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Period-Doubling Analysis and Chaos Detection Using
Commercial Harmonic Balance Simulators
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Abstract—Two of the most common phenomena leading to chaos
are the period-doubling cascade and the formation of transverse
homoclinic orbits. In this paper, a bifurcation analysis technique is
presented for the prediction of both phenomena in microwave cir-
cuits. The fact that the technique is based on the use of commercial
harmonic balance software constitutes a major advantage for the
circuit designer. The accuracy of the method relies on the capability
to detect and calculate the successive period doublings, which, in
period-doubling cascades, provides a good estimation of the pa-
rameter values for the onset of chaos. Another important aspect
of the new method is the equilibrium point determination, neces-
sary for the prediction of the homoclinic chaos. The accuracy in the
calculation of the limit cycle, taking into account the most influen-
tial period doublings, ensures a good estimation of the parameter
values for the formation of possible homoclinic orbits. In order to
validate the method, it is initially applied to an RL-diode circuit,
with a period-doubling route to chaos. A practical microwave fre-
quency doubler is then analyzed, determining its parameter ranges
for stable operation. Excellent results are obtained in comparison
with the time-domain simulations. As an example of the method’s
capabilities for the prediction of homoclinic chaos, the bifurcation
loci of Chua’s circuit, with a cubic nonlinearity, are obtained and
they agree closely with time-domain simulations.

Index Terms—Chaos, frequency division, harmonic balance, sta-
bility.

I. INTRODUCTION

T HE two most important characteristics of chaotic re-
sponses in nonlinear circuits are the sensitive dependence

on the initial conditions and the continuity of the spectra
[1]. This kind of behavior is often encountered in microwave
circuits of autonomous nature, such as oscillators or frequency
dividers. Due to the spectrum-continuity characteristic, chaos
is often identified with an anomalous increase of the noise level
at the measurement stage.

Although important applications have recently been found
for chaotic synchronization [2], [3], chaotic responses are
usually undesirable for the designer of microwave components.
Therefore, chaos prediction at the simulation stage may be
invaluable in reducing the development cycles of monolithic
microwave integrated circuits (MMIC’s). Due to the continuity
of the spectra, frequency-domain techniques, such as harmonic
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balance (HB), cannot be used for the analysis of steady-state
chaotic responses. On the other hand, the long transients with
respect to the signal period of microwave circuits generally
prevent time-domain analysis. However, the main interest of
the circuit designer is not the accurate determination of the
chaotic solutions, but its prediction. Therefore, a good strategy
may be the detection of possible bifurcations leading to chaos
from steady-state regimes, determinable through HB. In this
paper, an HB technique is proposed for the detection of two
different phenomena often accompanying chaotic behavior:
the formation of transverse homoclinic orbits [4], [5] and the
period-doubling cascade [5], [6].

In the period-doubling cascade to chaos, the period of the cir-
cuit solution is successively doubled as a parameter is varied,
obtaining frequency divisions by two, four, eight, 16, etc. The
length of the parameter intervals for the successive frequency
divisions decreases at a rate that rapidly approaches the Feigen-
baum number 4.67, chaos being obtained when the period grows
ad infinitum[5]. In Section II-A, the period-doubling cascade to
chaos is presented in more detail.

Homoclinic orbits are formed when the stable and unstable
manifolds of a saddle equilibrium point (EP) intersect. When
this intersection is transversal, it gives rise to a chaotic solution.
This solution is often found when a limit cycle (LC) collides
with a saddle EP after some period-doubling bifurcations
[7]. Transversal homoclinic orbits are a common cause of
chaos in circuits in which the current–voltage characteristics
are -shaped [8], like Gunn and tunnel diode oscillators. In
Section II-B, homoclinic chaos is presented in more detail.

