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A Unified Analytical Model and Experimental
Validations of Injection-Locking Processes
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Abstract—Unified analytical expressions predicting the locking
range for fundamental, subharmonic ( = 2), superharmonic
( = 2), and parametric injection ( = = = 1) locking are
presented and compared in this paper. Power series are employed
to model the device nonlinearity. The -parameters, relating non-
linear I–V behavior, are extracted using a harmonic-balance ap-
proach. These expressions are verified using an UHF oscillator;
and good agreement is obtained between the experimental and an-
alytical results.

Index Terms—Harmonic balance, injection locking, microwave
oscillator, nonlinear circuits, parametric injection locking, power
series.

I. INTRODUCTION

STABILIZED oscillators, employed for frequency transla-
tions, are an important front-end part in any electronics sys-

tems. One method of oscillator stabilization, made popular in
the 1950’s and 1960’s, is injection locking [1], [2]. This tech-
nique involves injecting a stable reference signal into a free-run-
ning oscillator. Injection-locking methods are now becoming
popular once again in a variety of applications [3]–[5].

Different methods of injection locking are reported [1], [2],
[6]–[9]. Fundamental locking [1], [2] occurs when ;
a large associated locking range is obtained, however, a stable
source at a frequency close to the frequency of oscillation must
be available. When , an th subharmonic injection
locking [6] takes place with a reduced locking range. Superhar-
monic injection locking [7] is observed when , how-
ever, this technique has not been fully investigated due to dif-
ficulty of having a stable injection source at a frequency many
times the free-running oscillator. Parametric injection locking
[8] has also not received much attention since it occurs when

, requiring two injection sources. The
idler method [9] is the same as the parametric only when one
source is replaced with a high-idler; i.e.,

. The mixing of the injected signal with a local oscillator
generates a sideband, which is passed through a high-filter
and fed back into the oscillator along with the injected signal.
A single source is used in this “pseudo” parametric approach.
However, a high- idler is required at a frequency close to the
oscillator frequency. Thus, the idler approach has not been ex-
tensively pursued.
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Most of the reported analytical models for the injec-
tion-locked oscillators are based on the quasi-linear solution
of differential equations in one-port circuits [1], [2]. How-
ever, the reported results in the literature do not model the
different locking processes using a unified approach. A unified
analytical model needs to be developed to compare merits
of various injection-locking methods. With the advent of
transistors and their popularity over diodes, injection-locking
range calculations should be presented for two-port networks.
The purpose of this paper is to present a unified modeling of
injection-locked oscillators that are based on two-port network
models. Therefore, analytical results comparing the various
injection-locking methods are presented for a feedback-based
oscillator. The analytical models are then experimentally
verified and conclusions are drawn.

II. BACKGROUND

The initial analytical modeling of the injection-locked oscil-
lators are reported by Adler [1] and Kurokawa [2]. To extend
their analyses to the case of a two-port network, nonlinear anal-
ysis methods such as a power series, Volterra series, or the har-
monic balance could be applied to compare the locking ranges
for the various injection-locking techniques.

A power series is a possible method for characterizing the
perturbation of an oscillating system resulting from an injected
signal. Traditionally, power series have been utilized to charac-
terize mild nonlinearities in amplifiers [10]. Oscillator analysis
is more difficult for two reasons. The first is that the power se-
ries cannot handle the dynamic nonlinearity associated with the
input capacitance of a transistor. Thus, the oscillation condition
may not be accurately determined. The second reason is that
if the power series representation could account for the device
memory, a large number of terms would be required to model
the full operating range of the transistor.

A Volterra series is able to account for dynamic nonlin-
earities, but becomes difficult to apply when the nonlinearity
is large. Previously, Volterra series have been used to model
systems with mutiple inputs and a mild nonlinearity, such
as would be found in a receiver front-end [11], even though
attempts are made recently to apply that to strongly nonlinear
systems such as self-oscillating mixers [12]. The harmonic-bal-
ance method using a full nonlinear transistor model such as
the Gummel–Poon [13] or Curtice [14] has only been recently
applied to injection locking [15]. As this method matures, it will
be able to predict the locking range under a specific excitation,
but will not indicate how each of the different methods will
perform relative to each other.
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Fig. 1. Diagram of system to be analyzed for basic parametric injection
locking. Removing one of the sources allows for the analysis of fundamental,
subharmonic, and superharmonic injection locking.

