2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Microwave Theory and Techniques
Volume 48 Number 4, April 2000

Table of Contents for this issue

Complete paper in PDF format

Simulation of Terahertz Doppler Wavelength Shifting of Infrared Optical Pulses in an Active Semiconductor Layer

Igor V. Scherbatko, Alexander G. Nerukh, Member, IEEE and Stavros Iezekiel Member, IEEE

Page 725.

Abstract:

In this paper, a time-domain model of wavelength shifting in a semiconductor layer with a constant stimulated gain level and moving Bragg grating of permittivity is used to investigate Doppler conversion of an infrared ( $f_0 =200$ THz) ultrashort (0.4-ps width) optical pulse. Simulations of the electromagnetic-field evolution show that the high drift velocity of carriers in InGaAsP can produce at least 1-THz conversion span. The optical power of the converted pulse can be as much as 20% of the power in the initial pulse. The backscattered pulses and pulses transmitted through the semiconductor layer depend dramatically on the permittivity modulation depth and length of the layer. It has been demonstrated that the length of the semiconductor layer can be optimized to produce strong converted pulses of short duration.

References

  1. S. J. B. Yoo, "Wavelength conversion technologies for WDM network applications", J. Lightwave Technol., vol. 14, pp.  955-965, June  1996.
  2. T. Durhuus, B. Mikkelsen, C. Joergensen, S. L. Danielsen and K. E. Stubkjaer, "All-optical wavelength conversion by semiconductor optical amplifiers", J. Lightwave Technol., vol. 14, pp.  942-953, June  1996.
  3. S. Scotti, E. Iannone, A. Mecozzi, A. D'Ottavi and P. Spano, "Efficiency of frequency translators based on four-wave mixing in semiconductor optical amplifiers", Pure Appl. Opt., vol. 4, pp.  385-389, 1995.
  4. A. D'Ottavi, F. Martelli, P. Spano, A. Mecozzi, S. Scotti, R. Dall'Ara, J. Eckner and G. Guekos, "Very high efficiency four-wave mixing in a single semiconductor traveling-wave amplifier", Appl. Phys. Lett. , vol. 68, pp.  2186-2188, 1996.
  5. A. Uskov, J. Mork, J. Mark, M. C. Tatham and G. Sherlock, "THz four-wave mixing in semiconductor optical amplifiers", Appl. Phys. Lett., vol. 65, pp.  944-946, 1994.
  6. E. Cerboneschi, D. Hennequin and E. Arimondo, "Frequency conversion in external cavity semiconductor lasers exposed to optical injection,", IEEE J. Quantum Electron., vol. 32, pp.  192-200, 1996.
  7. H. Kuwatsuka, H. Shoji, M. Matsuda and H. Ishikawa, "Nondegenerate four-wave mixing in a long-cavity \lambda/4 -shifted DFB laser using its lasing beam as a pump beams", IEEE J. Quantum Electron., vol. 33, pp.  2002-2010,  Nov.  1997.
  8. H. Yasaka, et al. "Finely tunable 10-Gb/s signal wavelength conversion from 1530-to 1560-nm region using a super structure grating distributed Bragg reflector laser", IEEE Photon. Technol. Lett., vol. 8, pp.  764-766,  June  1996.
  9. D. X. Zhu, S. Dubovitsky, W. H. Steier, K. Uppal, D. Tishinin, J. Burger, and P. D. Dapkus, "Noncollinear four-wave mixing in a broad area semiconductor optical amplifier", Appl. Phys. Lett., vol. 70, no. 16, pp.  2082-2084, Apr.  1997.
  10. M. Lampe, E. Ott and J. H. Walker, "Interaction of electromagnetic waves with a moving ionization front,", Phys. Fluids, vol. 21, no. 1, pp.  42 -54,  Jan.  1978.
  11. J. Meyer and A. Y. Elezzabi, "Subpicosecond reflection switching of 10 µ m radiation using semiconductor surfaces", Appl. Phys. Lett., vol. 58, pp.  1940-1943, May  1991 .
  12. A. Y. Elezzabi and J. Meyer, "Simulation of the generation of ultrafast midinfrared laser pulses", IEEE J. Quantum Electron., vol. 28, pp.  1830-1834,  Aug.  1992.
  13. A. Nerukh, I. Scherbatko and M. Marciniak, "Electromagnetic wave frequency shift by temporal variation of medium parameters", Pr. Inst. Lacznosci. , no. 110, pp.  7-27, 1998.
  14. A. Nerukh and N. Khizhnyak, "Enhanced reflection of an electromagnetic wave from a plasma cluster moving in a waveguide", Microwave Opt. Technol. Lett., vol. 17, no. 4, pp.  267-273, 1998.
  15. I. V. Scherbatko, A. G. Nerukh and S. Iezekiel, "Terahertz double-Doppler wavelength shifting of infrared optical pulses in excited semiconductor medium", in IEEE 6th Int. Terahertz Electron. Conf., Leeds, U.K.,Sept. 1998, pp.  211-214. 
  16. T. Merlet, D. Dolfi and J. P. Huignard, "A traveling fringes photodetector for microwave signals", IEEE J. Quantum Electron., vol. 32, pp.  778-782, May  1996.
  17. E. R. Brown, J. R. Soderstrom, C. D. Parker, L. J. Mahoney, K. M. Molvar and T. C. McGill, "Oscillations up to 712 GHz in InGa/AlSb resonant-tunneling diodes,", Appl. Phys. Lett., vol. 58, no. 20, pp.  2291-2293, May  1991.
  18. K. Petermann, "Laser diode modulation and noise,"in Advances in Optoelectronics, Norwell, MA: Kluwer, 1988,vol. 3, p.  315. 
  19. T. D. Visser, H. Blok and D. Lenstra, "Modal analysis of a planar waveguide with gain and losses", IEEE J. Quantum Electron., vol. 31, pp.  1803-1810,  Oct.  1995.
  20. A. G. Nerukh, I. Scherbatko and O. Rybin, "The direct numerical calculation of an integral volterra equation for an electromagnetic signal in a time-varying dissipative medium", J. Electromag. Waves Applicat., vol. 12, pp.  163-173,  1998.