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Abstract—In this paper, a finite-difference time-domain numer-
ical dispersion relation for evanescent waves is derived, and its im-
pact on the modeling accuracy is studied. The numerical evanes-
cent constant is found to differ from the analytical one. As a re-
sult, a correction must be used to compute discontinuity param-
eters. This influences the reference plane chosen for the analysis
of propagating modes. Moreover, on calculating multimode trans-
mission and reflection coefficients, the dispersion for evanescent
higher order modes is determinant. The dispersive relation is de-
rived, discussed, and used to correct the evanescent constants for
the multimode analysis of a waveguide discontinuity.

Index Terms—Evanescent modes, FDTD methods, numerical
analysis, scattering matrices, waveguide discontinuities.

I. INTRODUCTION

T HE finite-difference time-domain (FDTD) method is a
well-established tool for the microwave engineering com-

munity. Thus far, the FDTD method has been applied to model
microwave circuits and antennas [1]. The usual procedure to
analyze a given device, using FDTD, involves the following
steps:

Step 1: use of a fine mesh to avoid numerical dispersion,
suitable to establish boundary conditions;

Step 2: application of an effective absorbing boundary
condition (ABC);

Step 3: selection of a suitable excitation in space and time;
Step 4: verification of FDTD results by comparison with

other techniques or measurements.
If FDTD results present a good agreement in Step 4, Steps
1–3 will be extended to the next device sharing similar ge-
ometry. If not, Steps 1-3 must be revised. Once Step 4 has
been achieved successfully, simulated results in subsequent
applications of FDTD are expected to be as accurate as in the
first application. The procedure is considered to be consistent
and warranties a bound in the FDTD results. Some studies
have addressed the accuracy of the FDTD modeling [2], with
the conclusion that second-order accuracy is achieved with the
FDTD discretization. However, this second-order accuracy can
be polluted by inaccurate ABC’s, numerical dispersion [2]–[4],
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and inaccurate post-processing of the FDTD simulated data.
An example can be found in the application of the fast Fourier
transform (FFT): the freedom of the user to locate a window in
the FDTD-space time to which the FFT is applied may result
in different accuracy of the FDTD results.

In the analysis of waveguide discontinuities, a typical situa-
tion is produced when choosing the points at which the trans-
mitted fields are sampled. At these points, evanescent higher
order modes are expected to be negligible, in order to get a clean
dominant propagating mode at the outputs of the FDTD simu-
lated device. An FDTD user must be cautious in choosing the
sampling planes; the further the better, but with larger memory
resources because longer waveguide ports must be meshed. This
increases the consumption of memory and central processing
unit (CPU) time [5]. The optimum length of a waveguide port
is the shortest that warranties negligible higher order evanes-
cent modes while providing sufficient accuracy for the dominant
mode. Determining the optimum length can be done by a sys-
tematical error analysis in FDTD, as will be shown in this paper.
In the numerical domain of FDTD, evanescent modes are found
to decay more slowly than the analytically calculated modes.
The numerical evanescent constant is different from the analyt-
ically obtained one. Consequently, knowledge of a numerical
evanescent constant can be used to estimate the waveguide ports
length. In particular, in the calculation of multimode scattering
parameters of a waveguide discontinuity, an appropriate refer-
ence plane needs to be located by using the numerically calcu-
lated evanescent phase constant. Large errors are produced in
the calculation of the multimode parameters unless the proper
evanescent constant is used.

Thus far, the FDTD technique has been successfully used in
the analysis of waveguide discontinuities where the scattering
parameters were obtained for the fundamental propa-
gating mode. ABC’s warranted the accuracy of the simulation
for the propagating modes. In [6], the multimode transmission
coefficients were calculated for a two-dimensional disconti-
nuity in which second-order absorbing boundaries were used to
absorb evanescent waves. In the analysis, numerical dispersion
was neglected and results were obtained for two propagating
modes and two evanescent modes for a given frequency [7]. In
[8], FDTD is combined with modal expansion.

