2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Microwave Theory and Techniques
Volume 48 Number 4, April 2000

Table of Contents for this issue

Complete paper in PDF format

Gas-Absorption Spectroscopy with Electronic Terahertz Techniques

Daniel W. van der Weide, Member, IEEE Janusz Murakowski and Fritz Keilmann

Page 740.

Abstract:

In this paper, we present the first gas-absorption spectra measured with an all-electronic terahertz spectrometer. This instrument uses phase-locked microwave sources to drive GaAs nonlinear transmission lines that produce picosecond pulses, enabling measurement of broad-band spectra. By sweeping the fundamental excitation, however, the spectrometer can also measure single lines with hertz-level precision, a mode of operation not readily available with optoelectronic terahertz techniques. Since this system is based on integrated circuits, it could ultimately function as an inexpensive gas-sensing system,e.g., for vehicle emissions, an application for which we analyze the sensitivity of a prototypical system.

References

  1. G. W. Chantry, Long-Wave Optics, New York: Academic, 1984,vol. 1.
  2. M. N. Afsar, "Dielectric measurements of millimeter-wave materials", IEEE Trans. Microwave Theory Tech., vol. MTT-32, pp.  1598-1609, Dec.  1984.
  3. D. W. van der Weide and F. Keilmann, "Picosecond dual-source interferometer extending Fourer-transform spectrometer to microwave regime", in IEEE MTT-S Int. Microwave Symp. Dig., vol. 3, New York, NY, 1996, pp.  1731-1734. 
  4. P. Akkaraekthalin, S. Kee and D. W. van der Weide, "Distributed broadband frequency translator", in IEEE MTT-S Int. Microwave Symp. Dig., vol. 3, New York, NY, 1998, pp.  1431-1434. 
  5. P. Akkaraekthalin, S. Kee and D. W. van der Weide, "Distributed broad-band frequency translator and its use in a 1-3 GHz coherent reflectometer", IEEE Trans. Microwave Theory Tech., vol. 46, pp.  2244-2250, Dec.  1998 .
  6. M. J. W. Rodwell, M. Kamegawa, R. Yu, M. Case, E. Carman and K. S. Giboney, "GaAs nonlinear transmission lines for picosecond pulse generation and millimeter-wave sampling", IEEE Trans. Microwave Theory Tech., vol. 39, pp.  1194-2004, July  1991 .
  7. M. J. W. Rodwell, S. T. Allen, R. Y. Yu, M. G. Case, U. Bhattacharya, M. Reddy, E. Carman, M. Kamegawa, Y. Konishi, J. Pusl, R. Pullela and J. Esch, "Active and nonlinear wave propagation devices in ultrafast electronics and optoelectronics (and prolog)", Proc. IEEE, vol. 82, pp.  1037-1059, July  1994.
  8. D. W. van der Weide, "Delta-doped Schottky diode nonlinear transmission lines for 480-fs, 3.5-V transients", Appl. Phys. Lett. , vol. 65, pp.  881-883, 1994.
  9. D. W. van der Weide, "Planar antennas for all-electronic THz systems", J. Opt. Soc. Amer. B, Opt. Phys., vol. 11, pp.  2553-2560, 1994.
  10. D. W. van der Weide and F. Keilmann, "Coherent periodically pulsed radiation spectrometer", U.S. Patent 5 748 309, May 5, 1998.
  11. B. I. Greene, J. F. Federici, D. R. Dykaar, R. R. Jones and P. H. Bucksbaum, "Interferometric characterization of 160 fs far-infrared light pulses", Appl. Phys. Lett., vol. 59, pp.  893-895,  1991.
  12. S. E. Ralph and D. Grischkowsky, "THz spectroscopy and source characterization by optoelectronic interferometry", Appl. Phys. Lett., vol. 60, pp.  1070-1072,  1992.
  13. C. Karadi, S. Jauhar, L. P. Kouwenhoven, K. Wald, J. Orenstein and P. L. McEuen, "Dynamic response of a quantum point contact", J. Opt. Soc. Amer. B, Opt. Phys., vol. 11, pp.  2566-2571, 1994.
  14. D. W. van der Weide, J. S. Bostak, B. A. Auld and D. M. Bloom, "All-electronic free-space pulse generation and detection", Electron. Lett., vol. 27, pp.  1412-1413, 1991.
  15. Y. Konishi, M. Kamegawa, M. Case, R. Yu, M. J. W. Rodwell and R. A. York, "Picosecond electrical spectroscopy using monolithic GaAs circuits", Appl. Phys. Lett., vol. 61, pp.  2829-2831,  1992.
  16. D. W. van der Weide, J. S. Bostak, B. A. Auld and D. M. Bloom, "All-electronic generation of 880 fs, 3.5 V shockwaves and their application to a 3 THz free-space signal generation system", Appl. Phys. Lett., vol. 62, pp.  22-24, 1993.
  17. Y. Konishi, M. Kamegawa, M. Case, R. Yu, S. T. Allen and M. J. W. Rodwell, "A broad-band free-space millimeter-wave vector transmission measurement system", IEEE Trans. Microwave Theory Tech., vol. 42, pp.  1131-1139, July  1994.