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Modal Analysis of Discontinuities Between
Elliptical Waveguides

Mauro Mongiardo and Cristiano Tomassoni

Abstract—Elliptical waveguides are currently finding appli-
cations in several components as corrugated horns, cavities for
dual-mode filters and feeds for reflector antennas since they
provide improved flexibility, better manufacturability, and higher

with respect to either circular or rectangular waveguides.
Efficient computer-aided design of components involving elliptical
waveguides requires rapid evaluation of the scattering parameters
at the discontinuities. To this end, we derive analytical formulas
for full-wave study of a general junction between two elliptical
waveguides and the relative specialization to the case of a junction
between a circular and concentrical elliptical waveguide of larger
cross section. With respect to current approaches, which are
generally based on the numerical evaluation of the coupling
integrals, the proposed analytical formulas allow to achieve a
significant reduction of computer time. Results have been tested
against published data and have also been compared with data
obtained by numerical evaluation of the coupling integrals; in all
cases, an almost perfect agreement has been observed.

Index Terms—Elliptical waveguide, mode matching, waveguide
discontinuities.

I. INTRODUCTION

Elliptical waveguides have recently found application in a va-
riety of microwave components: their use has been proposed
for dual-mode filters [1], as low sensitivity irises, as wide-band
transmission lines, etc. Waveguide discontinuities involving el-
liptical structures have received limited attention thus far: the
case of a junction between two confocal elliptical waveguides
has been considered in [2], the general step discontinuity be-
tween two elliptical waveguides has been studied in [3], while
the problem of the junction between rectangular and elliptical
waveguides has been considered in [4] and [5]; junctions be-
tween concentrical elliptical and circular waveguides have been
investigated in [5] for the cross section of the circular waveguide
enclosing that of the elliptical waveguide. A different technique
that approximate the boundary conditions by a set of sinusoidal
functions has been proposed in [6]. Elliptical waveguides radi-
ating into free space have been considered in [7] and [8], where
a transition between a rectangular waveguide and an elliptical
one radiating into a half-space was studied. Recently, in [2] and
[5], the modal coupling coefficients have been obtained by ana-
lytical formulas. The approach proposed in [6] results in being
convenient for modest values of the eccentricity since it approxi-
mate the field in the elliptical waveguide by means of sinusoidal
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Fig. 1. General junction between two elliptical waveguides. Note that, for
the modal expansion, we use a different elliptical coordinate system for each
waveguide. The waveguide and related elliptical coordinate system have the
same semifocal length.

functions, which are the natural expansions for circular waveg-
uides. Moreover, when a high accuracy is required, such as in
the case of design of narrow-band filters, a considerable number
of modes should be considered; unfortunately, in this approach,
no warranty is given on the accuracy of the computed higher
order modes.

In this paper, we present the detailed derivation of some ana-
lytical formulas for modal coupling integrals evaluation for the
general junction between two elliptical waveguides (see Fig. 1).
We provide an explicit analytical solution of the coupling inte-
grals appeared in [3] which, as discussed later, allow a signifi-
cant reduction of computing time. These formulas can be spe-
cialized to the particular case of the junction between a circular
and an elliptical waveguide of larger cross section; moreover, in
this case, it is also possible to obtain a single-term expression
for the coupling coefficients that does not require computation
of Mathieu functions.

In Section II, we present the theoretical evaluation of the cou-
pling coefficients for the case of two elliptical waveguides. In
Section III, we specialize the results to the case of the junction
between a circular and an elliptical waveguide. Finally, in Sec-
tion IV, we compare the results of the proposed approach with
published and reference data.

II. THEORY

A. Modal Analysis in Elliptical Waveguides

Modal analysis of the step discontinuity between two el-
liptical waveguides requires knowledge of the relative modal
spectra, i.e., the solution of the Helmholtz equation in elliptical
coordinates. In particular, it can be found [10], [11] that the
longitudinal component of the electromagnetic field
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(i.e., or ) in an elliptical waveguide of semifocal length
can be written as a product of Mathieu functions and

modified Mathieu functions .
In order to introduce notation, we denote (see Fig. 1) by

the semifocal length of theth waveguide (where ), and
(where is the cutoff wavenumber of theth

waveguide). The parameter is chosen to satisfy boundary
conditions for TE or TM modes. Accordingly, the potentials are
written in terms of even and odd solutions of the Helmholtz equa-
tion, shown in (1) and (2), at the bottom of this page [9], [10]. In
the above formulas, the symbolis referred to TM modes, while
the symbol is referred to TE modes, superscriptand are
referred to even and odd functions, respectively, the indexis re-
ferred to theth waveguide,and and are the radial and an-
gular coordinates, respectively, of an elliptical coordinate system
of semifocal length . Moreover, is the normalization
constant and is the cutoff wavenumber of the mode in the
th waveguide. Finally, and are the even modes,

while and are the odd modes.
For future use, it is expedient to express the Mathieu functions

appearing in (1) and (2) by considering the following trigono-
metric expansions:

