2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Microwave Theory and Techniques
Volume 48 Number 4, April 2000

Table of Contents for this issue

Complete paper in PDF format

Solid-State Terahertz Sources Using Quantum-Well Intersubband Transitions

Paul Harrison, Senior Member, IEEE Robert W. Kelsall, Kate Donovan and Paul Kinsler

Page 645.

Abstract:

In this paper, it is shown that the confined states within the conduction band of quantum-well systems have potential as sources of terahertz radiation. It is demonstrated that it is the dynamical properties of the electrons within these levels that must be manipulated in order to favor radiative emission rather than nonradiative loss. Designs are advanced for tunable emitters,optically excited lasers, and the active regions of electrically injected terahertz lasers. In the latter two device types, it is shown that the electron dynamics can be manipulated to favor population inversion at room temperature.

References

  1. M. Helm, P. England, E. Colas, F. DeRosa and S. J. Allen, "Intersubband emission from semiconductor superlattices excited by sequential resonant tunneling", Phys. Rev. Lett., vol. 63, p.  74, 1989.
  2. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson and A. Y. Cho, "Quantum cascade laser", Science , vol. 264, p.  553, 1994.
  3. C. Sirtori, J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson and A. Y. Cho, "Mid-infrared (8.5 µm) semiconductor lasers operating at room temperature", IEEE Photon. Technol. Lett., vol. 9, pp.  294-296, Mar.  1997.
  4. P. Harrison, Quantum Wells, Wires and Dots: Theoretical and Computational Physics, New York: Wiley, 1999.
  5. P. Kinsler, P. Harrison and R. W. Kelsall, "Intersubband electron-electron scattering in asymmetric quantum wells designed for far-infrared emission", Phys. Rev. B, Condens. Matter, vol. 58, pp.  4771-4778, 1998.
  6. J. H. Smet, C. G. Fonstad and Q. Hu, "Intrawell and interwell intersubband transitions in multiple quantum wells for far-infrared sources", J. Appl. Phys., vol. 79, p.  9305,  1996.
  7. B. Xu, Q. Hu and M. R. Melloch, "Electrically pumped tunable terahertz emitter based on intersubband transition", Appl. Phys. Lett., vol. 71, p.  440, 1997.
  8. K. Donovan, P. Harrison and R. W. Kelsall, "Stark ladders as tunable far-infrared emitters", J. Appl. Phys., vol. 84, pp.  5175-5179, 1998.
  9. G. Scamarcio, F. Capasso, A. L. Hutchinson, D. L. Sivco and A. Y. Cho, "Midinfrared emission from coupled Wannier-Stark ladders in semiconductor superlattices", Phys. Rev. B, Condens. Matter, vol. 57, pp.  R6811-6814, 1998.
  10. V. Berger, "Three-level laser based on intersubband transitions in asymmetric quantum wells: A theoretical study", Semicond. Sci. Technol. , vol. 9, pp.  1493-1499, 1994.
  11. P. Harrison and R. W. Kelsall, "Population inversion in optically pumped asymmetric quantum well terahertz lasers", J. Appl. Phys., vol. 81, pp.  7135-7140, 1997.
  12. P. Kinsler, P. Harrison and R. W. Kelsall, "Intersubband terahertz lasers using four-level asymmetric quantum wells", J. Appl. Phys., vol. 85, pp.  23-28, 1999 .
  13. P. Harrison, "Engineering the electron-phonon scattering rates in the active regions of quantum cascade lasers operating beyond 30 µ m", Semicond. Sci. Technol., vol. 12, pp.  1487-1490, 1997.
  14. K. Donovan, P. Harrison and R. W. Kelsall, "Comparison of the quantum efficiencies of interwell and intrawell radiative transitions in quantum cascade lasers", Appl. Phys. Lett., vol. 175, pp.  1999-2001, 1999.
  15. M. Rochat, J. Faist, M. Beck, U. Oesterle and M. Ilegems, "Far-infrared (=88µm) electroluminescence in a quantum cascade structure", Appl. Phys. Lett., vol. 73, pp.  3724-3726, 1998.