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Reduction of Numerical Dispersion in FDTD
Method Through Artificial Anisotropy

Jaakko S. Juntunen and Theodoros D. Tsiboukis, Member, IEEE

Abstract—In this paper, a simple and computationally low-cost
modification of the standard finite-difference time-domain (FDTD)
algorithm is presented to reduce numerical dispersion in the algo-
rithm. Both two- and three-dimensional cases are considered. It is
shown that the maximum error in phase velocity can be reduced by
a factor of 2–7, depending on the shape of the FDTD cell. Although
the reduction procedure is optimal for only single frequency, nu-
merical examples show that the proposed method can also improve
the accuracy significantly in wide-band inhomogeneous problems.

Index Terms—FDTD method, numerical dispersion.

I. INTRODUCTION

NUMERICAL dispersion is an undesired nonphysical
effect inherently present in the finite-difference time-do-

main (FDTD) algorithm. In short, numerical dispersion means
dependence of wave propagation velocity on frequency. Herein,
we also include in the term the dependence of velocity on
propagation direction. The latter is sometimes called numerical
anisotropy. In qualitative terms, dispersion causes distortion
of waveforms. Frequency dependence causes high-frequency
content of a wave to lag, while direction dependence causes
spherical waveforms to become slightly cubical.

There are several problems associated with numerical disper-
sion. First, it causes cumulative phase error. If a device is based
on phase cancellation, even an apparently small error in wave
propagation velocity may cumulate phase error to unacceptable
amounts. Equivalently, phase error appears as mislocation of
resonances in the frequency domain. Sometimes, it is possible
to pre-estimate the effect of the dispersion error, and use the es-
timation to choose proper spatial resolution for the problem [1].
In some cases, the numerical dispersion can be eliminated in
post-processing [2]. This elimination is rarely possible since it
is based on the assumption that there are waves propagating in
only one direction.

Another possible trouble with the numerical dispersion is
nonphysical refraction [3]. If the cell shape varies over the
grid, a wave experiences different numerical dispersion in
different parts of the grid. This corresponds to inhomogeneous
medium, and refraction takes place. In some problems, it is
indeed necessary to vary the cell shape quite dramatically, e.g.,
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in [4], the width-to-length ratio of a two–dimensional (2-D)
cell varies a factor of 12.5.

A different FDTD algorithm is proposed in [5], which is
equivalent to the so-called symmetrical-condensed-node trans-
mission-line matrix method (SCN–TLM). The dispersion errors
in SCN–TLM are less than in the standard FDTD technique
[6], [7]. A distinct disadvantage of the SCN–TLM formulation
though, is the need of extensive memory requirements as
opposed to the standard FDTD implementation. Another possi-
bility is to use fourth-order spatial differencing in the algorithm
[8]. However, associated problems are encountered as more
smoothness is assumed from the field quantities, especially on
the material boundaries.

The present reduction method is based on carefully speeding
up the wave propagation by introducing anisotropy parameters
into the algorithm. A detailed Fourier-mode analysis is given for
the determination of the optimal anisotropy parameters. Several
simulation examples confirm the theory. Wide-band problems
are also discussed.

II. NUMERICAL DISPERSIONRELATION IN 2-D

Let us consider electrically anisotropic medium in 2-D and
the TE mode. Let the relative permittivity tensor be diagonal,
i.e., . The stability condition of the FDTD
algorithm for this problem is

(1)

Here, is the speed of light in free space. The derivation of the
dispersion relation is canonical. A wave is expanded into plane
waves of the form

(2)

and the FDTD update equations are applied to these waves.
The resulting numerical dispersion relation for the TE mode

is

(3)
The TM mode does not “see” the electric anisotropy. The dual
situation can be obtained by replacing the relative permittivities
by relative permeabilities.

In (3), we write the numerical wave vector as
, where is the numerical wavenumber and
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is the angle between the propagation direction and positive
-axis. The dispersion characteristics of the FDTD grid are ex-

pressed in a clear way by plotting for each frequency the velocity
of a plane wave in the grid versus the angle.

Let us now express (3) in a form that is independent of phys-
ical dimensions. For this, let us introduce a parameter that de-
fines the shape of a single FDTD cell

(4)

Furthermore, we define a spatial resolution coefficient that re-
lates the wavelength and cell dimensions

(5)

where is the wavelength in the vacuum (not in the
numerical grid). Let us also define a Courant coefficient
in accordance with (1)

(6)

Using (4) and (6)

(7)

and using (4) and (5)

(8)

Since , we get from (7) and (8)

(9)

Let us denote by the wavelength in the grid and write
. Using (8), we have .

