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Reduction of Numerical Dispersion in FDTD
Method Through Artificial Anisotropy

Jaakko S. Juntunen and Theodoros D. Tsibqu4ismber, IEEE

Abstract—n this paper, a simple and computationally low-cost in [4], the width-to-length ratio of a two—dimensional (2-D)
modification of the standard finite-difference time-domain (FDTD)  cell varies a factor of 12.5.

algorithm is presented to reduce numerical dispersion in the algo- A different FDTD algorithm is proposed in [5], which is
rithm. Both two- and three-dimensional cases are considered. It is ivalent to th led trical d a de t
shown that the maximum error in phase velocity can be reduced by €duivaient1o theé so-called symmetrical-conaensed-node trans-

afactor of 2—7, depending on the shape of the FDTD cell. Aithough Mission-line matrix method (SCN—TLM). The dispersion errors
the reduction procedure is optimal for only single frequency, nu- in SCN-TLM are less than in the standard FDTD technique
merical examples show that the proposed method can also improve [6], [7]. A distinct disadvantage of the SCN-TLM formulation
the accuracy significantly in wide-band inhomogeneous problems. though, is the need of extensive memory requirements as

Index Terms—FDTD method, numerical dispersion. opposed to the standard FDTD implementation. Another possi-
bility is to use fourth-order spatial differencing in the algorithm
[8]. However, associated problems are encountered as more
smoothness is assumed from the field quantities, especially on

UMERICAL dispersion is an undesired nonphysicahe material boundaries.

effect inherently present in the finite-difference time-do- The present reduction method is based on carefully speeding
main (FDTD) algorithm. In short, numerical dispersion meang the wave propagation by introducing anisotropy parameters
dependence of wave propagation velocity on frequency. Hersiifto the algorithm. A detailed Fourier-mode analysis is given for
we also include in the term the dependence of velocity @Re determination of the optimal anisotropy parameters. Several
propagation direction. The latter is sometimes called numerigamnulation examples confirm the theory. Wide-band problems
anisotropy. In qualitative terms, dispersion causes distortiape also discussed.
of waveforms. Frequency dependence causes high-frequency
content of a wave to lag, while direction dependence causes 1. NUMERICAL DISPERSIONRELATION IN 2-D
spherical waveforms to become slightly cubical.

There are several problems associated with numerical dispé r(a
sion. First, it causes cumulative phase error. If a device is base . " -
on phase cancellation, even an apparently small error in wae' & = dlag(?*" £y). Th? stability condition of the FDTD
propagation velocity may cumulate phase error to unaccepta%‘%omhm for this problem is
amounts. Equivalently, phase error appears as mislocation of 1

. INTRODUCTION

Let us consider electrically anisotropic medium in 2-D and
TE mode. Let the relative permittivity tensor be diagonal,

resonances in the frequency domain. Sometimes, it is possible At < 1 1 (1)
to pre-estimate the effect of the dispersion error, and use the es- N T AR + AR
timation to choose proper spatial resolution for the problem [1]. Y =2y

In some cases, the numerical dispersion can be eliminatedgre (, is the speed of light in free space. The derivation of the

post-processing [2]. This elimination is rarely possible since dspersion relation is canonical. A wave is expanded into plane
is based on the assumption that there are waves propagatinges of the form

only one direction. ,
Another possible trouble with the numerical dispersion is U = Pl Whhem—hyy) (2)

nonphysical refraction [3]. If the cell shape varies over the

grid, a wave experiences different numerical dispersion fnd the FDTD update equations are applied to these waves.

