type response, the reflection zeros

are given by (10), where now

with (12)

and is the Chebyshev electrical bandwidth. The corre-
sponding filter poles are still defined by (10), but with

with (13)

where is the maximum amplitude of the reflection coefficient
in the passband.

It is to be noted that, in order to compensate for the degra-
dation effects produced by the real behavior of the structure,
one has to synthesize polynomials, which do not belong
to the previous special cases. Hence, the numerical solution of
(9) becomes necessary in most practical cases, even if a Cheby-
shev-like response is required.

Once the polynomials and are determined (the su-
perscript has been added to emphasize that they refer to the
whole structure consisting of cavities), it is possible to start
the extraction procedure, which leads to the determination of the
scattering parameters of the discontinuities. From (6), one
can write the following relationship:

(14)

where the polynomials and correspond to the
structure consisting of the first cavities. By solving the
linear system (14), the following relationships are obtained
among the coefficients of the four polynomials involved:

with

with (15)

Since the polynomials and are of degree
in the variable , the coefficients and must be
zero. By enforcing these conditions, two relationships are ob-
tained, both giving the magnitude of for the th disconti-
nuity

(16)

It is easy to prove that (9) implies the following relationship:

(17)

Since the ratio (17) must be real and positive, the phase of
must be chosen equal to that of , as previously stated. Under
this condition and because of (17), the second ratio of (16) al-
ways coincides with the first one.

The procedure described can be repeated to obtain the-pa-
rameter of the th discontinuity as follows:

(18)

From this expression, the role played by the phase termin-
troduced in (5) appears clearly. Its value must in fact be chosen
so that the ratio (18) is real and positive. By iterating the pre-
vious steps, all the parameters , ( )
and ( ) can be determined. Formally, the ex-
traction scheme is as follows:

As in all extraction procedures (see, e.g., [23]), particular at-
tention must be paid to the numerical implementation of the al-
gorithm. If the number of cavities increases and the bandwidth
decreases so that the range of the polynomialon the circle

becomes large, roundoff errors can greatly affect the
extraction procedure, especially in the case of the last cells. In
these cases, the use of multiple precision software may be nec-
essary.

In order to show the behavior of the-parameters of the
various junctions as a function of the filter specifications, this
synthesis procedure has been applied to a five- and seven-pole
Chebyshev-type response. Fig. 2(a) and (b) show the amplitude
of the coefficients of the various discontinuities versus the
relative electrical bandwidth and for two levels of the re-
turn loss in the passband: 20 dB (solid lines) and 30 dB (dashed
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Fig. 2. Amplitude of the transmission coefficientsS of the discontinuities
in the case of a Chebyshev filter as a function of the relative bandwidth. Return
loss 20 dB: solid line. Return loss 30 dB: dashed line. (a) Five-pole filter: i)
S = S , ii) S = S , and iii) S = S . (b) Seven-pole filter: i)
S = S , ii) S = S , iii) S = S , and iv)S = S .

lines). As is to be expected, the transmission coefficients in-
crease with the bandwidth and the return loss, and the largest
are those of the input/output junctions. Note that in the case of a
Chebyshev-type response, the phase termsare zero and the
filter is symmetric.

In the case of lossy structures, where the correspondence be-
tween the amplitudes of and does not hold, it is nec-
essary to refer to the quantity rather than to

. It will be shown in the following section that
the synthesis procedure also maintains its validity in this case.

As far as the computation of the length of the cavities and
the correspondence between electrical and angular bandwidth is
concerned, it is necessary to refer to the expression of the phase
of the complex variable defined in (5). In particular, referring to
the function

(19)

where, for brevity, the following variable has been introduced:

(20)

the phase of the complex variableis defined from (19) as

(21)

where , , and are the mean values on the index
of the corresponding quantities , , , and , re-

spectively. In particular, the value ofis obtained by summing
the two values of expression (21) evaluated atand , where

and are the angular frequencies of the two limits of the
passband, corresponding to the angle and

, respectively,

(22)

As for the length of the th resonator, by equating (19)–(21),
one has

(23)

where the quantities , , , and are the mean values of
the corresponding functions , , , and , re-
spectively, evaluated on the frequency interval . Finally,
the angular bandwidth , necessary to define the polynomial

that must be synthesized, is obtained by subtracting the
two values of (21) evaluated at and

(24)

From this expression, it is clear that, for the definition of the
angular bandwidth , the two values and must
be estimated at the beginning of the synthesis procedure.

