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Modal Analysis of Discontinuities Between
Elliptical Waveguides
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Abstract—Elliptical waveguides are currently finding appli-
cations in several components as corrugated horns, cavities for
dual-mode filters and feeds for reflector antennas since they
provide improved flexibility, better manufacturability, and higher
Q with respect to either circular or rectangular waveguides.
Efficient computer-aided design of components involving elliptical
waveguides requires rapid evaluation of the scattering parameters
at the discontinuities. To this end, we derive analytical formulas
for full-wave study of a general junction between two elliptical
waveguides and the relative specialization to the case of a junction
between a circular and concentrical elliptical waveguide of larger
cross section. With respect to current approaches, which are Waveguide 1
generally based on the numerical evaluation of the coupling
integrals, the proposed analytical formulas allow to achieve a
significant reduction of computer time. Results have been tested
against published data and have also been compared with data Fig. 1. General junction between two elliptical waveguides. Note that, for
obtained by numerical evaluation of the coupling integrals; in all the modal expansion, we use a different elliptical coordinate system for each

cases, an almost perfect agreement has been observed. waveguide. The waveguide and related elliptical coordinate system have the
same semifocal length.

Index Terms—Elliptical waveguide, mode matching, waveguide
discontinuities.

functions, which are the natural expansions for circular waveg-
uides. Moreover, when a high accuracy is required, such as in
|. INTRODUCTION the case of design of narrow-band filters, a considerable number

. . C of modes should be considered; unfortunately, in this approach,
Elliptical waveguides have recently found application in a va- L .
warranty is given on the accuracy of the computed higher

. . . no
riety of microwave components: their use has been proposed

y P prop rder modes.
In this paper, we present the detailed derivation of some ana-

for dual-mode filters [1], as low sensitivity irises, as wide-ban
transmission lines, etc. Waveguide discontinuities involving ql— . o .
h%tlcal formulas for modal coupling integrals evaluation for the
eneral junction between two elliptical waveguides (see Fig. 1).

liptical structures have received limited attention thus far: t
case of a junction between two confocal elliptical waveguid g - . . S
‘e provide an explicit analytical solution of the coupling inte-

has been considered in [2], the general step discontinuity beré\ls appeared in [3] which, as discussed later, allow a signifi-
tween two elliptical waveguides has been studied in [3], whif& PP ' ' 9

the problem of the junction between rectangular and eIIiptic%iint reduction of computing time. These formulas can be spe-

X : i L ; Clalized to the particular case of the junction between a circular
waveguides has been considered in [4] and [5]; junctions bé- L . o :

) o . . and an elliptical waveguide of larger cross section; moreover, in
tween concentrical elliptical and circular waveguides have begn

. : i : . “this case, it is also possible to obtain a single-term expression
investigated in [5] for the cross section of the circular waveguige ) - . )
- o : : . for the coupling coefficients that does not require computation
enclosing that of the elliptical waveguide. A different technique ; :
f Mathieu functions.

that approxmate the boundary conquns_ by a set of .smusou?.alln Section Il, we present the theoretical evaluation of the cou-
functions has been proposed in [6]. Elliptical waveguides radi-. - o .
ling coefficients for the case of two elliptical waveguides. In

ating into free space have been considered in [7] and [8], wh %ction Ill, we specialize the results to the case of the junction

a transition between a rectangular waveguide and an e"ipti%atween a circular and an elliptical waveguide. Finally, in Sec-

one radiating into a half-space was studied. Recently, in [2] a d .
[5], the modal coupling coefficients have been obtained by an{:'iqn .IV’ we compare the resuilts of the proposed approach with
blished and reference data.

lytical formulas. The approach proposed in [6] results in beirlogu
convenient for modest values of the eccentricity since it approxi-
mate the field in the elliptical waveguide by means of sinusoidal

A. Modal Analysis in Elliptical Waveguides

Il. THEORY

Modal analysis of the step discontinuity between two el-
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(i.e., E. or H.) in an elliptical waveguide of semifocal lengthB. Change of Coordinates
p can be written as a product of Mathieu functidns, s¢) and
modified Mathieu functiongCe, Se).