different parts of the grid. This corresponds to inhomogeneo.usThe resulting numerical dispersion relation for the TE mode

medium, and refraction takes place. In some problems, it's

indeed necessary to vary the cell shape quite dramatically, e.g., 2 gin? ke Ax sin? ky Ay
1 wAt 2 2
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« is the angle between the propagation direction and positi 1002
z-axis. The dispersion characteristics of the FDTD grid are e»
pressedin a clear way by plotting for each frequency the veloci 1 —
of a plane wave in the grid versus the angle /
Let us now express (3) in a form that is independent of phys 0.998 e
ical dimensions. For this, let us introduce a parameter that d /
fines the shape of a single FDTD cell ; 0.996 /
clic,
Ax 0.994 /
I= Ay @) /
Y 0992
Furthermore, we define a spatial resolution coefficient that re 099
lates the wavelength and cell dimensions )
A 0988010 20 30 40 50 60 70 80 90
R= m (5) o, degrees
whereX = ¢/ is the wavelength in the vacuum (not in thd'9-1- Relative numerical velocity = 2, . = 10, ¢ = 0.99.
numerical grid). Let us also define a Courant coefficigrt 1
in accordance with (1) 1002
1 1.00
At =q . (6)
1 1 1.001 / \
Cor| = xaz3 T T 1
ISWAY: 4 ez Ay 1.001 /
1.000
Using (4) and (6) e L / \
/
AyZ ., [eE, 0.9993
colt = g Y ™) / \
€r + EyZ 0.99 / \
. 0.998 / \
and using (4) and (5) 0.99. / AN
A=RvV1+ Z2Ay. (8) 097910 20 30 40 50 60 70 80 90

o, degrees

Sincew = (2mco/A), we get from (7) and (8)

Fig. 2. Relative numerical velocity after correctiohi.= 2, R = 10,9 =

wAE CcoAt WV/NGSY 0.99,¢, = 1.002717,¢, = 0.982972.

=7 = .
2 A R\/1+Z2\/5m+5yZ2

©)

. . The numerical solution of (11) faA is rather straightforward
Let UNS denote by)\ the WaVEJength in the grld and Writ’e~: for a given set of paramete& q, R, €1 Ey, andao.
(2w /X). Using (8), we havéAy = (27/RvV1+ Z2)(A/N).
The interesting quantity is the relative numerical veloclty=
(¢"/co) = (A/A), wherec* is the propagation velocity in the |||, DISPERSIONREDUCTION IN 2-D THROUGH £, AND &,

grid. Therefore, we finally write
Our purpose is to find parameters ande,, such that4 will

kAy 1 - be close to one for all propagation directions. Fig. 1 illustrates
5 ~ A Rt 22 (10) the solutiond(«) from (11) for a typical case with, = ¢, = 1,

Z = 2, R = 10, andg = 0.99. Fig. 2 illustrates the solu-
Substituting (4)—(10) into (3) yields the dimensionless numetion of (11) for the same case, except anisotropy parameters

ical dispersion relation ez = 1.002717 ande, = 0.982972 are used. The maximum
dispersion error is reduced from 1.1% to 0.22%.

ex +e, 2% TqZ \[exEy In [8, Sec. 5.7], a kind qf optimi;gtion_ is_ presented for a

erey 222 RVIT 22 \/gm e, 22 square cell. There, a correction coefficient is introduced to com-

) pensate the effect of choosigg< 1, whereas the more domi-
sin? <—7r = ) sin? <47FZ cos a ) nant effect of the cell shape is not discussed.
ARV1+ Z2 1 ARV1+ Z2 To find the correction parameter values, we start by deter-
Ex ey Z? mining the values o, ande, that yield A = 1 along the
(11) coordinate directionsx = 0° anda = 90°. SettingA = 1,
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Fig. 4. Monitoring surfaces for measuring the wave propagation velocity in a
o, degrees simulation.

Fig. 3. Relative numerical velocity after partial correctich= 2, R = 10,

= 099, = 0.998551, 5, = 0.978969. unity at this stage (about 0.0042 in Fig. 3) and to redefinend

g, to slow down the wave velocity by half of that maximum.
. . ] . ] The key to the last step is that the maximumAtiy) (after
a = 90° and solving fok, in the right-hand side (RHS) of (11) {ning ideal propagation along coordinate directicthsgs not

gives depend much o& and not at all ong. This appears to be due
- to the “lucky” choice of R in units of diagonal length of the