III. COMPENSATIONPROCEDURE

In some cases, the frequency dispersion of the-parameters
of the junctions, the multimodal interaction between them, the
different frequency behavior of the resonators, the losses, and
the presence of other filters in the case of multiplexer configura-
tions can produce degradation effects in the frequency response
of the filter such that the specifications are not completely satis-
fied. In order to compensate for these effects optimization tech-
niques are generally applied. In this paper, an alternative proce-
dure, based on linear system concepts, is proposed. Consider the
process consisting of the following steps: the application of the
extraction procedure presented above, the definition of the filter
geometry, and the final full-wave analysis. At least in the band
of interest, this process can be viewed as a linear system where
the input signal is the desired curve and the output is the

obtained by the full-wave analysis [see Fig. 3(a)]. On the
basis of this point-of-view, a “predistorted” polynomial to be
synthesized is obtained, so that the full-wave analysis applied
to the new filter geometry satisfies the desired frequency re-
sponse [see Fig. 3(b)]. To illustrate this concept, let us refer to a
simple example of an equiripple four-pole-plane metal-insert
filter in WR28 rectangular waveguide with central frequency 30
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(a)

(b)

Fig. 3. Linear system interpretation of the synthesis-analysis process. (a)
Identification of the linear system. (b) Predistortion of the polynomial to be
synthesized to obtain the desired frequency response.

Fig. 4. Design example of a Chebyshev four-pole filter.T = S =S
versus frequency corresponding to the various steps of the design. Chebyshev
polynomial (dashed line), full-wave analysis: 1� step (dotted line), new
polynomial to be synthesized (dash–dotted line), full-wave analysis: 2� step
(solid line).

GHz, bandwidth 800 MHz, return loss 30 dB, septum thick-
ness 0.5 mm. As far as this filter configuration is concerned,
a number of papers have been published (see, e.g., [24]–[27]).
Fig. 4 shows several plots of the parameter corresponding
to the various steps of this technique. In particular, the dashed
curve is the Chebyshev polynomial

(25)

to be synthesized, which satisfies the specifications. The dotted
curve shows computed by the full-wave anal-
ysis applied to the configuration obtained by the procedure pre-
viously presented. It is to be noted that this curve is close to
the desired one, even if does not satisfy the bandwidth require-
ment and equiripple conditions. This confirms the validity of
the extraction procedure proposed in this paper. The parameter

obtained by the full-wave analysis is, of course,
not a polynomial, but can be fitted, at least in the band of in-
terest, with a polynomial with the same degreeas the goal

(26)

Now the Chebyshev polynomial and the fitting polyno-
mial are interpreted as the input and output signals of the
linear system of Fig. 3(a). Furthermore, it is worthwhile to ob-
serve that the sequences of the polynomial coefficientsand

, given in (25) and (26), can be interpreted as the discrete
spectra of the periodic signals and , respectively. As
a consequence, one can write

with (27)

where the sequence is the transfer function of the linear
system of Fig. 3 evaluated on the spectrum of the input and
output signals.

It is now possible to define a new input polynomial
(dash–dotted curve of Fig. 4 with coefficients that, in view of
(27), are given by

with (28)

These coefficients define the input signal that must be synthe-
sized in order to obtain as output signal [see Fig. 3(b)].

As it appears from Fig. 4, this new polynomial can be viewed
as a predistorted input signal to compensate for the multimodal
interaction between the septa and frequency dispersion of their

-parameters. Now, the extraction procedure is carried out
again, starting from this new input polynomial . The new

, computed by a full-wave analysis of the configuration
obtained directly by the synthesis procedure, satisfies the
specifications, as shown by the solid line in Fig. 4. In general,
the zeros of can be placed anywhere in the complex
-plane. Hence, the possibility of synthesizing an arbitrary

frequency response assumes great importance. Thanks to this
peculiarity, if necessary, the whole process can be iterated. For
example, this happens in the case of a multiplexer configuration
where each filter must be designed taking into account the load
produced by the other filters.

