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Mode Conversion and Design Consideration
of Integrated Nonradiative Dielectric (NRD)
Components and Discontinuities

Francois Boone and Ke W&enior Member, IEEE

Abstract—n this paper, a class of nonradiative dielectric N dielectric layers
(NRD)-guide discontinuities is studied toward the establishment | —
of design rules of NRD-guide circuits and components for mil- 3y n
limeter-wave applications. A mode-matching technique with a :
multimodal transverse resonance condition is formulated to derive Z  x a

a generalized scattering matrix that allows accounting for effects
of higher order modes and intermode coupling. Transmission
properties of an NRD structure featuring a multilayered dielectric
in cross section are presented. Mode conversion and power )
transfer among principal NRD-guide modes are, in particular,

characterized for design consideration of NRD-guide components

and circuits. New sets of easy-to-use design curves are introduced,

thereby allowing practitioners to choose appropriate dielectric 7 Tiex)
materials and NRD-guide topologies. Equivalent-circuit models Yy =y
are extracted from the generalizedS-matrix for some basic and

practically useful discontinuities involved in the design of almost T B T EL(x)
every NRD-guide component, which include open ends, junctions,

steps, and gaps. Calculated results of the selected structures are e %

found to be in a good agreement with measurements. Dispersion
diagrams of periodic NRD structures are also given in this paper.

(b)
Index Terms—Computer-aided design, conversion, discontinu- ' ' ' ' _
ities, millimeter-waves, mode coupling, mode-matching method, Fig. 1. Cross section view of a generalized NRD-guide. (a) Multilayered
nonradiative dielectric waveguide. structure. (b)th slice in the model.

leading to undesirable low performance. The nonradiative
dielectric (NRD)-guide [1] is recognized as the first dielectric
W'R_E_LESS communications are being expanded infRavequide that has been found practically meaningful [2] in
millimeter-wave range, which spark research intefne |ow-cost and low-loss circuit design since it suppresses the
ests in searching for low-cost and high-performance buildingherent radiation loss of a dielectric waveguide and allows it
blocks. Being successful in the realization of RF and microwayg have sharp bends and other geometrical discontinuities. Such
circuits and systems, hybrid and monolithic technologies stijiscontinuities are the foundation for the circuit design. Very
present the principal driving force behind the development g;cenﬂy, the hybrid integration technology [3], [4] of planar
millimeter-wave circuits and systems on the basis of variow§cyits and the NRD-guide has been proposed, which offers
forms of multilayered planar structure and microfabricatiogyme unique possibility of exploring advantageous features of
processing. In parallel, waveguide techniques have been widghtn structure in a combined scheme while offsetting the indi-
used in the design of loss-sensitive building blocks such ggjal inherent shortcoming. Modeling and characterization of
filters and other passive components as the planar structyignar structure have been well documented as opposed to the
cannot fundamentally overcome its own transmission IofRD-guide whose design rules and electrical properties still
need to be discussed in depth to achieve circuit optimization
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Fig. 2. Convergence behavior of results for an NRD gap discontinuity with
a = 5.00 mm,b = 3.556 mm, s, = 2.56. (a) Air-gap discontinuity. (b)
Reflection coefficient.

b, b,
LSE . . LSE
o] &,

Port 1 b, (S) b, Port 2
LSM . LSM
.—-ﬁLL i——.

(b)

Fig. 5. Geometrical model anfl-parameter model of the mode transfer or
mode conversion for a generalized gap discontinuity. (a) Misalignment of
a gapped dielectric discontinuity. (b) Parametric equivalence of LSM-LSE
self-mode and intermode couplings.

are developed from calculated results for the purposes of
design and optimization of basic discontinuity structures. The

models are also validated by measurements for several typical
discontinuities such as open ends. A dispersion diagram for
periodic NRD structures are also developed.