The best method of developing an analytical model for
injection combines the power series and harmonic-balance
method [6]. The oscillation condition is determined from a full
nonlinear model, which determines the operating point of the
device. This procedure may be done using a harmonic-balance
simulator such as Microwave Harmonica1 or a time-domain
simulator similar to the transient time-domain test bench in
Libra.2 Once the operating point has been determined, the
series is applied to determine the nature of the nonlinearity at
this point. Thus, the number of terms retained depends on the
amount of perturbation one expects about the operating point.

III. A NALYTICAL MODELING

The first step in developing a universal set of locking-range
equations is to define the oscillator system to be analyzed. Fig. 1
depicts a basic feedback oscillator with two injection sources to
be used for the case of parametric injection locking. Removing
one of the sources allows for analysis of fundamental, subhar-
monic, and superharmonic injection locking. The system con-
sists of a single pole in parallel with a nonlinear gain element.
A power series describes the nonlinear voltage–current relation-
ship, and the injected voltage provides a stable reference at the
input of the nonlinear element.

The oscillator has reached the steady-state voltage ofat the
input of the nonlinear device before the stable source is injected.
The injected voltage of now perturbs this input voltage. The
harmonic-balance method is applied to determine the change
in the oscillator-input voltage and the associated locking range.
Derivation of the locking-range equation in the case of para-
metric injection locking is presented since it has not been re-
ported. The analyses for the fundamental, subharmonic ( ),
and superharmonic ( ) follow the same procedure.

Currently, basic parametric locking (i.e., , ,
in Fig. 1) is the only realistic type of forced oscilla-

tion that could be implemented in weakly nonlinear circuits.

1Microwave Harmonica is a Trademark of Ansoft Software, Inc., Pittsburgh,
PA.

2Libra is a Trademark of Agilent EEsof, Westlake Village, CA.

The difficulty in implementing higher order parametric injection
locking arises from the inefficient generation of higher order
mixing products. This situation allows for an accurate solution
to be obtained using the first three terms of the power series to
model the nonlinearity. Fig. 1 indicates that the point of the har-
monic balance is to occur at the input of the nonlinear network.

The first step is to define the input voltage to the nonlinear
network and the injection voltages and

(1)

(2)

(3)

These voltage components are mixed together in the nonlinear
network and fed back through the bandpass ( )
resonator to the input node to balance all the harmonics. The
mixing process may be defined as an output current in terms of
the nonlinear transconductance

(4)

(5)

From many terms generated as a result of expansion in (5), the
terms of interest are those that fall close to. The following
components at are generated:

From

From

From

In these expressions, the conjugate term has been dropped to
simplify the analysis.

Next, these components must be passed through the resonator
back to the input for the harmonic balance to be performed. In
equilibrium, the voltage at fed through the resonator must
be equal to , which is the input to the amplifier at . The
harmonic balance of at the input node results in

(6)
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The term is the load resistance. Equation (6) is now ex-
panded into its real and imaginary parts by multiplying the top
and bottom of the left-hand side of the equation by the quantity
[ ]. The resulting equations for the real and
imaginary are as follows.

Real Part:

(7)

Imaginary Part:

(8)

The real and imaginary equations may be solved simultaneously
to obtain the output level of the oscillator , and the locking
range . Using the equation for the imaginary, the maximum
normalized locking range may be solved for in terms of the in-
jected voltage by setting the sum of the angles .
Doing this eliminates the cosine term and sets the sine term
equal to one. The term in the resulting equation is the max-
imum one-sided locking range for a given pair of injected volt-
ages

(9)

TABLE I
CHART COMPARING THEANALYTICAL EXPRESSIONS FOR THELOCKING RANGE

ASSOCIATED WITHDIFFERENTTYPES OFINJECTIONLOCKING

Solving for the normalized locking range yields

(10)

This equation defines the normalized locking range for basic
parametric injection locking using a three-term series. A
summary of the results for the fundamental, basic parametric,
subharmonic ( ), and superharmonic ( ) is pre-
sented in Table I. These locking range equations (i.e., (10)
and [Table I, eq. (11)–(13)]) allow for comparison of various
injection-locking methods in a specific oscillator.

