2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Microwave Theory and Techniques
Volume 48 Number 4, April 2000

Table of Contents for this issue

Complete paper in PDF format

Self-Consistent Analysis of Carrier-Transport and Carrier-Capture Dynamics in Quantum Cascade Intersubband Semiconductor Lasers

K. Kálna, C. Y. L. Cheung, I. Pierce and K. A. Shore Senior Member, IEEE

Page 639.

Abstract:

A methodology for the self-consistent analysis of carrier transport and carrier capture aspects of the dynamics of quantum cascade intersubband semiconductor lasers is described in this paper. The approach is used to analyze two prototype quantum cascade lasers. The self-consistent analysis incorporates the calculation of the electron densities and temperatures in each subband,together with the intersubband relaxation time. In the calculation of the relaxation time, we take into account the electron interaction with polar optical and acoustic phonons, as well as electron degeneracy. In addition,we also calculate the capture time, considering backward processes that play a role in the electron transition from an injection into an active region. The calculations indicate intersubband relaxation times of order 1 ps and capture times of order 100 fs.

References

  1. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson and A. Y. Cho, "Quantum cascade laser", Science , vol. 264, pp.  553-556, 1994.
  2. R. F. Kazarinov and R. A. Suris, "Possibility of the amplification of electromagnetic waves in a semiconductor with a superlattice", Soviet Phys.-Semicond. , vol. 5, p.  797, 1971.
  3. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson and A. Y. Cho, "Continuous wave operation of a vertical transition quantum cascade laser above T=80 K", Appl. Phys. Lett, vol. 67, no. 21, pp.  3057-3059, 1995.
  4. C. Sirtori, J. Faist and F. Capasso, et al. "Mid-infrared (8.5 µm) semiconductor lasers operating at room temperature", IEEE Photon. Technol. Lett., vol. 9, pp.  294-296, Mar.  1997.
  5. W. M. Yee, K. A. Shore and E. Schöll, "Carrier transport and intersubband population inversion in coupled quantum wells", Appl. Phys. Lett., vol. 63, no. 8, pp.  1089-1091, 1993.
  6. W. M. Yee and K. A. Shore, "Threshold current density calculations for far-infrared semiconductor lasers", Semicond. Sci. Technol., vol. 9, pp.  1190-1197, 1994.
  7. C. Y. L. Cheung, P. S. Spencer and K. A. Shore, "Modulation bandwidth optimisation for unipolar intersubband semiconductor lasers", Proc. Inst. Elect. Eng., vol. 144, no. 1, pp.  44-47, 1997.
  8. C. Y. L. Cheung and K. A. Shore, "Self-consistent analysis of the direct-current modulation response of unipolar semiconductor lasers", J. Mod. Opt., vol. 45, no. 6, pp.  1219-1229, 1998.
  9. N. Mustafa, L. Pesquera, C. Y. L. Cheung and K. A. Shore, "THz bandwidth prediction for amplitude modulation response of unipolar intersubband semiconductor lasers", IEEE Photon. Technol. Lett., vol. 11, pp.  527-529, May  1999.
  10. N. Mustafa, L. Pesquera, C. Y. L. Cheung and K. A. Shore, "Theoretical analysis of small-signal modulation bandwidth of unipolar intersubband semiconductor lasers", IEEE Trans. Microwave Theory Tech.,
  11. J. H. Smet, C. G. Fonstad and Q. Hu, "Intra and interwell intersubbans transitions in multiple quantum wells for far-infrared sources", J. Appl. Phys., vol. 79, pp.  9305-9320, 1996.
  12. C. Sirtori, P. Kruck, S. Barbieri, P. Collot, J. Nagle, M. Beck, J. Faist and U. Oesterle, "GaAs, Alx Ga 1-x As quantum cascade lasers", Appl. Phys. Lett. , vol. 73, no. 24, pp.  3486-3488, 1998.
  13. M. Willatzen, A. Uskov, J. Mørk, H. Olesen, B. Tromborg and A.-P. Jauho, "Nonlinear gain suppression in semiconductor lasers due to carrier heating", IEEE Photon. Technol. Lett., vol. 3, no. 7, pp.  606-609, July   1991.
  14. C. Y. L. Cheung, P. Rees and K. A. Shore, "Gain calculations for unipolar semiconductor lasers", Proc. Inst. Elect. Eng., vol. 146, pp.  9-13, 1999.
  15. L. A. Coldren and S. W. Corzine, Diode Lasers and Photonics Integrated Circuits, New York: Wiley, 1995, ch. 4.
  16. B. Gelmont, V. B. Gorfinkel and S. Luryi, "Theory of spectral lineshape and gain in quantum wells with intersubband transitions", Appl. Phys. Lett. , vol. 68, no. 16, pp.  2171-2173, 1996.
  17. V. B. Gorfinkel, B. Gelmont and S. Luryi, "Theory of gain spectra for quantum cascade lasers and temperature dependence of their characteristics at low and moderate carrier concentrations", IEEE J. Quantum Electron., vol. 32, pp.  1995-2003,  Nov.  1996.
  18. D. F. Nelson, R. C. Miller and D. A. Kleinman, "Band nonparabolicity effects in semiconductor quantum wells", Phys. Rev. B., Condens. Matter, vol. 35, no.  14, pp.  7770-7772, 1987.
  19. B. K. Ridley, Quantum Processes in Semiconductors, 3rd ed.   Oxford: U.K.: Clarendon, 1993.
  20. S. M. Goodnick and P. Lugli, Hot Carriers in Semiconductor Nanostructures, J. Shah, Ed. New York: Academic, 1992, p.  191. 
  21. D. K. Ferry, Semiconductors, New York: Macmillian, 1991, p.  217. 
  22. M. Dür, S. M. Goodnick and P. Lugli, "Monte Carlo simulation of intersubband relaxation in wide, uniformly doped GaAs/AlxGa1-x As quantum wells", Phys. Rev. B., Condens. Matter, vol. 54, no. 24, pp.  17-794, 1996.