In our calculation of multimode parameters, the numerically
calculated evanescent constants are used to shift the parameters
to the reference plane. In this study, perfectly matched layers
(PML’s) are used [9]–[11], to absorb any mode at any frequency,
where it does not matter whether the mode is evanescent or not
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[12], [13]. The application of PML’s in a small three-dimen-
sional mesh enables one to obtain the general scattering matrix
(GSM) of any step discontinuity. To show the utility and accu-
racy of our procedure, results are presented for a transition be-
tween two waveguides of different dimensions.

Once the multimode parameters are obtained, the application
of the GSM formalism can provide the electrical modeling of
any complex device by cascading the multimode parameters that
are obtained with FDTD for each simple discontinuity.

II. DISPERSIONRELATION

Assume a plane wave in the discretized three-dimensional
FDTD space with the wave being a propagating wave or an
evanescent wave. A propagating plane wave would have the
space-time dependence being
the wave vector andthe position vector. By substituting it into
the Maxwell equations and performing numerical derivatives,
the following expression is obtained:

(1)

where the standard notation
was used,

and , is defined as the numerical
growth factor [14]–[16]. The above equation is solved for

, and the stability condition implies the following
expression:

(2)
for any wave vector . This leads to the well-known FDTD sta-
bility condition

(3)

where .
Similarly, for a monochromatic plane wave, with time depen-

dence in the form , the substitution into the vector wave
equation

(4)

leads to the well-known dispersion relation of FDTD

(5)

Fig. 1. Evanescent constant forTE mode under cutoff as a function of the
FDTD discretization�x = �y = �z.

Now, let us consider an evanescent plane wave decaying
in the -direction. Its analytical form can be expressed as

. By substitution of
this electric field into the Maxwell' equations and performing
the mathematical manipulations similar to those for the propa-
gating wave, the following stability condition is obtained:

(6)

The new dispersion relation for the evanescent wave then be-
comes

(7)

The above numerical dispersion relation approaches the ana-
lytical dispersion relation only in the
limit .

Let us consider the particular case of a rectangular
waveguide for the mode under cutoff. For a given
frequency under cutoff, this would have an evanescent con-
stant . Suppose that the waveguide
has dimensions cm, , the mode
cutoff frequency is then 13.12 GHz. If the given frequency
is 8.5 GHz, the evanescent constant for the exponentially
decaying field is 209.41 m . However, the numerical value
for this constant calculated from (7) is not the same. Its nu-
merical FDTD dispersive value depends on the discretization.
If , and , it starts from nearly
zero value at and moves toward the analytical
value with the smaller space increment. These results are
shown in Fig. 1 where it is seen that even for ,
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Fig. 2. Numerical FDTD and analytical dispersion relation (j�j versus
frequency), forTE mode using three different discretizations;a = 2:286 cm
is the largest waveguide wall,�x = �y = �z. (—): analytical. FDTD:
(�)�x = a=5; (o)�x = a=10; (�)�x = a=20.

the numerical evanescent constant is only 206 m, 3.1%
lower than the analytical value. For the same mode, the
numerical FDTD evanescent constant versus frequency is also
calculated. The results of this investigation are presented in
Fig. 2, where numerical and analytical dispersion relations
were plotted versus frequency for three different discretizations

. It shows that numerical
cutoff frequency differs from the analytical value, and this
difference increases with the coarseness of the mesh.

The influence of the above results is critical in the FDTD mod-
eling of evanescent modes, especially in determining how far the
FDTD sampling plane is away from the discontinuity or the re-
gion where these modes are generated. In the waveguide analysis
for thedominantmode( ), the influenceof thenumericaldis-
persionofevanescentmodescanbeavoidedbyplacing theFDTD
sampling plane far enough from any simulated discontinuity. The
location of the plane is decided with the numerically calculated
constants rather than the analytical ones as the numerical evanes-
cent constants are smaller than the analytical ones. When FDTD
simulation is carried out for higher order modes under cutoff,
the numerical evanescent dispersion pollutes the behavior of the
evanescent field, particularly when FDTD is used to calculate the
multimode parameters of a given discontinuity. To avoid errors,
the fields that are sampled close to the discontinuity must be cor-
rected with the numerical evanescent constant.