IV. RESULTS

The method presented in the previous section has been used
to design several filters. In the following, an example of real-
ization of an equiripple eight-pole -plane metal insert filter
in a brass WR90 waveguide (insert thickness 0.52 mm) is de-
scribed. This kind of material was selected to emphasize the
degradations caused by losses. The bandwidth of 800 MHz is
centered at 11 GHz, with a return loss of 25 dB. Starting from
a Chebyshev polynomial to represent (see dashed curve
of Fig. 5), the synthesis procedure yielded the following data:

, , , , ,
with ; with and
with . The full-wave analysis of the structure se-
lected by this synthesis step and the linear system identification
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Fig. 5. Design of an eight-poleE-plane metal-insert WR90 waveguide filter.
T polynomials to be synthesized. Chebyshev polynomial (dashed line) and
predistorted polynomial (solid line).

of the whole process allowed us to define the predistorted poly-
nomial that had to be synthesized (Fig. 5, solid curve). Note
that this polynomial is significantly different from the nominal
one. The central frequency is lowered, the bandwidth is slightly
reduced, and the passband reflection coefficient has reached

17 dB.
The corresponding new data set obtained by this new

synthesis step was , , ,
, , with , with

, and , , , ,
with ; with . One
should note that this synthesis step yielded nonzero values of

to compensate for the different behavior of the phase of
the reflection coefficients of the septum discontinuities.
The geometry of the final configuration is as follows: septum
lengths mm, mm,

mm, mm, and
mm, and resonator lengths mm,

mm, and mm.
Fig. 6 shows the full-wave analysis for this configuration (solid
line) and the measurements (dashed line) of the prototype.
The excellent agreement between the measured and predicted
results confirms the validity of the whole design procedure.
The analysis is carried out by applying the method of mo-
ments with weighted Gegenbauer polynomials as basis func-
tions to represent the aperture field distribution with the right
edge conditions. The projections of the basis functions onto
the modal sets is carried out in the spectral domain by ex-
ploiting the analytical knowledge of the Fourier transform
of the basis functions. The material losses are taken into ac-
count by introducing the relevant impedance boundary con-
ditions in the moment-method application. In this way, the
loss phenomena are accurately modeled. In particular, the
extra losses produced by the reactive fields excited by the
discontinuities are accounted for. It should be noted that,
even though the synthesis procedure is based on the hy-
pothesis of lossless devices, the linear system identification

Fig. 6. Eight-poleE-plane metal-insert WR90 waveguide filter designed by
the synthesis procedure described in this paper. Measurements of the prototype
made of brass (dashed line). Full-wave analysis (solid line). The geometry is
reported in this paper.

Fig. 7. Detail of the frequency response of Fig. 6. Measured (dashed line) and
prediction (solid line). The geometry is reported in this paper.

process allows one to also compensate for the degradation
produced by the losses. Fig. 7 shows in expanded scale the
comparison between predicted and measured data of the fre-
quency response of Fig. 6. The excellent agreement proves
the accuracy of our design/analysis tool, also for the pre-
diction of the insertion losses.

V. CONCLUSIONS

The synthesis technique presented in this paper is based
on a scattering description of the various discontinuities that
constitute the filter. The generality of the method allows one
to synthesize arbitrary frequency responses. This fact is of
substantial importance because the use of a numerical opti-
mization process for the determination of the final config-
uration can be avoided. The key point is the capability of
synthesizing a predistorted frequency response in order to
compensate for the effects due to multimodal interactions,
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frequency dispersions, and losses. The comparison between
measurements and predicted results confirms the validity of
the approach also in the presence of losses. This method
can be applied as well to the design of multiplexers. In this
case, the filter–multiplexer junction and the loads produced
by the other filters are included in the scattering matrix that
describes the input/output discontinuity of the filter.
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