(3)

In the above equations and the
series expansion coefficientsand are calculated as in ([11,
pp. 557–567]) and normalized as in ([11, p. 1568]), i.e.,

(4)

By using the same expansion coefficientsand , we can also
express the modified Mathieu functions in terms of Bessel func-
tions as

(5)

B. Change of Coordinates

For the evaluation of the coupling integrals of the general step
between two elliptical waveguides, it is expedient to use only
the elliptical coordinate system of the waveguide with smaller
cross section; hence, we write the potential of waveguide 1 in
the elliptical coordinate system used for waveguide 2.

To this end, we apply the following procedure.

1) We express the modal function of the larger wave-
guide (written in the elliptical coordinate system 1) in
plane-wave expansions in the rectangular coordinate
system of guide 1 (see Section II-B.1).

2) The plane waves are now rewritten in terms of the rectan-
gular coordinate system of guide 2 (see Section II-B.2).

3) We now expand each of the above plane waves in terms
of the elliptical eigenfunction pertaining to the (elliptical)
coordinate system 2 (see Section II-B.3).

The above procedure is illustrated in detail in the following sec-
tions and the modes of guide 1 are expanded in the eigenfunc-
tions of the elliptical coordinate system 2 in Section II-B.4, with
the relative expansion coefficients given in Section II-B.5.

1) Plane-Wave Expansions of Modes in Guide 1:Using the
relations [10] and [11, p. 1422, eq. (11.2.95)]

(6)

Here, the point in rectangular coordinates translates
in a point in elliptical coordinates of semifocal
length .

2) Plane Waves in Rectangular Coordinate System
2: Equation (6) can be written in terms of the rectangular
coordinate system of guide 2, changing the coordinate system
of the plane wave (see Fig. 2), i.e.,

(7)

(1)

(2)
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Fig. 2. Coordinate systems on the discontinuity plane. Due to the generality
of the discontinuity, the coordinate system 2 (related to waveguide 2) is rotated
( ) and translated(r ; � ) with respect to the coordinate system 1 (related to
waveguide 1).

3) Plane Waves in Terms of Elliptical Eigenfunc-
tions: According to [10] and ([11, p. 1422, eq. (11.2.94)], the
plane waves in (7) can be written as

(8)

The point in rectangular coordinates translates in a
point in elliptical coordinates of semifocal length,
while [accordingly with (3)]

(9)

(10)

where

if
otherwise

and the , are the normalization con-
stants of the Mathieu functions.

4) Modes in Guide 1 Expanded in Eigenfunctions of Ellip-
tical Coordinate System 2:Inserting (8) in (7) and (7) in (6)

(11)

where the coefficients are defined as

(12)

(13)

with

if
if

The coefficients can be evaluated in closed form, as will be
show in the following section.

5) Coefficients in Closed Form:The integrals appearing
in (12) and (13) can be evaluated in closed form. As an example,
we solve the case for . As a first step, we write the product

as and ex-
pansion (Fourier expansion). To this end, with the aid of (3), we
write

(14)

Theaboveequationcanbeseenasaproductof thediscreteFourier
transform(DFT)of thediscretesequences insquarebrackets; this
mean that the entire product can be seen as the DFT of the convo-
lution of the above discrete sequences, i.e.,

(15)
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where the convolution is defined as

(16)

The above equation can be conveniently separated into real
and imaginary part, as illustrated in (21). The following Fourier
expansion can be obtained:

(17)

Finally, inserting (17) into the first of (12) with the aid of [11,
p. 1371, eq. (11.2.21)], i.e.,

(18)

the first of (19) can be found.
Following the same procedure, all othercoefficients can be

found as follows:

(19)

(20)

while the coefficients can be evaluated as follows:

(21)

(22)

(23)

(24)

Note that the formulas of (11), specialized for ,
provide the expression of the modal fields in the larger wave-
guide (waveguide 1) in terms of the coordinate system of the
waveguide of smaller cross section (waveguide 2). Equation
(11) is the basis for the closed-form evaluation of the modal cou-
pling coefficients considered in the following section.