In order to introduce notation, we denote (see Fig. 1)ob

For the evaluation of the coupling integrals of the general step
between two elliptical waveguides, it is expedient to use only
the elliptical coordinate system of the waveguide with smaller
the semlfocal length of thith waveguide (wheré = 1,2), & cross section; hence, we write the potential of waveguide 1 in

hi = piK:” (whereK(” is t(he cutoff wavenumber of ch the elliptical coordinate system used for waveguide 2.
Wavegwde) The parametﬁ is chosen to satisfy boundary To this end, we apply the following procedure.

conditions for TE or TM modes. Accordingly, the potentials are

written interms of even and odd solutions of the Helmholtz equa- 1 Wg EXpress the moda_l f.unct|on O.f the larger wave-
tion, shown in (1) and (2), at the bottom of this page [9], [10]. In guide (written in the_ elllppcal coordinate system 1) in
the above formulas, the symbas referred to TM modes, while plane-wave expansions -in _the rectangular coordinate
the symbol” is referred to TE modes, superscriptandO are system of guide 1 (see Sect|or_1 ”'B.'l)'

referred to even and odd functions, respectively, the indsese- 2) The plane waves are how rew_rltten In terms O.f the rectan-
ferred to theth waveguide, ang(” andy(?) are the radial and an- gular coordinate system of guide 2 (see Section |I-B.2).
gular coordinates, respectively, of an elliptical coordinate system 3) we nowiegpand' each of Fhe abovg .plane waves in terms
of semifocal lengty = p;. Moreover,; is the normalization of the.elllptlcal eigenfunction pe:rtammg to the (elliptical)
constant ands )é is the cutoff wavenumber of the mode in the coordinate system 2 (see Section I1-B.3).

ith waveguide. FinallyrMZ . andTEfm are the even modes, The above procedure is illustrated in detail in the following sec-
while TMO andTEO are the odd modes. tions and the modes of guide 1 are expanded in the eigenfunc-

For future use, itis expedientto express the Mathieu funcnoﬂ}gns ofthe elliptical coordinate system 2 in Section 1I-B.4, with

e relative expansion coefficients given in Section 1I-B.5.
appearing in (1) and (2) by considering the following tngono—
metric expansions: 1) Plane-Wave Expansions of Modes in Guidellsing the

relations [10] and [11, p. 1422, eq. (11.2.95)]
CComtnp Py 1) Z A;?g:i:ﬁ) cos [(27’ + np)n}

{ Ce?nn +npy (plkca 5(1)) CC2my +np, (plkca 77(1)) }

(2m+4np) . X
862m+np (h,m) Z By, 2rnp S [(27 + ”P)W}- (3 SCamy 4np (plkc,ﬁ(l)) S€2my +np (Plkc,n(l))

In the above equauonsz =1,2,3,---, np = 0,1 and the _ m e[y cos utyy sin u]
series expansion coefficientsand B are calculated as in ([11, ot R Jo ¢
pp. 55;—567]) and normah;ed asin ([11, p. 1568)), i.e., « { CC2my 4rpr (P1Kc, 1) } du ©)
m—4n m—4n m1+npy kC7 ’
Z A§L2,2r—|-|——n:;))) =1 2(27) + np)Bl(ering) =1 (4) FCmatnp (pl U)
r=0 =0