Il. MULTIMODAL TRANSVERSERESONANCETHEORY

Fig. 1 shows the cross section of a generalized NRD-guide
consisting of NV-dielectric layers. The cross section is defined
by the planer—y and the wave propagation is alongxis. The
spacing between the two metallic plates designatedzass”

° E,=2~0445 ¥ €r=2~A55 6"1;:3'27* ° 2;3'8 slightly less than a half-wavelength in free space as required
v =4, e =6. £ =4 . . .- - .y .

& 4 r for the nonradiative waveguiding condition. In our modeling,
the transverse section of the structure is terminated by metallic

Fig. 3. Design curves for the optimal choice of geometrical parameters of taealls that are placed far enough from the dielectric part in order
NRD-guide for a variety of dielectric materials: Teflopn = 2.04, polystyrene {5 gvoid potential field interference. In fact, the analysis also al-

e, = 2.56, TMM? ¢, = 3.27, quartze,. = 3.8, TMM* ¢,. = 4.5, RT/Duroid | havi | b ded . A ltimod
6006¢, = 6.15, TMM? ¢, = 9.2. (TMM and RT/Duroid 6006 are trademarks 'OWS having a complete unbounded cross section. A multimode
of the Rogers Corporation). transverse resonance technique (TRT) similar to [7] is applied to
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Fig.6. Self-mode and intermode coupling characteristics in the case of an LSM-LSE mode conversion (backward and forward transmissiong)\aoisiderin
misaligned discontinuities with = 5.00 mm,b = 3.556 mm, ands,. = 2.56 (—: |S72™|. - - -1 [S57*|).

3

determine propagation constants for longitudinal section elenodes can be found in [1] and [9]. The analytical knowl-
tric (LSE) and longitudinal section magnetic (LSM) modes iedge of field expansion throughout the structure then allows

an exact manner. As for a mode numberedvah,” the modal the use of a mode-matching method or a multimode equiva-
electric field £ and the equivalent-current densify perpen- lent network approach, and then a generalifethatrix can
dicular to the cross section (tangential fields in parallel to thee derived for an NRD-guide discontinuity, as formulated in
dielectric interfaces) are formulated féth dielectric layer as [8]. Useful design parameters characterizing the fundamental

follows:

in which J7 is defined by

jTI @ﬁXf
V €0

and
Ch(an)

J Z\_;; Sh(an)

A
—j =2 sh(g,x
J p (q )

ch(gnx)

@)

)

®)

with v2 + €2k2 + ¢2 = (mn/a)?, where the symbak refers
to either LSE or LSM modes withLSF = k5 and A\LSM =
—(g? /€t ko) and the subscrigl refers to the plang—z.

The z-oriented components of fields can simply deducechse the dimension choice of NRD-guide even though it has
from Maxwell’s equationw-ﬁ =0andV-H = 0. The field been perceived as a matured procedure. Once a low-loss di-
patterns and electrical description of the fundamental NR&ectric material is selected for the design and construction for

LSM;, mode can be extracted from this matrix such as inser-
tion and return losses. The mode-matching method is usually
known to have a relative convergence problem. This drawback
is avoided in our modeling since the spacing of the metallic
plates always remains unchanged according to the design prin-
ciple of NRD-guide [1]. As shown in Fig. 2(a), the behavior
of a simple convergence is described in Fig. 2(b) for the re-
flection coefficient of a gap discontinuity. The shorter the gap
d becomes, the more important the influence of higher order
modes will be. Therefore, the number of mode used in the
modeling should be large enough to achieve the convergence.
In any case, our analysis shows that 20 terms for LSE and
LSM modes, respectively, seem to be largely sufficient for the
required convergence and accuracy.

