2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Microwave Theory and Techniques
Volume 48 Number 4, April 2000

Table of Contents for this issue

Complete paper in PDF format

Tunable Terahertz-Wave Parametric Oscillators Using LiNbO3 and MgO: LiNbO3 Crystals

Jun-ichi Shikata, Kodo Kawase, Ken-ichi Karino, Tetsuo Taniuchi and Hiromasa Ito Senior Member, IEEE

Page 653.

Abstract:

Coherent tunable terahertz waves were generated successfully using a terahertz-wave parametric oscillator (TPO) based on laser light scattering from the A1-symmetry polariton mode of LiNbO3. This method has several advantages,such as continuous and wide tunability (frequency: 0.9-3.1 THz), a relatively high peak power (more than a few milliwatts), and compactness of its system (tabletop size). In addition, the system simply requires a fixed-wavelength pump source, and it is easy to tune. This paper deals with the general performance of this terahertz-wave source using the prism output-coupler method as well as the development and applications of the system. Its tunability, coherency,power, and polarization were measured, and this tunable source was used for terahertz spectroscopy to measure the absorption spectra of LiNbO3 and water vapor. Also, the use of MgO-doped LiNbO3 (MgO: LiNbO3 ) in our terahertz regime, as well as its far-infrared properties,is described. We found that the MgO: LiNbO3 TPO is almost five times more efficient than the undoped LiNbO3 TPO, and we have proven that the enhancement mechanism originates from the enhanced scattering cross section of the lowest A1-symmetry mode in a spontaneous Raman experiment.