C. Coupling Integrals

The generic coupling integral is defined as

(25)

where is the cross section of the elliptical waveguide 2,
stands for a particular , , or , or combination, while

stands for a particular , , or , or combination.
Using (1), (2), and (11), we can solve the coupling integral (25)
in elliptical coordinate of semifocal length. In this coordinate
system, the boundary of is described by a single coordinate

(see Fig. 2) and the following formulas hold.
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For TM modes

(26)

For TE modes

(27)

In the case of TM modes in waveguide 1 and TE in
waveguide 2

(28)

Finally, in all other cases

(29)

Here, , while .

TABLE I

D. Concentrical Elliptical Waveguides

In the particular case of concentrical waveguides ,
by taking advantage of the fact that

if
if

(30)

we obtain from (19) and (20) the following relations:

if (31)

The above equation states that, for , the modes in
waveguide 1 with first index are not coupled with
the mode in waveguide 2 having as a first index.

Moreover, if the two waveguides are concetrical and
collinear (i.e., with the axes in the same direction, ), the
following useful expressions for the relevant coefficients hold:

if

if

if (32)

From the above equations, it is verified that, for collinear
waveguides, several coefficients vanish, as illustrated in Table I,
where the “x”’ denotes a nonzero coefficient (for ).

In the case of confocal waveguides, it is noted that the above
formulas specialize to the results presented in [2].

III. JUNCTION BETWEEN THEELLIPTICAL AND CIRCULAR

WAVEGUIDES

By considering the circular waveguide as a limiting case of
an elliptical waveguide, several useful relationships can be ob-
tained, as reported in the Appendix. By using the latter expres-
sions, we can specialize (26)–(29) in order to evaluate in a closed
form the coupling integrals arising when considering the junc-
tion between concentrical elliptical and circular waveguides.

With the aid of (9) (10), (32), and (41)–(46), we can write
(26)–(29) for as follows.
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For TM modes

(33)

For TE modes

(34)

In the case of TM modes in elliptical waveguide and TE in
circular waveguide

(35)

Finally, in all other cases

(36)

where , , and represents
the cutoff wavenumber in elliptical waveguide, is the cutoff
wavenumber in circular waveguide, is the normalization con-
stant of the mode in elliptical waveguide, and is the first
derivative of the Bessel function of order . For the cir-
cular waveguide, theoddmodes, are the degenerate of theeven
modes.

The above formulas, with respect to the case of two concen-
trical elliptical waveguides, are very useful and simple to under-
stand: the sum is vanished and the modified Mathieu function
have been replaced by Bessel functions.

With considerations analogous to those used for the evalua-
tion of (33)–(36), we can find the coupling integrals in the case
of the step between a circular and an elliptical waveguide of
smaller cross section, i.e., the results published in [5].

A. An Alternative Approach

There is also another way to directly find the relations
(33)–(36), i.e., by inserting (3) into (6) and by bringing the sum

Fig. 3. Return loss of the junction between two elliptical waveguides. The
geometrical dimensions are reported (in millimeters) in the inset. Published data
refer to [3] where a numerical evaluation of the coupling integrals was used.

out of the sign of integral, with the aid of (18), we can solve
(6) analytically as follows:

(37)

(38)

where the point in elliptical coordinates of semi-
focal length translates in a point in circular coordinates.
Now, by using (37) and (38) in order to represent and by
using the potential of circular waveguide in order to represent

in (25), we finally obtain the relations (33)–(36).

IV. RESULTS

In order to check the usefulness of the presented formulas,
we have considered several waveguide junctions and compared
the results with published data. In particular, Fig. 3 reports the
reflection coefficient of a junction between two elliptical waveg-
uides and the data published in [3], showing an excellent agree-
ment.

Fig. 4 illustrates the reflection coefficient relative to the dis-
continuity between an elliptical waveguide and a concentrical
circular waveguide of smaller cross section. Results have been
obtained by using (33)–(36) relative to the step between con-
centrical elliptical and circular waveguides. By considering the
circular waveguide as a limiting case of the elliptical waveguide,
i.e., for a very small eccentricity (in our case, ), it
is also possible to employ, for comparison purposes, (26)–(29)
specialized with the relations of (32) to the concentrical ellip-
tical waveguide case. Moreover, results have also been verified
by performing the numerical integration of the coupling inte-
grals. For the latter, as far as numerical accuracy is concerned,
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Fig. 4. As in Fig. 3, but in this case, the waveguide of smaller cross section is a
circular one. Comparison has been made by analytical formulas and numerical
integration.