IIl. CRITICAL DESIGN CONSIDERATION AND WAVEGUIDING
PROPERTRIES
A. Dimension Choice of NRD-Guide

To begin with, the conventional NRD-guide is used to show-
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Fig. 7. Frequency response of the self-mode and intermode coupling effects for the LSM-LSE mode conversion in the case of the edge-to-edgetivfisst disc
(w/b =1).

a particular NRD-guide component, the optimal choice of tfeom the curve reading and, subsequently, the two remaining un-
NRD-guide geometry such as cross-sectional dimensions is km&wn parameters can be determined to get the maximum fre-
first critical step toward optimized design of the NRD-guidguency bandwidth available for the structure. In addition, such
component. In fact, the choice of an appropriate dielectric mdimensions obtained from this procedure guarantee that only the
terial available today is also much involved in it, which refirst LSE;o mode and the fundamental mod8M;, propagate
quires a concurrent design consideration. Design diagrams ahohg the NRD-guide. This is also a condition to minimize po-
some other useful curves were first introduced in [9] to chatential mode transfer or mode conversion between LSM to LSE,
acterize the effective monomode frequency bandwidth versaswill be shown later. Atthe very least, the seemly odd behavior
geometric dimensions fdtSM;, operation. Nevertheless, theof the characteristic curve far. = 9.2 in the case of a small
optimal choice of NRD-guide dimensions still remains difficulb/ .. is caused by the suppression of a higher LSE mode in the
and not so obvious with the help of the characteristic curvésndamental-mode operating bandwidth.
given in [9] for two main reasons. First, the geometric dimen- An NRD-guide is now designed as an example for operating
sions of the NRD-guide are given only in a quotient fosffla  aroundf. = 28 GHz. This guide is supposedly excited by an
so as to obtain a maximum frequency bandwidth. Second, tmpty rectangular waveguide to NRD-guide transition. For a
operating frequency center is also fixed by this quotiefit, neat geometric matching between the two different guides, it
showing a very limited flexibility for the designer. may be common to choose the widibf the NRD-guide equal

To make this procedure easier and convenient, we introduocethe heightb of the rectangular waveguide. In this case, the
in Fig. 3 a set of curves standing for a class of frequently useectangular waveguide WR-28 is selected for use in this fre-
dielectrics. These curves that are related to the fractional bandency range, which gives rise o= 3.556 mm. As such, the
width of frequencyA f and center frequencj. (or wavelength ratiob/A. can be calculated and the optimum dielectric can be
A.) allow the user to quickly determine geometric dimensioridentified from the curves. In our case, a polystyrene dielectric
of the NRD-guide for a given dielectric material. Let us choodglock is used throughout this paper andstds approximately
fe to begin with and one of the three characteristic paramete&gual to 2.56. This gives us= 4.918 mmwith A f = 17.91%.
Af,a,b;the most appropriate dielectric material can be selectéd simplify the fabrication process, = 5.0 mm is chosen
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Fig. 9. Open-end discontinuity and circuit model of an NRD-guide. (a)
Longitudinal geometry of the open-end discontinuity with=5.00 mm,

and the resulting NRD-guide has a bandwidth of 17.53% afg= 3-356 mm, ands, = 2.56. (b) Equivalent representation of a lumped
f. = 27.5819 GHz. This outcome of the NRD-guide designreactance. (c) Equivalent representation of a line length.
will be used throughout this paper.

To validate our modeling technique and design procedure@gs for the fundamental mode, which may be harmful in some
the NRD-guide, a series of measurements are carried out to @Rplications (e.g., misalignment) or useful in the others (e.g.,
tract propagation constants of the designed 28-GHz NRD-guidd@wer division), depending on the circumstances. Fig. 5(a)
A pair of coax-to-rectangular waveguide-NRD guide transitiorf€picts two NRD-guide lines that are not aligned axially, but
was used to launch the fundamerit8M; o mode with a thru-re- With some offset in the cross-sectional direction.
flection line (TRL) deembedding procedure, as detailed in [10]. In the case of a mode conversion, both modes fulfill the
This TRL procedure allows us to not only extrésparameters 9uiding condition along the NRD-guide structure and its
of a device-under-test (DUT), but also the propagation const&guivalent model should be regarded as a network of four ports
of the NRD-guide. Fig. 4 shows the calculated and measured Ydth modal incident and reflected waves, as shown in Fig. 5(b).
sults for the propagation constant, which are in good agreemédhg intermode coupling can be judged by a<44 scattering
over the frequency range of interest. The observable discrepamﬁmx with two pair of incident and reflected waves as follows:

may be caused by our low-precision of mechanical fabrication . Gee  gem  gee  gem .