The interesting quantity is the relative numerical velocity
, where is the propagation velocity in the

grid. Therefore, we finally write

(10)

Substituting (4)–(10) into (3) yields the dimensionless numer-
ical dispersion relation

(11)

Fig. 1. Relative numerical velocity.Z = 2, R = 10, q = 0:99.

Fig. 2. Relative numerical velocity after correction.Z = 2, R = 10, q =

0:99, " = 1:002717, " = 0:982972.

The numerical solution of (11) for is rather straightforward
for a given set of parameters, , , , , and .

III. D ISPERSIONREDUCTION IN 2-D THROUGH AND

Our purpose is to find parameters and such that will
be close to one for all propagation directions. Fig. 1 illustrates
the solution from (11) for a typical case with ,

, , and . Fig. 2 illustrates the solu-
tion of (11) for the same case, except anisotropy parameters

and are used. The maximum
dispersion error is reduced from 1.1% to 0.22%.

In [8, Sec. 5.7], a kind of optimization is presented for a
square cell. There, a correction coefficient is introduced to com-
pensate the effect of choosing , whereas the more domi-
nant effect of the cell shape is not discussed.

To find the correction parameter values, we start by deter-
mining the values of and that yield along the
coordinate directions and . Setting ,
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Fig. 3. Relative numerical velocity after partial correction.Z = 2, R = 10,
q = 0:99, " = 0:998551, " = 0:978969.

and solving for in the right-hand side (RHS) of (11)
gives

(12)

Similarly, setting , and solving now for gives

(13)

Dividing (12) by (13) leads to

(14)

Solving (14) for , then inserting the result into (12), and
solving for yields

(15)

can then be easily found from (14). For the model problem
( , , ), we obtain and

. Fig. 3 illustrates the corresponding .
We see that the curve in Fig. 3 is symmetric and has a max-

imum at . This is not a coincidence, but true in general.
The strategy is to determine the maximum deviation offrom

Fig. 4. Monitoring surfaces for measuring the wave propagation velocity in a
simulation.

unity at this stage (about 0.0042 in Fig. 3) and to redefineand
to slow down the wave velocity by half of that maximum.
The key to the last step is that the maximum of (after

tuning ideal propagation along coordinate directions)does not
depend much on and not at all on . This appears to be due
to the “lucky” choice of in units of diagonal length of the
cell. Thus, we find a good approximation of the maximum of

by choosing in (11), (14), and (15). Setting then
in (11) gives

(16)

Thus, the maximum deviation of from unity is now
. Setting along axial directions, as

in (12)–(15), yields the optimal parameter valuesand . A
short Matlab-code cmp2D.m is found in the Appendix for de-
termination of the optimal parameters. We will refer to a simu-
lation with the correction parameters as the “corrected FDTD.”

IV. V ERIFICATION OF THECORRECTION IN2-D

To verify the predictions of the previous sections, a single
-component is excited in the middle of a TE structure. To

measure the wave propagation velocity in the simulation, two
rectangular “monitoring surfaces” are defined, as shown in
Fig. 4. The program looks for the time instants during which the

th maximum of the incident wave reaches an inner monitoring
point at and the corresponding outer monitoring point at

. Knowing the traveled distance and time, velocity can be
calculated.

Fig. 5 illustrates the effect of the correction in an actual sim-
ulation. A thin cell and coarse resolution is used here ( ,

, ), and a reduction of maximum dispersion error
from over 7% to less than 1% is obtained. This represents a case
that is close to the practical limits of the standard FDTD method
in terms of cell shape and resolution.

V. NUMERICAL DISPERSIONRELATION IN 3-D

In this section, the full three–dimensional (3-D) problem is
discussed. Let us consider a material that is both magnetically
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Fig. 5. Relative numerical velocity curves from simulations: standard FDTD
(solid line) and corrected FDTD (dashed line).Z = 5,R = 5, q = 0:99.

and electrically anisotropic: ,
. Recall that a Fourier mode

(17)

is an eigenfunction of the finite-differential operators used in the
FDTD

(18)

where stands for , , or . Using (18), we can write the nu-
merical Maxwell’s equations into form

(19)

(20)

where

(21)

Combining (19) and (20), must satisfy an eigenvalue problem

(22)

In general, has two different nonzero eigen-
values. However, if , (22) has a double eigenvalue

, and the dispersion
relation reads

(23)

or

(24)

The corresponding stability criterion is

(25)

Let us again define dimensionless parameters

(26)

and a Courant coefficient such that (25) holds. After a
little algebra, as in Section II, we end up with a dimensionless
dispersion relation

(27)

where and are the polar and azimuth angles, respectively,
of the wave propagation direction, andis again the ratio of
numerical to ideal velocity in that direction.