In the period-doubling cascade, there is an inherent need for
the prediction and calculation of the successive period-doubled
responses. This is not a simple task when using frequency-do-
main techniques such as the HB method. Due to its forced na-
ture [9], HB fails to initialize all frequency components apart
from the external generator frequencies and their spectral com-
ponents, even when the Fourier frequency basis is properly sup-
plied. This is unfortunately the case of the subharmonic frequen-
cies, at which no generators are present. In order to cope with
this difficulty, a new technique is proposed here, based on the
use of auxiliary generators (AG’s) at the subharmonic frequen-
cies. These generators, introduced only for simulation purposes,
make the HB operate in its natural forced way and guarantee the
convergence toward the subharmonic solutions. The advantage
of the AG’s is that they can be easily used with commercial
HB simulators, as has been done here, by simply introducing
them into the circuit schematic. This enables the analysis of fre-
quency divisions and other complex analysis, otherwise impos-
sible in commercial simulators. In period-doubling cascades,
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the parameter accumulation properties [5], together with the ca-
pability to determine the initial frequency divisions, enable the
estimation of the parameter values for the onset of chaos. The
new technique for the period-doubling analysis and its applica-
tion to the prediction of chaos are presented in Section III-A.

The method proposed here for the prediction of homoclinic
chaos is based on the detection of the collision between the
LC and saddle EP. It is a multiharmonic generalization of the
one presented by Genesio [7] and based on the use of the de-
scribing function. Here, the determination and analysis of the
circuit EP’s are carried out through a very simple technique. In
the new method, it has also been considered that the good accu-
racy in the prediction of the onset of chaos is closely related to
the accuracy in the LC determination. For that, a realistic calcu-
lation of the waveform, considering the initial and most influen-
tial frequency divisions, is required. Thus, the technique devel-
oped here for the calculation of the successive period doublings
turns out to be crucial. The entire new method for the detection
of homoclinic chaos will be presented in Section III-B.

In order to validate the new analysis method, several circuits
have been simulated, using commercial HB software. The first
application is anRL-diode frequency divider, exhibiting a pe-
riod doubling route to chaos [13]. This circuit has been ana-
lyzed, estimating the parameter values for the onset of chaotic
behavior. A microwave frequency doubler, with a similar pe-
riod-doubling cascade, has also been analyzed, determining its
parameter ranges for stable behavior. For homoclinic chaos pre-
diction, the well-known Chua’s circuit [4]–[10], with a cubic
nonlinearity, has been chosen, as it represents a paradigm for
the study of chaotic behavior. The details and results of each
application are shown in Section IV.

II. TWO COMMON PATTERNS FORCHAOTIC BEHAVIOR

A. Period Doubling Route to Chaos

In the period doubling route to chaos [5], [6], for some values
of a parameter, the circuit exhibits a periodic behavior of pe-
riod . For a critical value , the orbit of period loses sta-
bility, creating an orbit of period . This new periodicity re-
mains until a new critical parameter value is reached, for
which the period-2 solution loses stability, giving rise to a pe-
riod-4 orbit. This process of successive period doubling con-
tinues, with decreasing ranges ( ) of period, until,
at a certain parameter value , the period doublesad infinitum,
obtaining a chaotic behavior [5], [6].

Let be the parameter interval ( ) for frequency
division by . Feigenbaum [5] has shown that the compression
rate of the successive intervals converges fast
to (Feigenbaum number).

B. Homoclinic Chaos

The constant (dc) solutions of a nonlinear circuit are given
by the EP’s of the nonlinear differential equations describing its
behavior. When linearizing these equations about a saddle EP,
the resulting eigenvalues will have negative and positive real
parts [5], respectively, associated with the stable and unstable
manifolds (nonlinear analogs of the eigenspaces).

Fig. 1. AGA, ! , and� are, respectively, the amplitude, frequency, and
phase of the AG.

Under some circumstances, the stable and unstable manifolds
may intersect, forming what is known as a homoclinic orbit.
When the homoclinic orbit is transverse (transverse intersection
of the manifolds), it creates a homoclinic tangle [6]. This is a
complex recurring structure, with embedded Smale horseshoes
in the Poincaré map [5]. The stretching and folding action of this
map has a well-known relationship with chaotic behavior [6].

For the existence of horseshoes [6], some conditions must
be satisfied by the eigenvalues associated to the saddle EP
through which the homoclinic orbit is formed [4]. According to
the theory of Sil’nikov [4], in a three-dimensional system, this
point must have a pair of complex eigenvalues and a
real eigenvalue , satisfying , , and .

