2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Microwave Theory and Techniques
Volume 48 Number 4, April 2000

Table of Contents for this issue

Complete paper in PDF format

Dispersion Characteristics of Grooved Microstrip Line (GMSL)

W. Chamma, N. Gupta and L. Shafai

Page 611.

Abstract:

In this paper, the method of lines and finite-difference time-domain numerical methods are used to investigate the field distribution, dispersion,and impedance characteristics of the grooved microstrip line (GMSL) structure. It is found that the GMSL is less dispersive compared to conventional microstrip lines, and also provides a wide range of characteristic impedance values as a function of the groove width. Increasing the groove width of the microstrip structure can also reduce the dielectric and conductor losses of the GMSL.

References

  1. R. S. Tomar and P. Bhartia, "Suspended and inverted microstrip design", Microwave J., pp.  173-178, Mar.  1986.
  2. I. P. Polichronakis and S. S. Kouris, "Computation of the dispersion characteristics of a shielded suspended substrate microstrip line", IEEE Trans. Microwave Theory Tech., vol. 40, pp.  581-584, Mar.  1992.
  3. N. Gupta and L. Shafai, "Grooved suspended microstrip line", in IEEE Joint AP-S URSI Symp. Dig., Atlanta, GA, June 21-26 1998, pp.  1468-1471. 
  4. W. Chamma, N. Gupta and L. Shafai, "Dispersion characteristics of suspended microstrip line on segment dielectric substrate", in Antenna Technol. Applied Electromag. Symp. Dig., Ottawa, Ont., Canada,Aug. 1998, pp.  159-162. 
  5. N. Gupta, N. Jacob, W. Chamma, L. Shafai, S. Raut and A. Assi, "Simulation and experimental evaluation of the low loss grooved lines", in Antenna Technol. Applied Electromag. Symp. Dig., Ottawa, Ont., Canada,Aug. 1998, pp.  451-454. 
  6. V. Milanovic, M. Gaitan, E. D. Bowen and M. E. Zaghloul, "Micromachined microwave transmission lines in CMOS technology", IEEE Trans. Microwave Theory Tech., vol. 45, pp.  630-635, May  1997.
  7. L. Katehi, G. Rebeiz, T. Weller, R. Drayton, H. Cheng and J. Whitaker, "Micromachined circuits for millimeter and sub-millimeter-wave application", IEEE Trans. Antenna Propagat., vol.  35, pp.  9-17, Jan.  1993.
  8. N. Dib, W. Harokpus, Jr., P. Katehi, C. Liang and G. Rebeiz, "Study of a novel planar transmission line", in IEEE MTT-S Microwave Symp. Dig., 1991, pp.  623-626. 
  9. X. Zhang and K. Mei, "Timer-domain finite-difference approach to the calculation of the frequency-dependent characteristics of microstrip discontinuities", IEEE Trans. Microwave Theory Tech., vol. 36, pp.  1775-1787, Dec.  1988.
  10. Z. P. Liao, H. Yang, B. Yang and Y. Yuan, "A transmitting boundary for the transient wave analysis", Scientia, vol. 27, no. 10, pp.  1063-1076, Oct.  1984.
  11. R. Pregla and W. Pacsher, "The method of lines,"in Numerical Techniques for Microwave and Millimeter Wave Passive Structures, T. Itoh, Ed. New York: Wiley, 1989, pp.  381-446. 
  12. R. K. Hoffman, Handbook of Microwave Integrated Circuits, Norwood, MA: Artech House, 1987.
  13. D. Mirshekar-Syahkal and J. B. Davis, "Accurate solution of microstrip and coplanar structures for dispersion and for dielectric and conductor losses", IEEE Trans. Microwave Theory Tech., vol. MTT-27, pp.  694-699, July  1979.