VI. DISPERSIONREDUCTION IN 3-D THROUGH , , AND

The procedure for finding the proper correction parameters is
similar to that in Section III. A short Matlab-code cmp3D.m is
found in the Appendix for that purpose. One has to remember
to use the same parameters in the permeability tensor also. For
“needle”-type cells ( and both large), the solution of (27)
with and without correction predicts that the maximum disper-
sion error will be reduced by a factor of about seven. However,
typical values for the reduction factor are 2–5.

VII. V ERIFICATION OF THECORRECTION IN3-D

To verify the predicted correction, a single -component
is excited in the origin to represent a point magnetic dipole
source. In Fig. 6, the phase velocities from actual simulations
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Fig. 6. Comparison of corrected and uncorrected simulated phase velocity to
the ideal physical phase velocity. ProblemZ = 1:5, Z = 3, R = 5 and
monitoring surfaces parallel toyz-plane are considered.

are compared, with and without correction. The monitoring sur-
faces are parallel to the -plane. Clearly, the dispersion error
is again reduced significantly. A coarse resolution and a
“brick”-type cell shape are used.
For propagation along other directions than indicated in Fig. 6,
the corrected dispersion error remains within1%, while the
dispersion error without correction reaches4%.

VIII. W IDE-BAND PROBLEMS

Since one of the key advantages of the FDTD method is the
possibility to perform wide-band simulations, it is clearly a dis-
advantage of the proposed correction method that it is optimal
for only one frequency. However, due to other advantages,
FDTD is sometimes used in single-frequency problems, e.g.,
[4].

Fortunately, investigating the dispersion relation (27) with
fixed correction parameters and varying resolution, one finds
that the dispersion reduction is almost optimal in a reasonable
band around the value used for designing the correction pa-
rameters. The following descriptive conclusions can be made.

• For frequencies higher than (= design frequency for the
correction parameters) the maximum dispersion error is
always less than in standard FDTD.

• With very low frequencies, the reduction is not of much
use since the dispersion is very small anyway.

Experiments suggest using correction parameters, which cor-
respond to thelowest frequency of the band, not the central
frequency. If the band starts from dc, one could consider stan-
dard FDTD for the lowest subband and corrected FDTD for
the higher subbands. This implies two separate simulations for
the same problem, but these are totally independent and can be
performed simultaneously using two processors. With one pro-
cessor though, double simulation time is needed, but the overall
saving can still be high. In Section IX, two wide-band prob-
lems are discussed. Quite often, we are interested in only rela-
tive narrow frequency bands where the reduction scheme can be
used alone.

Fig. 7. Inhomogeneous infinite waveguide structure modeled in example 1.

IX. SIMULATION TESTS WITHINHOMOGENEOUSPROBLEMS

If there are only different isotropic dielectrics and perfect con-
ductors present, the proposed correction can be easily extended
to an inhomogeneous problem. A different set of anisotropy pa-
rameters is designed for each dielectric. In the material inter-
faces, all parameter values are averaged, as proposed in [9].

Here, we consider two inhomogeneous wide-band exam-
ples. The first example is a 3-D waveguide filled with three
dielectrics: dielectric-1 (vacuum) for cm ,
dielectric-2 ( ) for cm and dielectric-3
( ) for cm (Fig. 7). The dimensions
of the cross section of the waveguide are cm and

cm. To model the infinite ends, generalized 20-layer
perfectly matched layer (PML) absorbing boundary conditions
are used, especially suitable for anisotropic problems [10]. The
cell dimensions used are cm, cm, and

cm. The -direction is along the waveguide axis.
A modulated Gaussian pulse in mode is launched at

the input plane at cm. The pulse contains approximately
the frequency range from 5.2 to 7.5 GHz. The excitation is sep-
arated from the field interactions [11]. The -component of
the wave is recorded in the middle of the cross section of the
waveguide at cm. The anisotropy parameters are opti-
mized to frequency GHz ( in the vacuum,

in the dielectric-2, and in the dielec-
tric-3) as follows:

for vacuum

for dielectric-2

for dielectric-3

in all calculations. In the dielectrics, the Courant co-
efficient is not knowna priori (since only in vacuum is
chosen), but is needed in the evaluation of the anisotropy pa-
rameters. For that purpose, a good enough approximation of
is .
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Fig. 8. jS j parameter of the structure in Fig. 7. The dispersion reduction
parameters are optimized forf = 5:2GHz. Standard FDTD (� � � � � �), corrected
FDTD (- - - -), and exact solution (—).