By using the same expansion coefficiedtand 3, we can also ) ) )
express the modified Mathieu functions in terms of Bessel func-Here. the pointz,, 1) in rectangular coordinates translates

tions as in a point (¢, 7W) in elliptical coordinates of semifocal
e length p;.
Cegmanp(h, &) = \/jZ(—l)”_m 2) Plane Waves in Rectangular Coordinate System
r=0 2. Equation (6) can be written in terms of the rectangular
A;f;’:iz? Jornp(h cosh &) coordinate system of guide 2, changing the coordinate system
- oo of the plane wave (see Fig. 2), i.e.,
Seamsnp(hs€) =[5 tanh(©) S (-1
r=0
x (2r + ﬂp)Bi(f;fiZf)) Jorqnp(hcosh). gIkelrr cosutyrsinu] — jker, cos(u—1b,)
(5) x ejkC |:.’L‘2 cos(u—1, )ty sin(’u,—u"}o)] ) (7)

2B/0 5 N;Ce,, ( ;EZ?éEaS(i)) CCn; ( K;L(Z)éEaU(Z)) = TM

1/);(7-,)&- (5( ) N,Sen, (p /(Z)O S(i)) Sen, ( K’(Z)O ) ) = TMni D @
o oy N (pRLE €O ) (B0 TEE

AT (E00) = e é 53 . § 3 e, ?
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4) Modes in Guide 1 Expanded in Eigenfunctions of Ellip-
tical Coordinate System 2Inserting (8) in (7) and (7) in (6)

{0627711-1—71171 (plkcag(l)) CC2my +npy (plkcan(l)) }
SCanl-i—npl (plkcvg(l)) SC2m4np; (plkcvn(l))

= i Z (_1)nl—nll+np(l—np1)

m=0 np=0

(i) o o

X 662m+np(p2 ke, 77(2))

Affi "

' ) ) o ) P (2)

Fig. 2. Coordinate systems on the discontinuity plane. Due to the generality + { Se?m'i'"l’( ake, & )

of the discontinuity, the coordinate system 2 (related to waveguide 2) is rotated o

(¢, ) and translateér,, ¢, ) with respect to the coordinate system 1 (related to 2

Wav)eguide 1). d X S€2am4np p?kc7 77( ) (11)

where theA coefficients are defined as
3) Plane Waves in Terms of Elliptical Eigenfunc-

ee 4 —NPo 27
tions: According to [10] and ([11, p. 1422, eq. (11.2.94)], the {A"; np } = E‘]—p/ eikero cos(u—1,)
plane waves in (7) can be written as A T My np(P2FC)
% { CC2my +npy (plkcv U’) }
$C2my+npy (pl km U’)
X 662m+np(p2kca U — 1/)0) du (12)

ke [wa cos(u—po) Fun sin(u—1,)]
00 1
— \/g Z Z jan—l—np

— 27
m=0 np=0 { Af’,‘l) np } _ J Po / ejcho cos(u—1,)
% CCQm-l—np(ka'ca U — "‘/)o) A(r)r(z) np 7TM29n+np(P2/€c) 0
E
M2m+np(p2k6) % { CC2my4npy (plkcv U') }

(&

8€2my+np (P1Ec, U
X Ce?nl-l-np (p?kcv 5(2)) CC2m+np (p2k07 77(2)) X S€3 ’ l—zpzlk(p];j, ”(/)) )dU/ (13)
m4+np c,y W™ Yo
+ 362nz+np(p2kcv U — 1/10)] Wlth
M29n+np(p2kc) _ O7 if npy =np
P =1 1, if npy # np.

X Se?rn—l—np (p?kc7£(2)> SC2m+4np (kacﬂ?(Q)) } -
The A coefficients can be evaluated in closed form, as will be
(8) show in the following section.
5) A Coefficients in Closed FormThe integrals appearing
The point(z2, y2) in rectangular coordinates translates in @ (12) and (13) can be evaluated in closed form. As an example,
point(¢@, ») in elliptical coordinates of semifocal length, ~ we solve the case foxse . As afirst step, we write the product

while [accordingly with (3)] CC2my 4npy (p1ke, u)062m+np(p2kc, u — 1, ) assin andcos ex-

o pansion (Fourier expansion). To this end, with the aid of (3), we
M0 = [ leernap ) dn write

Z (2 + ) CC2my, —|—np1 (pl kca U’)CCQWL—I—NP(kaCa U — 1/}0)