of the NRD-guide and its related testing block. é)ﬁl Sille Sillm S 12 S 2 9
1 _ 11 11 12 12 ai (4)

€ ce em ce em €

B. Intermode Coupling (Mode Conversion) Effect b,?l S Sut 5% 9% “2

b2 Sge sy Spe smm/ NG

The intermode coupling effect or mode conversion be-
tween two orthogonal fundamental modes presents one Tdferefore, the generation of such a matrix is the most critical
the important guided-wave properties of the NRD-guide. lissue in the understanding of mode conversion and power
some cases, the power transfer happens inevitably from thensfer between th&SM;q (with the superscript#:") and
fundamental LSM mode to its LSE counterpart if specidlSE;q (with “¢”) modes. In our case, the mode conversion and
NRD-guide discontinuities are encountered such as off-axj@wer transfer fromL.SM;, to LSE; are especially studied
discontinuity or unbalanced or even asymmetric geometeyen though the reverse case can be made in a very similar
along the waveguiding direction [11]. Generally speakingyay. As indicated in Fig. 5(b), the intermode coupling can be
all of the NRD-guide discontinuities are subject to this modaassified into two categories: forward and backward couplings,
coupling effect, but may not always opt for it, depending owhich are characterized by¥;¢, S5i*) or (S75°, S¢5*) and
the input mode excitation or NRD coupling mechanism. Thiss7;¢, S{f*) or (S%3¢, S$5*). The reciprocal properties and
mode conversion effect may be characterized by a transmiss@ergy conservation theorems are applied to this lossless case.
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Fig. 10. Calculated and measured resultsSgbarameters for the NRD open-end discontinuity. (a) Amplitude of the reflection coefficient. (b) Phase of the
reflection coefficient. (c) Extractet],, for the equivalent model.

Fig. 6 shows a set of characteristic curves of selected scatterinig found in Fig. 6 that the self-mode coupling (reflection and
parameters obtained at 28 GHz from the generaltzatatrix for  transmission) is quite as usual, except for the offset influence.
intermode and self-mode couplings. The results are generated s influence is much more pronounced fofs > 1. In any
a function of the normalized gap ratligb versus the normalized case, thd.SM;, mode transmission and reflection coefficients
offset parameter (or misalignment)b. It indicates that the in- are significantly affected for a small gap and the mode power will
termode coupling is rather strong as longig® remains smaller be completely reflected back onéé goes beyond 2.0. The two
than 1.0. No coupling occurs between the two modes in the c&RD-guides are then independent, and the mode conversion dis-
of w/b = 0 because the two modes are in the state of orthogappears completely.
nality. In any case, this strong coupling happens for a misalignedTo complement our discussion, Fig. 7 shows frequency re-
small gap (usuallyl/b < 1.5). This observation is applied to all sponses of thé&-parameters depicting the self-mode and inter-
the cases regardless of the forward or backward coupling. Suaghade coupling in the case of the edge-to-edge offset disconti-
coupling becomes monotonically reduced witb andd/b for  nuity (w/b = 1). Such curves indicate that the intermode cou-
the case ofu /b > 1. The intermode coupling may be negligiblepling behaves relatively flatly over the bandwidth of interest,
once the parametel/b is greater than 2.0, standing for a largand it can be enhanced as the height of an NRD-guide is close
gap. Interestingly, the maximum intermode coupling takes plat®its wavelength limiting value. As previously discussed, the
aroundw/b = 1, otherwise it is decreased in a gradual mannéntermode coupling decreases &% increases, and the struc-
This phenomenon suggests that B\, , mode should effec- ture exhibits predominantly a self-mode coupling effect.
tively be converted into its LSE counterpart if the exact offset Let us now have a close look at the effect of mode conver-
(edge-to-edge aw/b = 1) arrangement of two NRD-guides ission to the second LSE mode, namdlyiM;o to LSE,; for
made. Such a unique feature of mode conversionis ratherimpayh = 0, d/b = 0.5, = b = 5.0 mm. The choice of
tant for the design of NRD-guide power dividing and combining;/b = 0 guarantees the absence of a coupling between the two
components. In addition, our results indicates the necessityfofidamental moddsSE,, andL.SM; o because of the modal or-
using a field-theory-based package for the NRD-guide compifrogonality. In the proximity of a discontinuity, the intermode
nent design if an offset geometry is involved, which is subjecbupling or mode conversion betwekAE;; andLSM;q will
to a significant mode conversion at both input and output portake place. Note that the modeSE;o andLL.SE;; are different
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in field profile. Table I gives the cutoff frequencies in gigahertz