When a parameter varies, homoclinic orbits are often formed
when an LC collides with a saddle EP. When preceded by pe-
riod-doubling bifurcations, this interaction between the LC and
the EP is likely to give rise to a homoclinic tangle and, thus, to
a chaotic behavior [7]–[10].

III. CHAOS DETECTION THROUGH HB

A. Analysis of the Period-Doubling Route to Chaos

As stated in Section I, HB has a well-known difficulty in
dealing with frequency division, due to the absence of genera-
tors at the subharmonic frequencies. In order to cope with these
HB difficulties, a new technique is proposed here, based on the
use of AG’s. These are introduced into the circuit only for simu-
lation purposes [9]. An AG is an ideal generator followed by an
ideal bandpass filter. Voltage generators are used here, although
a dual analysis based on current generators is also possible. The
voltage AG is connected in parallel at a sensitive location of the
circuit (Fig. 1). The filter exhibits a zero impedance value at the
generator operating frequency and an infinite impedance
value at all the other frequencies [9]. The calculation of the ini-
tial period doublings is carried out through the following steps.

1) Detection of a Period Doubling from a Period-1 Steady
State: The stability analysis of a regime of period, in the
presence of period-doubling perturbations, is carried out by in-
troducing a period-2 AG, with a negligible amplitude
and variable phase , as shown in Fig. 2(a). This is equivalent
to a small perturbation at the divided frequency. Letbe the
input admittance observed by the AG. The period-1 regime will
be unstable if the conditions for the division startup
, are satisfied for a certain phase value of the

AG. This may be easily determined in commercial software by
sweeping the AG phase between 0–180.

2) Determination of the Period-2 Steady State:For ob-
taining the period-2 steady state, the amplitudeand phase
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Fig. 2. (a) Connection of one AG for the prediction of a period-2 solution.
Negligible amplitudeA = " and variable phase� . (b) Connection of two
AG for the prediction of a period-4 solution.A and� are maintained at their
steady-state values. Negligible amplitudeA = " and variable phase� .

of the AG are optimized, using the commercial software
tools, in order to obtain a zero value of the observed admittance
magnitude . When the condition is fulfilled, the
steady state is attained and the AG does not perturb the circuit
solution. Note that the inclusion of this AG resolves the HB
difficulties with subharmonic frequencies.

3) Detection of a Period Doubling from a Period-2 Steady
State: In order to predict a new possible period doubling, the
period-2 AG must be kept at its steady-state value. An addi-
tional AG of period is introduced, with a negligible ampli-
tude and a variable phase , as shown in Fig. 2(b).
A sweep in , between 0–90 , is now carried out calculating
the observed admittance. A new period doubling is obtained
when the start-up conditions , are
fulfilled.

4) Determination of the Period-4 Steady State:For ob-
taining the period-4 steady state, an optimization is performed
in the two AG’s, with the four optimization variables , ,

, and . The optimization goal will now be the zero value
of the two admittance amplitudes and .
Again, when this condition happens, the two AG’s do not
perturb the steady-state solution. Note that the limited number
of optimization variables and optimization goals ensures the
efficiency of the optimization process.

A new period doubling (frequency division by eight) can
be predicted by introducing a period-8 AG with a negligible
amplitude, proceeding in a similar way to those discussed
in Sections III-A.1 and III-A.3. The parameter accumulation
properties shown by Feigenbaum make the prediction of higher
order divisions unnecessary in practice, and the parameter
values for the onset of chaos may be estimated after only a few
bifurcations.

B. Analysis of Homoclinic Chaos

For the detection of homoclinic chaos, a four-step technique
is used: determination of the circuit EP’s, analysis of the free-
running oscillation, analysis of the frequency divisions of lower
orders, and determination of the parameter values for the inter-
action between the saddle EP and LC (EP–LC).

1) Determination of the Circuit EP’s:The availability of
an efficient tool for the determination of multiple EP’s is of

Fig. 3. Calculation of the circuit EP’s. (a) DC-AG and (b) current flowing
through the dc–AG as a function of the dc voltage sweep. The voltage values
for which I = 0 are the EP’s.

major importance in the analysis of homoclinic chaos due to
its characteristic EP–LC interaction. Here, a specific technique
has been developed, very well suited for commercial simula-
tors. It is based on the use of an auxiliary dc voltage generator
(dc–AG), which is connected in parallel with the nonlinear ele-
ment, as shown in Fig. 3(a). A wide range sweep is performed
in the dc–AG voltage, with the EP’s being given by the voltage
values for which the dc current flowing through the dc–AG
is equal to zero. This is shown in Fig. 3(b). Note that for zero cur-
rent value, the dc–AG has no influence over the circuit solution.