=7 ‘ I, g: +7:Lp 21 +np (9) (le +np1) _ipu
: :‘Z[ Ap ol p}@”)

27 2 A@manp) 0p, |  —jpu
MQ?n-I—nP(h) :/ |362m,+n17(ha77)|2d77 x [Z |:6|[|Ah ll e’ :| e (14)

0 =—00

(10) The above equation canbe seenasaproductofthe discrete Fourier
transform (DFT) ofthe discrete sequences in square brackets; this

> 2
_ (2m+4np)
=[BT
r=0 .
mean that the entire product can be seen as the DFT of the convo-

where lution C*<[¢] of the above discrete sequences, i.e.,

o { vz, ifi=0

" L, otherwise CC2my +npy (Pl ke, U)062m+np(P2kc7 w— z/)o)
and theMs,, .. (h), M3}, ., (k) are the normalization con- _1 i C*[qle=P"  (15)
stants of the Mathieu functions. 4

q=—o00
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where the convolutiof¢¢[¢] is defined as

}ﬁ%

oo

C“fl= 3 |Fir

T=—00

A(anl-l—npl)

@mAnp) jrido
h,lq—7| A

k|7

]

(16)

The above equation can be conveniently separated into
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while theC coefficients can be evaluated as follows:

(- = )

Creldl Y
Y
X [efQT ]
]

Crmld]

Im

cos [(27 + np)
sin [(27 + np)

)

(2mi+npy)
hi,lg—27—np|

bo]

(2m—+np)

iL, |27 4+np|
2

X |2 A (21)

real

and imaginary part, as illustrated in (21). The following Fourier

expansion can be obtained:

CC2my +np; (pl k'c; u)ce2m+np(p2km U — Z/)o)

i CRe[2q9 + npo] cos[(

2 2q + np, )]
2q+np,

2
q=0

+ Y Cal2q+ npo]sin[(2q + np, Ju]
g=l—np,

] |

(17)

Finally, inserting (17) into the first of (12) with the aid of [11,

p. 1371, eq. (11.2.21)], i.e.,

cos(m®,) | Im(kero)
sin(m®,) 27 ™
27
_ ejk,.r,, cos(u—P,) COS(mU') du (18)
o sin(mau)

the first of (19) can be found.

Following the same procedure, all othecoefficients can be
found as follows:

Ase } = ogtnp, (Kero)
(r)ré np — (_1)(1 q Po
{ Arn np ; M£71+np1 (kaC)
o H Crel2q + npo] }
Creal2q + np,]

2 COs [(2(] + npo)d)o]
12¢4np,|

+ OIexfl [2q + npo]
Ce (29 + npo)

Im

}sin [(2q + o))

(19)
Ao } o0 J2q+np (cho)
i e G N
{ Am np q:ZO Mgn-l—n;m (pQ kc)
X{{O&Pq+n%]}
Cfal2q + npo)
1
X ————co0s[(2q + npo)¢o]
6|2(1+npo|
OIex(;l [2q + ﬂpo] .
+&ﬁmwm sin [(2q + np,) o]
(20)

oo
ORe
Ceo

I m

cos [(27 + np)

sin [(27 + np)

|

(2nll+np1)
h1 Jg—27—np|

}

o]
o)

{}_{

2T+np
[27 +np]
27 —np

}

(an-i—np)
h J274+np|
(22)
[Iq — 27 — np| }

€O
CRe
o

Tm

—sin [(27 + np)y,]
cos [(27 + np)t,)

27 4+ np
27 + np|
(2"ll+nP1)

h1,|(1—2T—MJ|

{

a2
XL

X [elq 27—np|

[q
[q
(Qnr,—l—np)

h |27 4np|

(23)

|
}

oo

> 1

T=—

Creld]
Craldl

Im

—sin [(27 + np)i,]
cos [(27’ + np)z/)o]

)

(2myi+np1)
hi,|lq—27—np|

el

(2m—+np)
h,|274np|
q—2r —np

2
X |:C|2‘r—|—np|
>< {

Note that the formulas of (11), specialized for= KS:)[1 ,
provide the expression of the modal fields in the Iarge’r wave-
guide (waveguide 1) in terms of the coordinate system of the
waveguide of smaller cross section (waveguide 2). Equation
(11) is the basis for the closed-form evaluation of the modal cou-
pling coefficients considered in the following section.