2 9 sin <7> cell. Thus, we find a good approximation of the maximum of
L RyV1+ 22 (12) Abychoosing; = Z = 1in (11), (14), and (15). Setting then

Ep = ) . . .
ex tey2 2 YA N a = 45° in (11) gives
RV1+ ZQ\/Em +e,2°

Amax = 7r . (16)
Similarly, settingA = 1, & = 0° and solving now fok, gives 2R arcsin <M>
2
. 2 nZ . L -
€2y Si RT 22 Thus, the maximum deviation ol from unity is now() :=
Yy

in (12)—(15), yields the optimal parameter valégsande,. A
short Matlab-code cmp2D.m is found in the Appendix for de-
termination of the optimal parameters. We will refer to a simu-

£, =
Y 2
€x+eysl VN
. €y
sin?

. (13) (Anax —1). SettingA = 1 — (Q/2) along axial directions, as
RV1+ ZQ\/EQU + EyZ2>

Dividing (12) by (13) leads to lation with the correction parameters as the “corrected FDTD.”
in? [ — IV. VERIFICATION OF THE CORRECTION IN2-D
S11 .
€x 2 <R\/1+Z2> . L. . . .
- = zZ 7 . (14) To verify the predictions of the previous sections, a single
Y sin? <m> H_.-component is excited in the middle of a TE structure. To

measure the wave propagation velocity in the simulation, two
Solving (14) fore,, then inserting the result into (12), and’€ctangular “monitoring surfaces” are defined, as shown in
solving fore, yields Fig. 4. The program looks for the time instants during which the
nth maximum of the incident wave reaches an inner monitoring

4o Sin< 7r ) point at+ and the corresponding outer monitoring point at
) RV1+ 22 27. Knowing the traveled distance and time, velocity can be

_ x7 calculated.
bi=sin <m> Fig. 5 illustrates the effect of the correction in an actual sim-

R(1+ 2?) 52 b 2 ulation. A thin cell and coarse resolution is used hefe< 5,

Gy =5 <1 + _2> arcsin <q7> . (5) R=5,¢= 0.99), and a reduct_lon ofmaxmum dispersion error
T Z a a? +b? from over 7% to less than 1% is obtained. This represents a case

mat is close to the practical limits of the standard FDTD method

e, can then be easily found from (14). For the model proble .
in terms of cell shape and resolution.

(Z =2, R = 10, ¢ = 0.99), we obtaine, = 0.998551 and
g, = 0.978969. Fig. 3 illustrates the correspondiny «).

We see that the curve in Fig. 3 is symmetric and has a max-
imum ata = 45°. This is not a coincidence, but true in general. In this section, the full three—dimensional (3-D) problem is
The strategy is to determine the maximum deviatiosldfom discussed. Let us consider a material that is both magnetically

V. NUMERICAL DISPERSIONRELATION IN 3-D
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- "~ o (keAz\ o, (kAy
1 /’ ~ 2 2 il 2 y—
T T T < 1 <wAt>> Sm( 2 ) Sm( 2 )

0.9 /' coAt 2 ey, Az? AN 1
0.98 74 - <kZAz>
/ S 5
. 097 N2 (24
¢ /e / + exeyA2? (24)
0.96 ¢
/ The corresponding stability criterion is
0.95 4
1
0o / At < . (25)
pd L ot 4 1
c
0.93pe 0 eye.Ax? e AY? 0 £,8,A22
093 10 20 30 40 S0 60 70 8 90 Let us again define dimensionless parameters
o, degrees A A Y
Zy:A_vaZ:A—xaR: ) > ) (26)
Fig. 5. Relative numerical velocity curves from simulations: standard FDTD Y ? \/Aa: + Ay? + Az

lid li d ted FDTD (dashed ling)= 5, R = 5, ¢ = 0.99. -
(solid line) and correcte (dashed lin) ¢ and a Courant coefficient < 1 such that (25) holds. After a

. ) ) little algebra, as in Section Il, we end up with a dimensionless
and electrically anisotropicie, = diag(ea, &y, €2),  dispersion relation
pr = diag(pa, 1y, p=). Recall that a Fourier mode
= £, + Eij +e.7?

