2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Microwave Theory and Techniques
Volume 48 Number 4, April 2000

Table of Contents for this issue

Complete paper in PDF format

Spectral Transmittance of Lossy Printed Resonant-Grid Terahertz Bandpass Filters

Michael E. MacDonald, Member, IEEE Angelos Alexanian, Robert A. York, Senior Member, IEEE Zoya Popović, Senior Member, IEEE and Erich N. Grossman

Page 712.

Abstract:

In this paper, we present terahertz bandpass filters composed of resonant arrays of crossed slots in lossy metal films deposited on dielectric membranes. The filters exhibit insertion loss as low as 1.9 dB at room temperature and 1.2 dB at 77 K at a center frequency of 2.2 THz. It is found that the dielectric substrate introduces a downward shift in frequency not predicted by standard mean dielectric-constant approximations. This shift is proportional to the permittivity and thickness of the substrate, and is accurately modeled for polyester, fused quartz and silicon substrates using a finite-difference time-domain (FDTD) model. It is also found that the insertion loss and Q-factors of the filters vary with the product of the thickness and conductivity of the metal film for lead and gold films, even in cases when the thickness is several skin depths at the center frequency. The FDTD theory presented here accounts for some of the conductor losses.

References

  1. T. K. Wu, Ed., Frequency Selective Surface and Grid Array, New York: Wiley, 1995.
  2. R. Urlich, "Interference filters for the far-infrared", Appl. Opt., vol. 7, no. 10, pp.  1987-1996, Oct.  1968.
  3. P. Tomaselli, D. C. Edewaard, P. Gillan and K. D. Moller, "Far-infrared bandpass filters from cross-shaped grids", Appl. Opt., vol. 20, no. 8, pp.  1361 -1366, Apr.  1981.
  4. M. Rebbert, P. Isaacson, J. Fischer, M. A. Greenhouse, J. Grossman, M. Peckerar, and H. A. Smith, "Microstructure technology for fabrication of metal-mesh grids", Appl. Opt., vol. 33, no. 7, pp.  1286-1292, 1994.
  5. D. W. Porterfield, J. L. Hesler, R. Densing, E. R. Mueller, T. W. Crowe and R. M. Weikle, II, "Appl. Opt.", vol. 33, no.  25, pp.  6046-6052, Sept.  1994.
  6. R. J. Luebers and B. A. Munk, "Some effects of dielectric loading on periodic slot arrays", IEEE Trans. Antennas Propagat., vol. 26, no.  4, pp.  536-542, July  1978.
  7. A. Alexanian, N. J. Colias, R. C. Compton and R. A. York, "Three-dimensional FDTD analysis of quasi-optical arrays using Floquet boundary conditions and Beringer's PML", IEEE Microwave Guided Wave Lett., vol. 6, pp.  138-140, Mar.  1996.
  8. S. T. Chase and R. D. Joseph, "Resonant array bandpass filters for the far-infrared", Appl. Opt., vol. 22, no. 11, pp.  1775-1779, June  1983.
  9. M. E. MacDonald and E. N. Grossman, "Far-infrared bandpass filters", SPIE Proc.-Int. Soc. Opt. Eng., vol. 2842, pp.  501-512, Aug.  1996.
  10. P. Callaghan, E. A. Parker and R. J. Langley, "Influence of supporting dielectric layers on the transmission properties of frequency selective surfaces", Proc. Inst. Elect. Eng., vol. 138, no. 5, pp.  448-454, Oct.  1991.
  11. D. B. Rutledge, D. P. Neikerk and D. P. Kasilingam, "Integrated circuit antennas,"in Infrared and Millimeter Waves, K. J. Button, Ed. New York: Academic, 1983,vol. 10.
  12. R. C. Compton, R. C. McPhedran, G. H. Derrick and L. C. Botten, "Diffraction properties of bandpass filters", Infrared Phys., vol. 23, no. 5, pp.  239-245, 1983.
  13. S. M. Sze, Ed., Physics of Semiconductor Devices, 2nd ed.   New York: Wiley, 1981.
  14. S. Ramo, J. R. Whinnery, and T. Van Duzer, Eds., Fields and Waves in Communication Electronics, New York: Wiley, 1984.
  15. T. J. Couts, Ed., Electrical Conduction in Thin Metal Films, Amsterdam: The Netherlands: Elsevier, 1974.
  16. S. C. Bundy and Z. B. Popović, "A generalized analysis for grid oscillator design", IEEE Trans. Microwave Theory Tech., vol. 42, pp.  2486-2491, Dec.  1994.