=2 P

(24)

C. Coupling Integrals
The generic coupling integral is defined as

%:L#uﬁm (25)

where S, is the cross section of the elliptical waveguidep?2,
stands for a particulaty, ¢, or”, E or O combination, while

g stands for a particulans, £, or”/, E or O combination.
Using (1), (2), and (11), we can solve the coupling integral (25)
in elliptical coordinate of semifocal lenggh. In this coordinate
system, the boundary of; is described by a single coordinate
¢®@ = ¢{? (see Fig. 2) and the following formulas hold.
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(LHE/O (2E
For TM modes ™~ 2mitnpit 2ma+nps Lz
WE/O ()0

2mi+np1,l1 2ma+npz L2

~ 2
N1N27T2h2 d Ce?mz-l'npz (h27£(() ))
]AY’Q - h% d£ Se?rnz +np2 (h27 £(§2))

oo

% Z (_1)rnfrnl+np2(lfnp1)

m=0

9p.q =

_A$ﬁ$26bmn+npz(h (”)

eo/oo (2
Arn /np2 Se?rn+np2 (h7 50 ))
(2ma4np2) 4(2mz+nps) 2

« Z h,2r4npy ~ he,2rdmps 2rtnpy (26)
(2nl+np2)B(2n12 +np2) .

h 2r+npg ha,2r+nps
(LE/O _ TRRE

2my+npr i 2ma+npz, L2
For TE modes (DE/O B (90

2my+npr, 6 2mg+npz,fz

2
N1N27T2h% Ce?mz-l—npz (h27 (() ))
gp,q = T 5 74
h’% - h? Se?mz-l—npz (h27 562))

% Z (_1)nl—nll+np2(l—np1)

d A:;/TL;Q Ce?rn—l—npg (h 6(2))

X _
d£ A:r(l)/rf](;z Se?rn—l—npz (h 6(2))
A(an—l—npz)A(anz +np2) 2

» Z b 2rdnps ©he,2r4nps Grtnps 27
(2m+nP2)B(2mz +nps) :

TABLE |
TE(Z)E TE(?)O TM(Z)E TM(2)O
TEWE X [¢] 0 0
TEMO 0 X 0 0
TMME 0 X X 0
TMIO X 0 0 X

D. Concentrical Elliptical Waveguides

In the particular case of concentrical waveguid¢es = 0),
by taking advantage of the fact that

Jamz{a o (30)

we obtain from (19) and (20) the following relations:

A€€/O€ AO@/OO — 0’

m,np m,np

if np # npy. (31)

The above equation states that, fgr; # np2, the modes in
waveguide 1 with first inde2m; + np; are not coupled with
the mode in waveguide 2 havirdgns + np2 as a first index.
Moreover, if the two waveguides are concetriggl = 0) and
collinear (i.e., with the axes in the same directigp,= 0), the
following useful expressions for the relevant coefficients hold:

Aco — ACe =0

m,np m,np
X ho 2rdn oo (2m4np) 4(2mi4np1) 2
h 2r+4nps 2,2r+nps e _ E1‘=0 Aﬂ 2tnp Ahl,2r+np € tnp
In the case of TM modes in waveguide 1 and TE in - M3y (h)
waveguide 2 = if np = np;
(LHE/O (DE [=S) BEan-I—np) (2mi+np1)
TMQ(T)I};'—/(L)])I U1 TEQ(ZL)Z(;—nw,Zz A% — 2 h,2r4np " h1,2r4np
m,np O 2
M2n11+’np1 £y Eng-l—np,éz Man-I—np(h’)
= if np = np;
2 .
| ~Cermarnps (h2 e A =A% =0 = if np £ npy. 32)
Ip,g = N1Nom @
562n12+np2 (h?v 0 )
o From the above equations, it is verified that, for collinear