Fig. 5. Convergence behavior of the sums of (26)–(28) for different mode
coupling. The modal indexes are reported in the inset; the first one refers to
the mode in the waveguide of larger cross section. A significant rapidity of
convergence is apparent. The same type of convergence is also achieved for
concentrical waveguides.

a perfect agreement (up to four decimal digits for the coupling
integrals) is noted for all three of the approaches considered.

In order to ascertain the numerical efficiency of the proposed
approach, we have developed a code that makes use of the cou-
pling integrals expressions reported in [3]. The numerical per-
formances of this code have been compared with a code that
implements the analytical expressions introduced in this study.
For a single frequency point, the code based on the analytical
integration is about 40 times faster than the code based on the
numerical integration; as an example, the case reported in Fig. 3,
where 80 frequency points have been computed, has required
105 s on a PC Pentium II (200 MHz).

Since a summation sign is present in (26)–(28) for the cou-
pling coefficients relative to the junction between two elliptical
waveguides, it is of interest to ascertain the convergence be-
havior of these sums. In Fig. 5, we have plotted such converge
behavior for the discontinuity considered in Fig. 3; the modal
functions considered are reported in the inset (the first mode
refers to the larger waveguide). From Fig. 5, a noticeable ra-
pidity of convergence is apparent. In the worst cases, we need

Fig. 6. Optimized return loss for the junction between a circular and
rectangular waveguide. Matching is achieved by using two intermediate
sections of elliptical waveguide with dimensions determined by optimization.

about three terms in the sums, while in several instances, just
the first term of the sum suffices.

The high numerical efficiency of the formulas introduced in
this study makes them very suitable for practical applications in
optimization routines where, at each iteration, the geometrical
dimensions and, therefore, the coupling integrals, are changed.
As an example, we have considered the junction between a cir-
cular and rectangular waveguide, shown in the inset of Fig. 6.
In order to achieve a matched condition in the frequency band
of interest, it is convenient to place a couple of sections of ellip-
tical waveguides between the circular and rectangular waveg-
uides. By using a suitable optimization routine, it is possible to
achieve a fairly good match, as illustrated in Fig. 6, at the cost
of a modest numerical effort.

V. CONCLUSION

We have presented an analytical solution for the efficient com-
puter-aided design (CAD) of junctions between elliptical waveg-
uides. The coupling coefficients are evaluated by a rapidly con-
vergent sum. Computed results have been compared with pub-
lished data and with other data obtained by numerical integra-
tion; in all cases, an almost perfect agreement has been observed.
However, the code based on the analytical expression of the cou-
pling coefficients has proven to be significantly faster than the
code based on the numerical evaluation of the coupling integrals.

APPENDIX

CONVERSION FROMELLIPTICAL TO CIRCULAR COORDINATES

In an elliptical coordinate system of semifocal length
, the semimajor axis and semiminor axis of an ellipse are

given by

(39)

By fixing the semimajor axis of the ellipse at the valuewith
approaching zero, we note that the elliptical coordinate, which
characterizes the ellipse of semimajor axis, goes to infinity and
the ellipse becomes a circle of radius , where [see (39)]

(40)
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For , it is easy to demonstrate that (see [10] and [11])

(41)

and from (4) and (41)

if
if

if

if
(42)

Inserting (40) and (42) in (5), and remembering that
and when , we can write

(43)

and

(44)

In the elliptical coordinate system, when , the angular el-
liptical coordinate , where is the angular coordinate of
a circular coordinate system . At this point, two consider-
ations can be made. The first is that the potential as is
the product of a Bessel function for a or function (that
is the potential of the circular waveguide). The second consid-
eration is that the odd modes in an elliptical waveguide become
the degenerate modes in a circular waveguide (angular potential
depending on functions).

Applying the relation (41) and (43) at the potential of wave-
guide 2 when , the normalization constant can be
evaluated analytically as follows.

For TM modes

(45)

For TE modes

(46)

where is the cutoff wavenumber of the mode
in waveguide 2 and

is the radius of the waveguide 2.
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