for the selected NRD-guide for the first guided-modes, indi-

cating that the potential intermode coupling can occur only if a)
the operating frequency is higher than the cutoff frequency of

LSE; mode (28.688 GHz). The power conservationlfiv; o

mode is simply described with normalized terms by the fol-

lowing equation iff < 28.688 GHz: b)

i = ST+ |sgm =1 (5)

and the power transfdf:™ . is equal to zero. Fig. 8 displays ©
two pairs of graphs showing the frequency response of the in-

termode coupling or mode conversion frafBM o to LSE; . It

can be observed that (5) is no longer valid for H#M;, mode

once the NRD-guide is used at frequency larger than 28.688

GHz and the power transfer increases and reaches a maximum 9
of 7.79%. The mode conversion frab®M i, to LSE; is well
characterized by the behavior change in characteristic parame-
ters such ag’s7* and.Ss, while ST7™ and.S5;™ are subject to

an abrupt power loss around the cutoff frequency and then ex-
hibit smooth frequency response with a continued signal loss.

e) J

C. NRD-Guide Open-End Effect

The open end of an NRD-guide is one of the geometrical di|§— _ _ _— .

L h in Fig. 9 hich is fr ntly en ig. 11. Three typical discontinuities frequently encountered in the
continuities, as shown in Fig. (a), which is freque 'Y €NCOUREsign of NRD circuits and components. The NRD-guide is determined by
tered in the design of passive components and active devicess 5.00 mm,b = 3.556 mm, e, = 2.56. (a) Air-gap discontinuity. (b)

In this example, the cross section of the NRD-guide is Chareg(quble_—ste'p d|_scont|nU|ty with a Wldth'for the qouplmg section. (c) Notch
. - cr L iscontinuity withL = b — ¢. (d) m-equivalent circuit fol.SM;, mode. (e)

terized bya = 5.0 mm andb = 3.556 mm. Similar to that gquivalent/-inverter.

of a planar transmission line, dispersive fringing effects of the

open end can be represented or extracted by a lumped reactance _ o _
modeled as a shunt susceptance [see Fig. 9(b)]. This sus&fﬁhe guide, which is a half-wavelength in free space, or other

tance may exhibit either a capacitance for the LSE mode or @aknown factors. In any case, the calculated effective lehgth
inductance for the LSM mode, which establishes the referer@Shownin Fig. 10(c), is very close to the measured one, thereby
plane for an electrically ideal open end. This is usually done Bglidating our model.

extending an effective length of the same NRD strip to simulate

such capacitive or inductive effects, as indicated in Fig. 9(c[)). i L , i
This effective (or equivalent) length,, which is useful for ~: Elec_trlc_a_l Characteristics of Typical NRD-Guide
the design consideration of NRD-guide components, can be &iScontinuities

tained for the fundament&lSM;o mode, e.g., b . _ . o
1o g- by There are so many varieties of NRD-guide discontinuities that

our study is only centered herewith on three basic discontinu-
arg(T") ities, as shown in Fig. 11, for an NRD-guide with a cross sec-
I OB (®) tion of a x b = 5.0 x 3.556 m?. The structures, namely: 1)