For a more rigorous analysis, the stability of the different EP’s
must be determined, and the Nyquist stability plot, implemented
in most commercial HB simulators, may be used for this pur-
pose. Since the dc–AG is nonperturbing at the EP’s, it may be
kept for this analysis, which ensures the commercial simulator
convergence toward the desired EP.

The Nyquist plot corresponding to an EP with a real unstable
eigenvalue encircles the origin in the clockwise sense, inter-
secting the negative real axis of the complex plane for zero
perturbation frequency [11]. If the EP has two unstable com-
plex-conjugate eigenvalues, the locus encircles the origin in the
clockwise sense, intersecting the negative real axis for a per-
turbation frequency different from zero [11]. This intersection
provides an estimation of the free-running oscillation frequency.
When modifying a circuit parameter, a Hopf bifurcation [12]
will be obtained if the Nyquist plot crosses the origin at a per-
turbation frequency different from zero.

2) Analysis of the Free-Running Oscillation:In a second
step, the periodic solution existing for some parameter ranges
must be obtained. However, for circuits with multiple EP’s, the
standard oscillation test in HB software may search for the oscil-
lation conditions around an EP different from the one at which
oscillations start up. This difficulty is resolved here by means of
a judicious voltage shift [15] in the nonlinear function, letting
the simulator carry out the oscillation analysis around its default
value. The periodic solution is then correctly simulated.
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Fig. 4. Schematic of theRL-diode circuit. External generator frequencyf =

4 GHz.

(a)

(b)

Fig. 5. RL-diode circuit. Planar phase space attractor (inductor voltage versus
circuit current) forf = 4 GHz andEg = 2:5 V: (a) from HB and (b)
time-domain simulations.

3) Analysis of the Frequency divisions:The third step is the
prediction and calculation of the initial frequency divisions. For
autonomous circuits, an extra AG, operating at the free-run-
ning amplitude and frequency, must be included. Otherwise, the
HB analysis will lose its starting point. This AG is kept at its
steady-state value for the first stability analysis, but will have to
be optimized for the steady-state calculation of every frequency
division. The calculation of these divisions is carried out by fol-
lowing the technique presented in Section III-A.

4) Determination of the Parameter Values for the
EP–LC: Finally, the fourth step checks for the possible
collision between the LC and the unstable EP [7]. As will
be shown, by considering a realistic waveform, including
the most significant frequency divisions, the accuracy in the
prediction of this collision is greatly improved in comparison
with previous results [15].

IV. A PPLICATION EXAMPLES

The new method is illustrated here by means of its application
to three different circuits: AnRL-diode frequency divider and a
microwave frequency multiplier, with period doubling routes to

Fig. 6. RL-diode circuit. Prediction of the period-doubling bifurcation leading
to a period-4 regime. It is obtained forEg = 4:9 V.

(a)

(b)

Fig. 7. RL-diode circuit. Planar phase space attractor (inductor voltage versus
circuit current) forf = 4 GHz andEg = 5:2 V: (a) from HB and (b)
time-domain simulations.

chaos, and a Chua’s circuit, with a cubic nonlinearity, exhibiting
homoclinic chaos.

A. RL-Diode Frequency Divider

It has been shown [14] that varactor diodes in very nonlinear
applications often show negative resistance dynamic effects, due
to their high value of diffusion capacitance. Here, anRL-diode
frequency divider [13] based on a varactor diode with a carrier
lifetime ns (Fig. 4) is analyzed. The circuit is driven by
a sinusoidal voltage generator with frequency GHz.

The circuit stability is analyzed as a function of by using
a period-2 AG with negligible amplitude. It is possible to pre-
dict a period-doubling instability for V. The steady
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Fig. 8. RL-diode circuit. Time-domain chaotic attractor (inductor voltage
versus circuit current) obtained forf = 4 GHz andEg = 7:5 V.