IV. EXPERIMENTAL VALIDATION

To verify the derived injection-locking range (i.e., (10) and
(11)–(13) in Table I) that are shown in Table I, experiments are
conducted for a feedback oscillator. The UHF oscillator is real-
ized using a bipolar junction transistor (BJT) (Siemens BFP405)
and replicates the system block diagram shown in Fig. 1. The
quality -factor of the oscillator may be predicted by the fol-
lowing equation describing the bandpass resonator:

(dB) (14)
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where is the resonant frequency,is the resonantor’s group
delay, and is the unloaded -factor. From network analyzer
measurements ( dB, MHz, and

ns), a of 6.45 is calculated for the feedback circuit.
Gummel–Poon model parameters of the BJT, provided by

the manufacturer, are employed for SPICE modeling. Nonlinear
simulation of the oscillator is conducted using the MWSPICE
model in the time-domain bench of Libra. The simulated os-
cillation frequency is 770.5 MHz with an output power of5
dBm; the measured results are output power of3.8 dBm at

MHz. Since the oscillator is modeled accurately, then
the simulation technique may be used to extract the-parame-
ters of the gain block, which are important parameters in the
locking-range equations.

The method of -parameter extraction is presented in
Appendix. Results from the extraction may be summarized
as follow [cf. (A.1)–(A.3)]: S,

S/V, and S/V .
These -parameter values are valid for the simulated oscillator
operating condition and may be used in (10) and (11)–(13) in
Table I. The locking ranges for the different injection-locking
methods are measured and compared with predicted results for
the feedback oscillator.

The experimental verification of the derived equations
are now presented. The experimental setup consists of a
Rohde–Schwarz (100 kHz–1 GHz) signal generator and a
Systron Donner (model #1626) microwave synthesizer used as
injection sources and a Tektronix (2756P) spectrum analyzer
to measure the power spectra. The injected power levels are
limited to 15 dB below the oscillator’s output power so that
a weakly nonlinear assumption remains valid. The minimum
injected power level is also selected by the frequency resolution
the injected synthesized source and the oscillator frequency
drift. The oscillator drift is as result of temperature and loading
of the circuit.

The first step is to measure the fundamental locking range
to verify the of the oscillator. The fundamental injection-
locking range may be reduced to an expression similar to the
Adler’s locking range [1] by neglecting the small effects of
higher order terms in (11) (see Table I). The derived equation
is

(15)

By fitting the experimental data for fundamental injection
locking, a of six is calculated. This predicted result is
close to , the predicted unloaded of the bandpass
resonator.

This value is applied to the normalized locking range
equations for subharmonic ( ), superharmonic ( ),
and parametric ( , , ). Figs. 2 and 3 depict the
locking range ( ) as a function of the injected power gain
( ) of the second subharmonic and superharmonic
cases (i.e., ). The experimental and analytical results
match; the difference is, at worst, a factor of two. Fig. 4(a)–(c)
presents parametric injection-locking range as a function of
the injected power gain. The locking range is measured as two

Fig. 2. Plot of the subharmonic (n = 2) locking range as a function of injected
power gain (P =P ) comparing the experimental and analytical results.

Fig. 3. Plot of the superharmonic (n = 2) locking range as a function of
injected power gain (P =P ) comparing the experimental and analytical
results.

sources with equal input powers, however, different frequencies
are injected to the UHF oscillator.

The predicted and measured parametric injection-locking
range results are in relative good agreement. As the frequency
difference becomes more pronounced (i.e, MHz
and MHz), the match between experimental and
theoretical results degrades. The case when unequal power
levels are injected shows the same trend of frequency-depen-
dent behavior. Table II depicts locking range when the power
levels are off by 5 dB. These results indicate that the greater
the frequency difference, the greater the effect of the offset
power. The case of 130–610 MHz (the 130-MHz signal being 5
dB lower than the 610-MHz signal) and 610–130 MHz shows
more disparity than both of the other frequency combinations.

V. DISCUSSION

Using the fundamental data as a baseline, the analytical model
compares well with the experimental. For the parametric injec-
tion-locking cases, there is a frequency dependence more pro-
nounced than with the subharmonic or superharmonic
cases. Even with this frequency dependence, the results still fall
within a factor of three in the worst case. This degradation may
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(a) (b)

(c)

Fig. 4. Parametric injection-locking range as a function of injected power gain (P =P ) with equal input powers. (a) Frequencies of 410 and 330 MHz, (b)
510 and 230 MHz, and (c) 610 and 130 MHz.

be explained by the frequency dependence of the-parameters
as the frequency is varied over a wide range.