% Z (_1)771,—771,1 +npa(1—np1)

m=0
fr?/rf;ZSegm_i_npz (h 5(2))

A Cenminp, (R 657)
B(an—l—npz) (27712 —|—np2) }

=)
fL,QT—l—npz ho,2r4npo
X 122;) 27 +np {A(2m,+np2)B(2m,2+np2)

iL,Q’I‘-i—an ha,2r4+nps

waveguides, several coefficients vanish, as illustrated in Table |,
where the “X™ denotes a nonzero coefficient (faw; = nps).

In the case of confocal waveguides, it is noted that the above
formulas specialize to the results presented in [2].

I1l. JUNCTION BETWEEN THE ELLIPTICAL AND CIRCULAR
WAVEGUIDES

By considering the circular waveguide as a limiting case of

28 o . . .
(28) an elliptical waveguide, several useful relationships can be ob-

tained, as reported in the Appendix. By using the latter expres-
sions, we can specialize (26)—(29) in order to evaluate in a closed
form the coupling integrals arising when considering the junc-
Ip.q = 0. (29)  tion between concentrical elliptical and circular waveguides.

With the aid of (9) (10), (32), and (41)—(46), we can write
(26)—(29) forp, — 0 as follows.

Finally, in all other cases

Here, h = pQK( )[ ,Whllehg = pQK( )

nyly”
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For TM modes

_TM(C)O

(e)O
™ 2motnp, Lo

(e)E
—-™M 2matnp, L1

(e)E
™ 2motnp,le?

2matnp, L1
2
(—1)”6i7rNk<(;€')
2 2
k_((:e) . k_((:c)
(277?1'1'”1’)

X { Ahl,z

B(anl +np)

h,e

9pq =

}

J! 7
WJ (kff)ro) . (33)

For TE modes

(e)E (e)E (e)O (e)O
TE?mrl-‘nP,él _TEQmZ-HLP,éz ’ TE?mrl“ﬂp,él =T 2motnp,ls
2
(_ 1)V6i ngc) A;i’;ll‘FnP)

9p.q =

ha,é }

J; (ké%o)

J; (kéc)m)

kgc)Q B kge)Q B(Q’rnl—l—np)

7rk<(;€)7’0

(kgc>7,o)2 2

J! (kff)ro) . (34)

In the case of TM modes in elliptical waveguide and TE in

circular waveguide

(e)FE (e)O (e)O (e)E
TM?rnl +np,€1 _TEanz +np,€2? TM?rnl +np.L1 =T 2mo+np.Lo
2mi+n
g — Ahl,; v
.9 _B}QLrln; +np
(C1Nin i (Km0

‘ Ji (kff)ro) . (35)

(k((:c)m)2 2| (kff)ro)

Finally, in all other cases

p,q =0 (36)
wherei = 2ms + np, v = mo — my, and kff) represents
the cutoff wavenumber in elliptical waveguidéf) is the cutoff
wavenumber in circular waveguidd is the normalization con-
stant of the mode in elliptical waveguide, afiglx) is the first
derivative of the Bessel function of order.J,,(x). For the cir-
cular waveguide, theddmodes, are the degenerate of éwen
modes.
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Return Loss

e published data
simulation

L TR TR TR
Freq. (GHz)

Fig. 3. Return loss of the junction between two elliptical waveguides. The
geometrical dimensions are reported (in millimeters) in the inset. Published data
refer to [3] where a numerical evaluation of the coupling integrals was used.

out of the sign of integral, with the aid of (18), we can solve
(6) analytically as follows:

Ceamy +npr (plkc,§(1)> CC2mytnpy (plkcw(l))

o>
o m rdmy 4(2mi4np1)
= ES e ae
r=0

X COS {(27’ + np)(/)}JQT-q-np(/%‘cT) (37)
SCinl-i—npl (pl kcv 5(1)) 5C2my +np1 (pl kcv 77(1)>
s s rm 2mq +np
- \/;Z(_l) * IB/(nk,‘,Qr—fn])?
r=0
X sin {(27’ + np)(/)}J2r+np(/€c7’) (38)

where the pointé™® . »M) in elliptical coordinates of semi-
focal lengthp; translates in a poirit, ¢) in circular coordinates.
Now, by using (37) and (38) in order to represef;lt) and by
using the potential of circular waveguide in order to represent
e'? in (25), we finally obtain the relations (33)—(36).

IV. RESULTS

In order to check the usefulness of the presented formulas,
we have considered several waveguide junctions and compared
the results with published data. In particular, Fig. 3 reports the
reflection coefficient of a junction between two elliptical waveg-
uides and the data published in [3], showing an excellent agree-
ment.

The above formulas, with respect to the case of two concen—ig. 4 illustrates the reflection coefficient relative to the dis-

trical elliptical waveguides, are very useful and simple to undegontinuity between an elliptical waveguide and a concentrical
stand: the sum is vanished and the modified Mathieu functigftcular waveguide of smaller cross section. Results have been

have been replaced by Bessel functions.

obtained by using (33)—(36) relative to the step between con-

~ With considerations analogous to those used for the evalgantrical elliptical and circular waveguides. By considering the
tion of (33)—(36), we can find the coupling integrals in the casgrcular waveguide as a limiting case of the elliptical waveguide,
of the step between a circular and an elliptical waveguide pg | for a very small eccentricity (in our case,= 0.01), it

smaller cross section, i.e., the results published in [5].

A. An Alternative Approach

is also possible to employ, for comparison purposes, (26)—(29)
specialized with the relations of (32) to the concentrical ellip-
tical waveguide case. Moreover, results have also been verified

There is also another way to directly find the relationby performing the numerical integration of the coupling inte-
(33)—(36), i.e., by inserting (3) into (6) and by bringing the surgrals. For the latter, as far as numerical accuracy is concerned,
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o analytical integration (elliptical-elliptical) B [ whithout elliptical matching section
5 F X numerical integration 4 =10 — ]
R L hoNs S 35Tk i
. e N
-20 - - 3 b
g0 , =, ]
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Fig.4. AsinFig. 3, butin this case, the waveguide of smaller cross section ifig. 6. Optimized return loss for the junction between a circular and
circular one. Comparison has been made by analytical formulas and numerregtangular waveguide. Matching is achieved by using two intermediate

integration. sections of elliptical waveguide with dimensions determined by optimization.
:::: ; : :::: abogt three terms in the sums, while in several instances, just
& o | £ : the first Ferm of thg sum §ufﬁces. . '
g s i TEe! 1 - TEe51 The high numerical efficiency of the formulas introduced in
. TEs1,1-TEo11 g “ this study makes them very suitable for practical applications in
- ooy optimization routines where, at each iteration, the geometrical
oo ‘ oore T ‘ dimensions and, therefore, the coupling integrals, are changed.
T T L T L As an example, we have considered the junction between a cir-
o ‘ o8 cular and rectangular waveguide, shown in the inset of Fig. 6.
el : peer T In order to achieve a matched condition in the frequency band
£ s | £ L’z of interest, it is convenient to place a couple of sections of ellip-
RS Ted1- The2 1. |y et Te tical waveguides between the circular and rectangular waveg-
£ o € oo uides. By using a suitable optimization routine, it is possible to
332 7 — : ;f:‘ achieve a fairly good match, as illustrated in Fig. 6, at the cost
L 0z 4 8 o8 0 o of a modest numerical effort.
Fig. 5. Convergence behavior of the sums of (26)—(28) for different mode \/. CONCLUSION