U= \Ijoej(wt—kwm—kyy—k;z) (17) QQExEyEZ

is an eigenfunction of the finite-differential operators used in the €xEy€s

FDTD R\J1+ 252+ 272, Jen + 0,22 + .22

p At
DU =j—= sin <w—> U = jK,U

At 2 _ sin? 7 sin 6 cos ¢
2 A EyEz —2 =2
D% = — j— sin <k—s> U= KU (18) ’ AR\ 1+ 27 + 2
As 2
. . Zg .9 7 sin 0 sin ¢
wheres stands forz, y, or z. Using (18), we can write the nu- + P = =
merical Maxwell’s equations into form e ARZ N1+ 2y~ + 22
- = 2
pokul = KE (19) 1 g  cos 27)
Cacy ARZ A1+ Z,2+ 2.2
eoKieE = —KH (20) wheref andy are the polar and azimuth angles, respectively,
B — of the wave propagation direction, andis again the ratio of
where numerical to ideal velocity in that direction.
0 K. -K,
g = | —K. 0 K, |. (21) VI. DISPERSIONREDUCTION IN 3-D THROUGH ¢, €4, AND €.
K, —-K, 0 The procedure for finding the proper correction parameters is

similar to that in Section Ill. A short Matlab-code cmp3D.m is
Combining (19) and (20)2 must satisfy an eigenvalue problentound in the Appendix for that purpose. One has to remember
ey to use the same parameters in the permeability tensor. &so
§_1Ku_1KE __t (22) “needle’-type cells £, andZ. both large), the solution of (27)
- T= c with and without correction predicts that the maximum disper-
1 1 . . sion error will be reduced by a factor of about seven. However,
In general,e™*Kp~" K has two different nonzero eigen-
= typlcal values for the reduction factor are 2-5.
values. However, Tu = ¢, (22) has a double eigenvalue

7171 2 7171 2 7171 2
_E y €= Kg +e, 6. K +e,7¢, KZ) and the dispersion VII. V ERIFICATION OF THE CORRECTION IN3-D
relation reads
To verify the predicted correction, a singlé.-component
ﬁ _ K? n Kf n K? is excited in the origin to represent a point magnetic dipole

(23)

B eyE. €. €y source. In Fig. 6, the phase velocities from actual simulations
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Fig. 7. Inhomogeneous infinite waveguide structure modeled in example 1.

Fig. 6. Comparison of corrected and uncorrected simulated phase velocity to
the ideal physical phase velocity. Problefy = 1.5, Z. = 3, R = 5 and
monitoring surfaces parallel tpz-plane are considered. IX. SIMULATION TESTS WITHINHOMOGENEOUSPROBLEMS

If there are only differentisotropic dielectrics and perfect con-
are compared, with and without correction. The monitoring sugtuctors present, the proposed correction can be easily extended
faces are parallel to thez-plane. Clearly, the dispersion errorg an inhomogeneous problem. A different set of anisotropy pa-
is again reduced significantly. A coarse resolutfdr- 5 and a rameters is designed for each dielectric. In the material inter-
“brick™type cell shapedz : Ay : Az =3 : 2 : 1are used. faces, all parameter values are averaged, as proposed in [9].
For propagation along other directions than indicated in Fig. 6, Here, we consider two inhomogeneous wide-band exam-
the corrected dispersion error remains withia%, while the ples. The first example is a 3-D waveguide filled with three
dispersion error without correction reache4%. dielectrics: dielectric-1 (vacuum) foy = 18cm--- + oo,

dielectric-2 €, = 1.5) for y = 12,---,18 cm and dielectric-3
(e = 2.7)fory = —c0,--+,12 cm (Fig. 7). The dimensions
VIIl. W IDE-BAND PROBLEMS of the cross section of the waveguide are= 3 cm and

. f the kev ad fth hod i = 1 cm. To model the infinite ends, generalized 20-layer
Smcg_ one of the €y a vantaggs 0 t. N FD.T.D metho 'S,t Srfectly matched layer (PML) absorbing boundary conditions
possibility to perform wide-band simulations, it is clearly a dis

. 7 _-are used, especially suitable for anisotropic problems [10]. The
advantage of the proposed correction method that it is Opt'”@” dimensi(?ns us)éd adz — 0.3 cm Apu 2 0.5 cm [an]d
for only one frequency. However, due to other advantage&k = 0.2 cm. They-direction is along the Waveguide axis.