References

  1. P. R. Smith, D. H. Auston and M. C. Nuss, "Subpicosecond photo-conducting dipole antennas", IEEE J. Quantum Electron. , vol. 24, pp.  255-260, Feb.  1988.
  2. M. van Exter and D. Grischkowsky, "Characterization of an optpelectronic terahertz beam systems", IEEE Trans. Microwave Theory Tech., vol. 38, pp.  1684-1691, Nov.  1990.
  3. M. C. Nuss and J. Orenstein, "Terahertz time-domain spectroscopy (THz-TDS),"in Millimeter-Wave Spectroscopy of Solids, G. Gruener, Ed. Berlin: Germany: Springer-Verlag, 1997.
  4. D. M. Mittleman, R. H. Jacobsen and M. C. Nuss, "T-ray imaging", IEEE J. Select. Topics Quantum Electron., vol. 2, pp.  679-691, Sept.  1996.
  5. P. Y. Han and X.-C. Zhang, "Coherent, broadband midinfrared terahertz beam sensors", Appl. Phys. Lett., vol. 73, pp.  3049-3051, 1998.
  6. M. Tani, R. Fukasawa, H. Abe, S. Matsuura, K. Sakai and S. Nakashima, "Terahertz radiation from coherent phonons excited in semiconductors", J. Appl. Phys., vol. 83, pp.  2473-2477, 1998.
  7. N. Sarukura, H. Ohtake, S. Izumida and Z. Liu, "High average-power THz radiation from femtosecond laser-irradiated InAs in a magnetic field and its elliptical polarization characteristics", J. Appl. Phys., vol. 84, pp.  654-656, 1998.
  8. M. Hangyo, S. Tomozawa, Y. Murakami, M. Tonouchi, M. Tani, Z. Wang, K. Sakai and S. Nakashima, "Terahertz radiation from superconducting YBa2 Cu3 O7- thin films excited by femtosecond optical pulses", Appl. Phys. Lett., vol. 69, pp.  2122-2124, 1996.
  9. Zernike, Jr. and P. R. Berman, "Generation of far infrared as a difference frequency", Phys. Rev. Lett., vol. 15, pp.  999-1001, 1965.
  10. R. Morris and Y. R. Shen, "Theory of far-infrared generation by optical mixing", Phys. Rev. A, Gen. Phys., vol. 15, pp.  1143-1156,  1977.
  11. E. B. Brown, K. A. McIntosh, K. B. Nichols and C. L. Dennis, "Photomixing up to 3.8 THz in low temperature-grown GaAs", Appl. Phys. Lett., vol. 66, pp.  285-287,  1995.
  12. S. Matsuura, M. Tani, H. Abe, K. Sakai, H. Ozeki and S. Saito, "High-resolution terahertz spectroscopy by a compact radiation source based on photomixing with diode lasers in a photoconductive antenna", J. Mol. Spectrosc. , vol. 187, pp.  97-101, 1998.
  13. J. M. Yarborough, S. S. Sussman, H. E. Puthoff, R. H. Pantell and B. C. Johnson, "Efficient tunable optical emission from LiNbO3 without a resonator", Appl. Phys. Lett., vol. 15, pp.  102-105,  1969.
  14. M. A. Piestrup, R. N. Fleming and R. H. Pantell, "Continuously tunable submillimeter wave source", Appl. Phys. Lett., vol. 26, pp.  418-421,  1975.
  15. K. Kawase, M. Sato, T. Taniuchi and H. Ito, "Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler", Appl. Phys. Lett., vol. 68, pp.  2483-2485, 1996.
  16. K. Kawase, M. Sato, T. Taniuchi and H. Ito, "Characteristics of THz-wave radiation using a monolithic grating coupler on a LiNbO3 crystal", Int. J. Infrared Millim. Waves, vol. 17, pp.  1839-1849, 1996.
  17. K. Kawase, M. Sato, K. Nakamura, T. Taniuchi and H. Ito, "Unidirectional radiation of widely tunable THz-wave using a prism coupler under noncollinear phase matching condition", Appl. Phys. Lett., vol. 71, pp.  753-755, 1997.
  18. T. Walther, K. R. Chapin and J. W. Beven, "Comment on `Unidirectional radiation of widely tunable THz-wave using a prism coupler under noncollinear phase matching condition'", Appl. Phys. Lett., vol. 73, pp.  3610-3611, 1998.
  19. H. Ito, K. Kawase and J. Shikata, "Widely tunable THz-wave generation by nonlinear optics", IEICE Trans. Electron., vol. E81-C, pp.  264-268, 1998.
  20. K. Kawase, J. Shikata, M. Sato, T. Taniuchi and H. Ito, "Widely tunable coherent THz-wave generation using nonlinear optical effect", Electron. Commun. Japan, vol. 7, pp.  10-18, 1998.
  21. J. Shikata, K. Kawase, M. Sato, T. Taniuchi and H. Ito, "Enhancement of terahertz-wave output from LiNbO3 optical parametric oscillators by cryogenic cooling", Opt. Lett., vol. 24, pp.  202-204, 1999.
  22. J. Shikata, K. Kawase, M. Sato, T. Taniuchi and H. Ito, "Characteristics of coherent terahertz wave generation from LiNbO3 optical parametric oscillator", Electron. Commun. Japan, vol. 82, pp.  46-53, 1999 .
  23. D. N. Nikogosyan, "LiNbO 3, Lithium Niobate,"in Handbook of Nonlinear Optical Crystals , V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Eds. Berlin: Germany: Springer-Verlag, 1997.
  24. I. Shoji, T. Kondo, A. Kitamoto, M. Shirane and R. Ito, "Absolute scale of second-order nonlinear-optical coefficients", J. Opt. Soc. Amer. B, Opt. Phys., vol. 14, pp.  2268-2294,  1997.
  25. E. D. Palik, "Lithium Niobate (LiNbO3),"in Handbook of Optical Constants of Solids, E. D. Palik, Ed. New York: Academic, 1985.
  26. D. F. Edwards, "Sillicon (Si),"in Handbook of Optical Constants of Solids, E. D. Palik, Ed. New York: Academic Press, 1985.
  27. Y. Furukawa, M. Sato, F. Nitanda and K. Ito, "Growth and characterization of MgO-doped LiNbO 3 for electro-optic devices", J. Cryst. Growth, vol. 99, pp.  832-836, 1990.
  28. J. L. Nightingale, W. J. Silva, G. E. Reade, A. Rybicki, W. J. Kozlovsky and R. L. Byer, "Fifty percent efficiency second harmonic generation in magnesium oxide doped lithium niobate", in Proc. SPIE-Int. Soc. Opt. Eng., vol. 681, 1987, pp.  20-24. 
  29. D. C. Gerstenberger and R. W. Wallance, "Continuous-wave operation of a doubly resonant lithium niobate optical parametric oscillator system tunable from 966-1185 nm", J. Opt. Soc. Amer. B, Opt. Phys., vol. 10, pp.  1681-1683,  1993.
  30. Y. R. Shen, "Stimulated polariton scattering,"in The Principle of Nonlinear Optics, New York: Wiley, 1984.
  31. H. E. Puthoff, "The stimulated Raman effect and its application as a tunable laser", Stanford Univ., Stanford, CA, Microwave Lab. Rep. 1547, 1967.
  32. S. S. Sussman, "Tunable light scattering from transverse optical modes in lithium niobate", Stanford Univ., Stanford, CA, Microwave Lab. Rep. 1851, 1970.
  33. W. D. Johnston Jr. and I. P. Kaminow, "Temperature dependence of Raman and Rayleigh scattering in LiNbO3 and LiTaO 3", Phys. Rev., vol. 158, pp.  1045-1054,  1968.
  34. A. Yariv, Quantum Electronics, New York: Wiley, 1989.
  35. K. Sakai, T. Fukui, Y. Tsunawaki and H. Yoshinaga, "Metallic mesh bandpass filters and Fabry-Perot interferometer for the far infrared", Jpn. J. Appl. Phys., vol. 8, pp.  1046-1055, 1969.
  36. G. J. Edwards and M. Lawrence, "A temperature-dependent dispersion equation for congruently grown lithium niobate", Opt. Quantum Electron., vol. 16, pp.  373-375, 1984.
  37. K. Kawase and H. Ito, "Submillimeter generation using periodic domain reversal", Nonlinear Opt., vol. 7, pp.  225-229, 1994.
  38. Y. J. Ding and J. B. Khurgin, "A new scheme for efficient generation of coherent and incoherent submillimeter to THz waves in periodically poled lithium niobate", Opt. Commun., vol. 148, pp.  105-109, 1998.
  39. S. Kojima, "Composition variation of optical phonon damping in lithium niobate crystals", Jpn. J. Appl. Phys., vol. 32, pp.  4373-4376, 1993.
  40. U. T. Schwartz and M. Maier, "Asymmetric Raman lines caused by an an harmonic lattice potential in lithium niobate", Phys. Rev. B, Condens. Matter, vol. 55, pp.  11041-11044, 1997.
  41. U. T. Schwartz and M. Maier, "Frequency dependence of phonon polariton damping in lithium niobate", Phys. Rev. B, Condens. Matter, vol. 53, pp.  5074-5077,  1996.
  42. U. T. Schwartz and M. Maier, "Damping mechanism of phonon polaritons, exploited by stimulated Raman gain measurements", Phys. Rev. B, Condens. Matter, vol. 58, pp.  766-775, 1998.
  43. A. S. Barker and R. Loudon, "Response functions in the theory of Raman scattering by vibrational and polariton modes in dielectric crystals", Rev. Mod. Phys., vol. 44, pp.  18-47, 1972.
  44. Y.-R. Shen, "Infrared generation by stimulated Raman scattering,"in Nonlinear Infrared Generation, Y.-R. Shen, Ed. Berlin: Germany: Springer-Verlag, 1977.