Fig. 9. RL-diode circuit. Bifurcation diagram as a function of the input voltage
generatorEg.

state of the period-2 solution, corresponding to V, is
calculated through HB by optimizing the AG. The planar phase
space attractor is obtained (through inverse Fourier transform)
by tracing the inductor voltage versus the current. It is shown
in Fig. 5(a). The LC resulting from time-domain simulations can
be observed in Fig. 5(b).

A period-4 AG, with negligible amplitude, is introduced over
the steady-state period-2 solution, for the prediction of the next
period doubling. When sweeping its phase, the corresponding
admittance, shown in Fig. 6, crosses the origin of the polar dia-
gram for V, which is the bifurcation condition for the
onset of the period-4 solution. The period-4 cycle obtained for

V is shown in Fig. 7, where it can be compared with
the time-domain simulation.

By introducing a period-8 AG, the onset of the period-8 so-
lution is predicted for V. Through time-domain
simulations, the onset of chaos is obtained for V.
The time-domain chaotic attractor for V is shown
in Fig. 8. This confirms the parameter accumulation properties
of the period-doubling cascade and the method’s usefulness for
estimating the onset of chaos in microwave circuits.

The evolution of the circuit response as a function of the ex-
ternal voltage generator amplitude can be observed in the
bifurcation diagram of Fig. 9. This has been obtained in the fre-
quency domain by tracing the amplitude of the diode voltage at
the external generator frequency and at the successively gener-
ated subharmonics.

Fig. 10. Schematic of the 5–10-GHz microwave frequency doubler based on
a varactor diode (L = 3:038 nH, L = 3:038 nH, C = 0:597 pF,L =

2:533 nH,C = 0:1 pF).

(a)

(b)

Fig. 11. Frequency doubler. Planar phase space attractor (inductorL voltage
versus inductorL current) forV = 0 V andEg = 1:8 V: (a) from HB and
(b) time-domain simulations.

B. Microwave Frequency Doubler

As a more practical example of the new technique for
period-doubling analysis, the microwave frequency doubler of
Fig. 10 is analyzed. The circuit consists of a varactor diode
embedded between two filters, the input filter selecting the
external generator frequency (5 GHz) and the output filter
selecting the doubled frequency (10 GHz). The route to chaos
exhibited by this kind of circuit is strongly dependent on the
topology of the linear filters. For the present implementation, a
period-doubling cascade is obtained, although quasi-periodic
routes have also been observed for a different design of the two
filters [16].

The circuit stability is analyzed as a function of the external
generator voltage and the diode bias . For V
and V, the circuit exhibits a period-2 solution. The
planar phase space attractor is obtained here by tracing the
voltage at the inductor as a function of the current through
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Fig. 12. Frequency doubler. Border for the period-2 instability as a function of
V andEg. Solid line: HB, dashed line: time-domain. The regions of stable
and unstable operation as frequency doubler are also shown.

Fig. 13. Schematic of Chua’s oscillator based on a cubic nonlinearity (R =

1:43 
, L = 13:6 pH,C = 10 pF,C = 0:1 nF).

(a)

(b)

Fig. 14. Chua’s oscillator with a cubic nonlinearity. (a) HB prediction of the
onset of chaos from a period-4 waveform. The corresponding parameter values
are� = 9:1 and� = 15. (b) Waveform neglecting period doublings, obtained
for the same parameter values. It is still far from the collision with the unstable
EPEP = 0 V.

. The comparison between the period-2 cycle obtained from
HB and time-domain simulations is shown in Fig. 11.

The border for the period-2 instability as a function of the
two parameters is shown in Fig. 12, where the results from the
new HB technique can be compared with those from the time-
domain simulations. Thus, the new technique has enabled the
determination of the input generator values for stable operation.

(a)

(b)

Fig. 15. Planar phase space attractors (C current versus nonlinearity voltage)
in Chua’s oscillator with a cubic nonlinearity obtained through time-domain
simulations.� = 15. (a) Period-4 solution� = 9:05. (b) Chaotic attractor
� = 9:091.