coupling. The modal indexes are reported in the inset; the first one refers to

the mode in the waveguide of larger cross section. A significant rapidity of \We have presented an analytical solution for the efficient com-

convergence is apparent. The same type of convergence is also achieve: i ; : : f— _

concentrical waveguides. ‘bmrer aided de3|gn (CAD)_ o_fjunctlons between elllptlcal_waveg
uides. The coupling coefficients are evaluated by a rapidly con-

vergent sum. Computed results have been compared with pub-

a perfect agreement (up to four decimal digits for the COUp"q%hed data and with other data obtained by numerical integra-

integrals) is noted for all three of the approaches considered,.” .
) . - tion; in all cases, an almost perfect agreement has been observed.
In order to ascertain the numerical efficiency of the propos?ﬁ

owever, the code based on the analytical expression of the cou-
approach, we have developed a code that makes use of the ¢ ’ y P

U- - >
oling integrals expressions reported in [3]. The numerical p r(ﬁng coefficients has proven to be significantly faster than the

formances of this code have been compared with a code t gge based on the numerical evaluation of the coupling integrals.

implements the analytical expressions introduced in this study. APPENDIX

For a single frequency point, the code based on the analytic&lonversion FROMELLIPTICAL TO CIRCULAR COORDINATES

integration is about 40 times faster than the code based on the . ) )

numerical integration: as an example, the case reported in Fig. 3N a@n elliptical coordinate systef, ) of semifocal length

where 80 frequency points have been computed, has requi?eéhe semimajor axis and semiminor axis of an ellipse are

105 s on a PC Pentium Il (200 MHz). given by
Since a summation sign is present in (26)—(28) for the cou-

pling coefficients relative to the junction between two elliptical

wa\{eguides, it is of intere'st to ascertain the convergence I/ fixing the semimajor axis of the ellipse at the vatuwith p
haV|or.of these sums. In' Flg. 5, We_have pilotte'd such converggproaching zero, we note that the elliptical coordigatehich
behavior for the discontinuity considered in Fig. 3; the modaharacterizes the ellipse of semimajor axigoes to infinity and

functions considered are reported in the inset (the first mogig ellipse becomes a circle of radius= @, where [see (39)]
refers to the larger waveguide). From Fig. 5, a noticeable ra-

pidity of convergence is apparent. In the worst cases, we need

a=pcoshé b=psinh&. (39)

7 = lim pcosh& = lim psinh . (40)
p—0 p—0
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Forh — 0, itis easy to demonstrate that (see [10] and [11]) where:i = 2my+np, kff) is the cutoff wavenumber of the mode

lin% Comnp(Phy 1) = cos [(27; + np)ﬁ} (41)
p—)

_ sin [(27’ + np)n}

1i h.n) =
pli)% 362771-1—”27( ’ 77) 2m —+ np

and from (4) and (41)

(2’rn+np) p—0 1 |f rTr=m
Agrinp — {0, if r £m
0 ! if r =
BT 0208 5 I C)
0, if v m.

Inserting (40) and (42) in (5), and remembering that pk.
andtanh(¢) = 1 whené — oo, we can write

062m+np(;z, ? } _ \/g']‘m ep(ker)  (43)

{ SCan-I—ﬂP( [ )
d { Cermpnp(h, &) }
Se?rn,-l-np(h” 5)
0 \/»h Slnh(g) Jénl—l—’n/]”‘(h cosh S)

P
\/;kc7"]ém+np(/€c7’) .

In the elliptical coordinate system, when— 0, the angular el-
liptical coordinaten — ¢, where¢ is the angular coordinate of
a circular coordinate syste(m, ¢). At this point, two consider-
ations can be made. The first is that the potentigh as 0 is
the product of a Bessel function forsa or cos function (that

lim

and

(44)

in waveguide 2 and
ro = lim ps cosh 5(()2)
p2—0

is the radius of the waveguide 2.
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