FDTD is sometimes used in single-frequency problems, €.9-A modulated Gaussian pulse E;, mode is launched at

[4]. e input plane a§ = 21 cm. The pulse contains approximately

. Fortunateliy, investigating the dlspersmn relation (2'7) W'tﬁhe frequency range from 5.2 to 7.5 GHz. The excitation is sep-
fixed correction parameters and varying resolutigrone finds rated from the field interactions [11]. THe.-component of

that the dispersion reduction is almost optimal in a reasona & wave is recorded in the middle of the cross section of the

band around the valuB, used for designing the correction pa'waveguide ay = 19 cm. The anisotropy parameters are opti-

rameters. The following descriptive conclusions can be mad‘?nized to frequency,. = 5.2 GHz (R = 9.3526 in the vacuum,
* For frequencies higher thafg (= design frequency for the R = 7.6363 in the dielectric-2, and? = 5.6918 in the dielec-
correction parameters) the maximum dispersion error tigc-3) as follows:
always less than in standard FDTD.
« With very low frequencies, the reduction is not of much
use since the dispersion is very small anyway. €, =0.993372 ¢, =1.009350 ¢, =0.988441

Experiments suggest using correction parameters, which cor- for vacuum
respond to thdowestfrequency of the band, not the central £, =0.989436 =, = 1.013498 . = 0.982057
frequency. If the band starts from dc, one could consider stan-
dard FDTD for the lowest subband and corrected FDTD for
the higher subbands. This implies two separate simulations for €z =0.979945 &, = 1.023675 ¢, = 0.966741
the same problem, but these are totally independent and can be for dielectric-3
performed simultaneously using two processors. With one pro-
cessor though, double simulation time is needed, but the overal= 0.99 in all calculations. In the dielectrics, the Courant co-
saving can still be high. In Section IX, two wide-band probefficient ¢, is not knowna priori (since onlyg in vacuum is
lems are discussed. Quite often, we are interested in only redhosen), but is needed in the evaluation of the anisotropy pa-
tive narrow frequency bands where the reduction scheme carrémeters. For that purpose, a good enough approximatigpn of
used alone. is q/\/Er.

for dielectric-2
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0 erence resonance frequency for the cavity with the dielectric is
\ \ found using a standard FDTD and a dense mesh having4®

x 40 cells, corresponding resolutiofs= 33.4 in the vacuum

-5
— andR = 16.7 in the dielectric. The cavity is excited by a point
W/('"""‘ source having a Gaussian time variation, andZheomponent
74N is recorded. The reference resonance is found to be 5.584 GHz.
/ Corrected For the comparisons, we use standard FDTD in<100 x 10
and 20x 20 x 20 meshes, and corrected FDTD in ax1@0 x

10 mesh. The reduction is optimized to 5.0 GHz £ 9.7267
% in the vacuum and = 4.8633 in the dielectric), giving the fol-
; lowing compensation parameter values:

-1 \g#*

-15r
1Sy4/ [dB]
-20]

FDTD

-25]

-30)

-35

; e, =0.993874 ¢, =1.008637 ¢, =0.989314
55 6 61.5 7 75 for vacuum

Frequency [GHz] €, =0971911 ¢, =1.032297 ¢, =0.953918
for dielectric

-40
5

Fig. 8. |S11| parameter of the structure in Fig. 7. The dispersion reduction
parameters are optimized fér= 5.2 GHz. Standard FDTD( - - - -), corrected

FDTD (- - - -), and exact solution (—). The standard FDTD with a 1& 10 x 10 mesh gives

5.557 GHz (27 MHz compared to the reference solution),
while the corrected FDTD gives 5.580 GHz4 MHz). The
standard FDTD with a 2 20 x 20 mesh gives 5.578 GHz
(—6 MHz). Hence, corrected FDTD in a coarse mesh gives
about the same result than standard FDTD in a dense mesh
having eight times more cells and using 16 times more central
processing unit (CPU) time.