C. Chua’s Circuit

A variation of Chua’s circuit (Fig. 13), with a cubic nonlin-
earity instead of the piecewise linear resistor, has been analyzed
here. Chua’s circuit is commonly studied as a function of two
parameters and . As these param-
eters vary, different operating modes may be obtained, ranging
from dc stable solutions to chaotic behavior.

In order to calculate the circuit EP’s, a voltage dc–AG is con-
nected in parallel with the nonlinear element. When calculating
the current through this generator as a function of the corre-
sponding voltage, three zeros are obtained, which provide the
circuit EP’s: V, V, and V.
These values agree with the theoretical results [7].

Initially the circuit behavior is going to be analyzed for a con-
stant . The stability of the different EP’s may be deter-
mined through the Nyquist plot. For , the EP V
has an unstable real eigenvalue. The EP’s V and

V are stable. Thus, a constant solution
V or V, with the nonlinearity voltage, is ob-

served. This stability situation remains until the value is
reached.

For , the Nyquist stability plot corresponding to
V and V crosses the origin at the perturba-

tion frequency of 3.51 GHz, predicting a Hopf-type bifurcation.
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Fig. 16. Chua’s oscillator with a cubic nonlinearity. Bifurcation diagram—
region (a): dc stable solution, region (b): free-running oscillation, region (c):
period doubling, and region (d): chaotic behavior.

Fig. 17. Chua’s oscillator with a cubic nonlinearity. Expanded bifurcation
diagram. Prediction for the onset chaos when frequency divisions are neglected
and when the complete period-4 waveform is considered.

Thus, free-running oscillations are obtained around these EP’s
for . On the other hand, the instability of re-
mains unchanged. Through the admittance polar diagram, a pe-
riod-doubling bifurcation is detected for . The onset
of the period-4 solution is predicted for .

The collision between the period-4 LC and the unstable EP
V takes place for , signaling the onset of

chaos. This is shown in Fig. 14(a). As shown in Fig. 14(b), for
the same value, when the frequency divisions are neglected
[7], the LC is still far from the collision, which makes the esti-
mated value for the chaos onset higher than the real one. This
error is considerably reduced when a period-four waveform is
considered. Actually, there is no need to take into account period
doublings of higher orders, due to the parameter accumulation
properties.

In order to verify the chaos-onset prediction, time-domain
simulations have been carried out for increasingvalue. The
planar phase space attractor is calculated by tracing the current
through as a function of the nonlinearity voltage. For

, a period-4 solution is obtained, as shown in Fig. 15(a).
By increasing , the collision between the LC and saddle EP

V takes place for , as shown in Fig. 15(b).
This gives rise to the chaotic attractor.

When considering also the variations, the bifurcation loci
of Fig. 16 are obtained. Time-domain simulations are superim-

posed. The locus providing the start-up of the frequency divi-
sion by four is not represented since it is extremely close to the
chaos-onset locus. However, for the determination of the colli-
sion between the LC and unstable EP V, a period-4
steady-state solution is considered. As expected, the calculation
of the realistic waveform significantly improves the chaos pre-
diction in comparison with previous results where period dou-
blings were neglected [15]. This is clearly shown in the loci ex-
panded view of Fig. 17. Note that an excellent correspondence
is obtained between the time-domain simulations and the homo-
clinic orbit prediction from a period-4 waveform.

V. CONCLUSION

In this paper, a new method is proposed for the detection of
the onset of chaos through the HB technique. Thus, this method
is well suited for microwave frequencies where time-domain
techniques are often impractical. In addition, the new method
makes use of commercial HB software, with its advantages of
great flexibility and easy utilization by microwave-circuit de-
signers. A new technique is presented for the prediction and
steady-state analysis of successive frequency divisions by two in
commercial software, which improves the accuracy for the onset
of chaos calculation in the homoclinic routes and also enables
the chaos prediction in the common period-doubling routes. The
new perturbation technique introduced here opens exciting pos-
sibilities for the stability analysis of microwave circuits by using
commercial software. Three circuits are analyzed by means of
the new method: two varactor-based circuits, with a period-dou-
bling route, and the classical Chua’s circuit, exhibiting homo-
clinic chaos. In both cases, an excellent agreement is found with
time-domain simulations.
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