Comparing the measured locking ranges, one can see that
the superharmonic provides the largest locking range and that
the parametric locking range (assuming equal power levels) is
greater than the subharmonic. For equal injection levels, (10)
indicates that the parametric locking range should ideally be
twice as high as the subharmonic locking range defined by (12)
in Table I. However the measurements indicates that this factor
is between 1.2–1.5 times higher. One interesting result is the
large superharmonic injection-locking range. The locking range
is 3–4 times higher than the corresponding subharmonic
injection locking. A higher value should be expected since (13)
in Table I indicates that the locking range is proportional to

instead of , even though Forrestet al. [7] proposed
superharmonic injection locking as a means of phase shifting in
antenna arrays, but does not indicate this distinct advantage of
superharmonic injection locking over the subharmonic injection
locking.

Although the analytical model does well at predicting the
locking range for low-to-intermediate injected power levels, it
does not describe the properties of the process. Properties of
injection locking such as the locked output power, asymmetric

locking ranges, and Type-II injection locking cannot be pre-
dicted. Possible methods to predict these attributes are time-do-
main simulations transformed to the frequency domain [16] or
a full harmonic-balance routine, as demonstrated by Rizzoliet
al. [15].

VI. CONCLUSION

For the first time, unified equations have been presented,
predicting the injection-locking range of fundamental, sub-
harmonic ( ), superharmonic ( ), and parametric
( , ) injection-locked two-port oscillators. These
equations are applicable to oscillators constructed with transis-
tors (two-port devices) and provide a method of comparison
between the different methods for a specific oscillator. Using
these equations, merit of each injection-locking techniques
could now be analytically compared depending on the forced
oscillation application and the free-running oscillator topology.

Experimental results indicate good agreement with the
theory. Including in the extracted-parameters frequency
dependence in addition to its level dependence could make
further model improvement. The derived analytical results
could also be expanded to the higher order injection-locking
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TABLE II
CHARTS COMPARING THE LOCKING RANGES FORPARAMETRIC INJECTION

LOCKING WITH UNEQUAL POWER LEVELS BEING INJECTED FOR: (a) 330
AND 410 MHz, (b) 230AND 510 MHz,AND (c) 130AND 610 MHz.

THE LOWER POWER LEVEL IS ATTRIBUTED TO THE FIRST FREQUENCY

INDICATED AT THE HEAD OF THE COLUMN

(a)

(b)

(c)

processes, though not practical in weakly nonlinear systems.
Note that the injection locking of oscillators could also be
extended to its optical counterparts [17].

APPENDIX

DERIVATION OF THE -PARAMETERS FOR THEGAIN BLOCK

Level-dependent nonlinear-parameters are used to char-
acterize the nonlinear current–voltage relationship in the gain
block of the oscillator. To accurately simulate the BJT-based
amplifier behavior, the Gummel–Poon model [13] provided
by the manufacturer is used. This appendix describes how to
extract the nonlinear -parameters at a particular frequency
and power level. The basis of the extraction is a time domain
simulation in Libra, which is used to determine the input
voltage to the transistor under the oscillation condition. The
parameters are determined from the output current that is a
nonlinear function of the input voltage.

For extracting the -parameters of the BJT, the first step is
to use the time-domain simulator to determine the base voltage
under the oscillation condition. Once this voltage has been de-
termined, an equivalent source voltage (in a 50-system) at the
frequency of oscillation is employed to recreate this voltage on
the base. The next step is to simulate the device as an amplifier
in a 50- system with the same bias condition: the base voltage
set to 2.4 V and the collector voltage set to 3.0 V, which produces
a collector current of 5 mA. The resulting power spectrum

Fig. 5. Diagram of the amplifier used to determine thea-parameters. The
source is set to give an input voltage of 0.09-V peak.

contains the fundamental signal, set at 750 MHz, and its har-
monics. Fig. 5 shows the transition from the oscillator (cf. Fig. 1)
to an amplifier with an equivalent voltage amplitude at the base.

From the time-domain test bench, the transistor base voltage
in the oscillation condition is simulated to be0.09-V peak.
A generator with a 50- source impedance must be driven at
0.13-V peak at an angle of 0in the harmonic-balance test bench
to generate 0.0637-V rms (0.09-V peak) at the base of the tran-
sistor. The phase of the input voltage is35.95 . The phase of
the input voltage is accounted for when calculating the-param-
eters.

The power spectra resulting from this excitation may be used
to determine the output current at each harmonic frequency. The
-parameters are determined by dividing the harmonic currents

by the input voltage

S (A.1)

S/V (A.2)

S/V (A.3)

It is important to note that the-parameters here are derived
specifically for the simulated feedback oscillator. The calculated
values are not necessarily valid if the oscillator’s bias condition
is changed in any manner. At microwave frequencies, the-pa-
rameters will display more pronounced frequency dependence
because of the device intrinsic and package parasitic.
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