Fig. 9. Inhomogeneous cavity modeled in example 2.

The parameter is computed. The exact solution is

(28)

Here, is the propagation constant of the waveguide filled with
the dielectric-2, is the thickness of the dielectric-2 (6 cm),
and , where is the characterisitc
impedance of the mode of the waveguide filled with the
dielectric- .

Fig. 8 presents the results. Standard FDTD mislocates the
main resonance peak68 MHz and 2.7 dB. Using the cor-
rection, the peak is mislocated only4 MHz and 0.7 dB. The
conclusion is that, especially around the main resonance, the
correction improves the results significantly, even more than ex-
pected. A qualitative explanation for that is that, for the cor-
rected FDTD, the dispersion error is well balanced, i.e., the
waves will propagate a bit too slowly toward some directions
and a bit too fast toward some others, and an advantageous av-
eraging takes place.

The second example is an inhomogeneous cavity shown in
Fig. 9. The dielectric piece ( ) represents a tuning ele-
ment of the cavity resonator. The lowest resonance of the
cavity without the dielectric piece occurs at 5.827 GHz. The ref-

erence resonance frequency for the cavity with the dielectric is
found using a standard FDTD and a dense mesh having 4040

40 cells, corresponding resolutions in the vacuum
and in the dielectric. The cavity is excited by a point
source having a Gaussian time variation, and the-component
is recorded. The reference resonance is found to be 5.584 GHz.
For the comparisons, we use standard FDTD in 1010 10
and 20 20 20 meshes, and corrected FDTD in a 1010
10 mesh. The reduction is optimized to 5.0 GHz (
in the vacuum and in the dielectric), giving the fol-
lowing compensation parameter values:

for vacuum

for dielectric

The standard FDTD with a 10 10 10 mesh gives
5.557 GHz ( 27 MHz compared to the reference solution),
while the corrected FDTD gives 5.580 GHz (4 MHz). The
standard FDTD with a 20 20 20 mesh gives 5.578 GHz
( 6 MHz). Hence, corrected FDTD in a coarse mesh gives
about the same result than standard FDTD in a dense mesh
having eight times more cells and using 16 times more central
processing unit (CPU) time.

X. CONCLUSIONS

This paper introduces a simple correction procedure for re-
duction of the numerical dispersion in the FDTD algorithm.
Compared to the standard algorithm, the method does not in-
troduce any additional computational cost and requires only a
modest amount of reprogramming. However, the method can
be of high value in problems where the numerical dispersion
is expected to play a major role. It is demonstrated through sev-
eral examples that even though the correction is optimal only for
a single frequency, the method can still yield significantly im-
proved performance in wide-band inhomogeneous problems.

APPENDIX

Matlab-code cmp2D.m evaluates the optimal anisotropy pa-
rameters and for a 2-D problem, for given resolution,
cell shape , and Courant-coefficient

function [ex, ey]=cmp2D(R, Z, q);

% Jaakko Juntunen 20.9.1999.

Amax =

pi/(2*R*asin(sin(pi/(R*sqrt(2)))/sqrt(2)));

Q = Amax - 1;

a = sin(pi/((1 - Q/2)*R*sqrt(1 + Z^2)));

b = sin(pi*Z/((1 - Q/2)*R*sqrt(1 + Z^2)));

ey = R^2*(1 + Z^2)/(pi*q*Z)^2*(1 +

b^2/a^2)*asin(q*a*b/sqrt(a^2 + b^2))^2;

ex = Z^2*a^2/b^2*ey;

Matlab-code cmp3D.m evaluates the optimal anisotropy pa-
rameters , and for a 3-D problem, for given resolution

, cell shape parameters and , and Courant-coefficient
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function [ex, ey, ez]=cmp3D (R, Zy, Zz, q);

% Jaakko Juntunen 20.9.1999.

Amax =

pi/(3*R*asin(sin(pi/(R*sqrt(3)))/sqrt(3)));

Q = Amax - 1;

K1 = pi/(R*sqrt(1 + 1/Zy^2 + 1/Zz^2));

a = sin(K1/(1 - Q/2))^2/(Zy^2*sin(K1/((1 -

Q/2)*Zy))^2);

b = sin(K1/(1 - Q/2))^2/(Zz^2*sin(K1/((1 -

Q/2)*Zz))^2);

K2 = sqrt(1 + a*Zy^2 + b*Zz^2);

ex = K2/(K1*q*sqrt(a*b))*asin(q*sin(K1/(1 -

Q/2))/K2);

ey = a*ex;

ez = b*ex;
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