X. CONCLUSIONS

¥ o] This paper introduces a simple correction procedure for re-
duction of the numerical dispersion in the FDTD algorithm.
Compared to the standard algorithm, the method does not in-
troduce any additional computational cost and requires only a
modest amount of reprogramming. However, the method can
Fig. 9. Inhomogeneous cavity modeled in example 2. be of high value in problems where the numerical dispersion
is expected to play a major role. It is demonstrated through sev-
The|511| parameter is computed. The exact solution is eral examples that even though the correction is optimal only for
a single frequency, the method can still yield significantly im-
) proved performance in wide-band inhomogeneous problems.

x fem]

p12 + paae 22k

14 prapaze™202L |

|S11] = (28

Here,y. is the propagation constant of the waveguide filled with APPENDIX
the dielectric-2,L is the thickness of the dielectric-2 (6 cm), Matlab-code cmp2D.m evaluates the optimal anisotropy pa-
andpi; = (n; — n:)/(n; + n;), where(n,.) is the characterisitc rameters:,, ande, for a 2-D problem, for given resolutioR,
impedance of th&'E;, mode of the waveguide filled with the Cell shapeZ, and Courant-coefficient
dielectrick.
Fig. 8 presents the results. Standard FDTD mislocates flgction [ex, ey]J=cmp2D(R, Z, q);
main resonance peak68 MHz and+2.7 dB. Using the cor- % Jaakko Juntunen 20.9.1999.
rection, the peak is mislocated onlyt MHz and+0.7 dB. The Amax =
conclusion is that, especially around the main resonance, th@i/(2*R*asin(sin(pi/(R*sqrt(2)))/sqrt(2)));
correction improves the results significantly, even more than - = Amax - 1;
pected. A qualitative explanation for that is that, for the co® = sin(pi/((1 - Q/2)*R*sqrt(1 + Z"2)));
rected FDTD, the dispersion error is well balanced, i.e., the= sin(p*Z/(1 - Q/2)*R*sqrt(1 + Z"2)));
waves will propagate a bit too slowly toward some directior®y = R"2*(1 + Z"2)/(pi*q*2)"2*(1 +
and a bit too fast toward some others, and an advantageous ap-~2/a"2)*asin(q*a*b/sqrt(@"2 + b"2))"2;
eraging takes place. ex = Z"2*a"2[b"2*ey;
The second example is an inhomogeneous cavity shown in
Fig. 9. The dielectric piecesf = 4.0) represents a tuning ele- Matlab-code cmp3D.m evaluates the optimal anisotropy pa-
ment of the cavity resonator. The lowddt,,; resonance of the rameters:, €, ande. for a 3-D problem, for given resolution
cavity without the dielectric piece occurs at 5.827 GHz. The reR, cell shape parametef, andZ., and Courant-coefficient



588

function [ex, ey, ez]=cmp3D (R, Zy, Zz, q);

% Jaakko Juntunen 20.9.1999.

Amax =
pi/(3*R*asin(sin(pi/(R*sqrt(3)))/sqrt(3)));

Q = Amax - 1;

K1 = pi/(R*sqrt(1 + 1/Zy"2 + 1/Zz"2));

a = sin(K1/(1 - Q/2))"2/(zy"2*sin(K1/((1 -
QI2)*2y))"2);

b = sin(K1/(1 - Q/2))"2/(zz"2*sin(K1/((1 -
QI2)*Z2))"2);

K2 = sgrt(1 + a*Zy"2 + b*Zz"2);

ex = K2/(K1*qg*sgrt(a*b))*asin(g*sin(K1/(1 -

Q/2))IK2);
ey = a*ex;
ez = b*ex;
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