air gap discontinuity; 2) double-step discontinuity; and 3) notch
in which I' is the reflection coefficient measured or calculatediscontinuity, are some fundamental building blocks of a large
at the physical plane of open end in question. Measured amgimber of passive components, in particular, in the design of fil-
calculated amplitude and phaseXf; at the plane of the open ters. Generally speaking, the double step and notch discontinu-
end are plotted in Fig. 10(a) and (b), respectively. It can be sdas share almost the same guided-wave behavior. As the dielec-
that errors of measurement are well observed over the frequetray thicknesst becomes large or the notch width & b — ¢) is
range of interests. In particular, the 26.5-GHz cutoff effect afarrow in the coupling section, bolt8E, andLSM;, modes
the mode launcher from the rectangular waveguide causescém propagate along it as a normal transmission line and the dis-
a large extent of the phase deviation, and also the fabricaticontinuity effects of the structures are much less pronounced.
tolerance and calibration errors, may contribute to the mismatippositely, the two modes are evanescent and coupling between
between the two results, which, however, are found to be in gote interconnected two NRD-guides is realized by such evanes-
agreement. The difference of results around the upper part of temt modes similar to the air-gap case of Fig. 11(a). In this
frequency range may come from the fact thas very close to case, the coupling section may be better characterized by de-
the spacing limitation governed by the nonradiative conditiasigner-friendly K- or .J-inverter parameter [12], as described
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by Fig. 11(e)./ (admittance inverter parameter) apdequiv-

Fig. 12(a) and (b) gives two groups of the design curves for

alent length) are calculated as a functionigh on the basis of J/Y; and¢ values, respectively, of double-step discontinuities,

LSM;q w-equivalent circuit see [Fig. 11(d)] by

J=Y, tan(% +tan~! <%))‘ @)
(M b (e
¢ = —tan <Y0+Y0 tan Y, (8)

which also involve the air-gap discontinuity cage= 0). It

can be expected that the inverter parameter shows exponential
decays versug/b, for which a larger thicknegsbrings up more
reactance effects, which can be read very well in Fig. 12(b).
Nevertheless, the critical value ofis found to be equal to
0.55835 x b mm in our example, for which the boundary line

whereYj is the characteristic admittance of the NRD guide. of coupling and propagation between the input and output ports
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Fig. 13. Dispersion diagrarfi — 5 for NRD-guide periodic structures. In all cases, the NRD-guide dimensions ate5.00 mm andb = 3.556 mm and
£, = 2.56. (a) Geometrical view of the periodic structures. §b)= d> = d/2,t = 1.5b. (¢)d, = d> = b. (d)d: + d> = 2b,t = 1.5b. (e)d, + d2 = 2b,
t = 1.5b.

can be identified through evanescent modes or guided-modepology. For example, the typical inverter parameters for a
This is an important feature for the design of filters and othéiwe-pole filter operating at 28 GHz with a 3% bandwidth are
passive components. Similar results can be generated fodsa/Yo = Js6/Yo = 0.4507, J12/Yo = Juz/Yo = 0.1858,
number of notch discontinuities with = b — ¢, as shown in andJy3/Yy = Js54/Yp = 0.1416. While keeping the same set
Fig. 12(c) and (d), for which the critical value ofis found to of J/Y; values, it is rather flexible for practitioner to choose an
be0.65100 x b mm. appropriate NRD-guide coupling section. It is easy to predict
In the case of an NRD-guide filter design, to name ainom the design curves that a differential change of the filter
example, the filter prototype constraints usually yield a se&ipology produces simultaneous incremental offs&ts and
of predesignated constant$/Y, regardless of the filter A¢ inlengthd of the coupling section and in equivalent length
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¢ of the extracted/-inverter. It can then be justified that thebest possible geometry per dielectric material. Mode conver-

filter size can be reduced if and only if sion and power transfer frorhSM;o to LSE;q and LSE;
are studied in detail and single-block-coupling structures are
BNRD < Beft (9) proposed to avoid any potential misalignment problem in the

axial direction. New characteristic parameters are introduced

where fSxrp denotes the propagation constant of thi minimizing the size of an NRD-guide circuit. Dispersion

NRD-guide at center frequency of the design, and tffe_ [ diagrams are also presented for the design purpose of a

new parametef.; is defined by the following differential Periodic NRD-guide with emphasis on frequency response.
term:
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