III. FDTD M ULTIMODE FORMULATION

The transmitted and reflected fields in the waveguides at a
short distance from the waveguide discontinuity can be ex-
panded as a sum over all possible modes inside the waveguides.
This total electric field at the time instant can be
expressed as

(8)

Fig. 3. Transition between two waveguides having different cross
section. Waveguidea; a = 22:86 mm, b = 12:70 mm. Waveguide
b; a = 19:05 mm,b = 9:525 mm,d = 1:905mm,d = 1:5875mm.

where , and are the normalized mode vectors,
and and are the mode voltages. Due to the or-
thogonality of the mode vectors, we can determine the mode
voltages at any cross section by multiplying both sides of (8)
with the corresponding mode vector and integrating over the
waveguide cross section. Noting that the mode vectors are nor-
malized, we obtain

(9)

where is the mode index for both TE and TM, in both sides
of the discontinuity. The above integral is performed over the
cross section of the waveguide, and is the numerically
simulated FDTD field at the cross section of the waveguide. The
FFT of gives . These coefficients are normalized and
operated to give the multimode scattering parameters

(10)

where is the impedance for modeat the frequency .
These parameters can be shifted to a phase reference plane by
multiplying with the phase term , and [17],
being the distances from the sampling planes to the reference
planes; are the propagating constants of the modesand
, respectively. These propagation constants will be the evanes-

cent constants under cutoff (evanescent higher order modes),
i.e., or .

In the following section, this procedure is used to calculate
the multimode scattering parameters for a given sample discon-
tinuity. In that calculation, the values of the evanescent prop-
agation constants are corrected using the numerical dispersion
relation obtained in Section II.

IV. RESULTS

The above procedure is used to analyze a transition in wave-
guide that connects two rectangular waveguides with different
dimensions. Waveguide has the dimensions of 22.86 mm
12.70 mm, and waveguidehas 19.05 mm 9.525 mm, as
shown in Fig. 3. The waveguide discontinuity was modeled
using a 40 10 20 mesh in the – – -directions, respec-
tively. Twenty PML layers were used to simulate the matched
loads at both sides of the discontinuity, with the conductivity
having a profile , where and are
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Fig. 4. Dependence of the deviation on the distance from the sampling plane
to the reference plane. Results forS ; j = 5, 6, 7, 8, frequency= 9 GHz.

adjusted for a theoretical reflection coefficient of80 dB,
[9], [12], [2]. is the total thickness of the PML andis
the penetrating depth inside the PML region. The excitation
consisted of a sinusoidally modulated pulse in the time domain
whose spectrum covered the operating frequency band of the

mode in the first waveguide (waveguidein Fig. 3). The
spatial distribution of the incident field was of the mode
in the cross section of the waveguide. The mode voltages of
the transmitted and reflected signals were obtained for ,

, , modes in both waveguides. These modes
are numbered 1-4 for waveguide, and 5-8 for waveguide.
Therefore, the multimode reflection coefficients are for

, , , and the transmission coefficients are , for
, , , . Equation (9) is numerically integrated at every

time step of the FDTD simulation over the cross section of both
waveguides, five cells from the discontinuity. The reference
plane chosen for the scattering parameters is the one where the
discontinuity is located. The parameters shift [17] is done with
the numerical evanescent constant obtained from (7). The used
mode impedances are also affected by this correction as long
as they depend on the evanescent constant

(11)

where ,

(12)

The difference between the results obtained using an analytical
and a numerical does not affect the fundamental
mode since it is a propagating mode. The numerical dispersion
only has a strong influence on the phase constant. The results
for higher order modes using analytical , differ in 5%–12%
from the ones calculated using the numerical dispersive value
(8–10-GHz frequency band). The difference increases with the

Fig. 5. Multimode transmission and reflection parameters for the discontinuity
of Fig. 3, incident isTE in waveguidea : (o) S , andS . (�)S , and
S . (�)S , andS . (�)S , andS . (—): MM results.(�+�): FDTD
without correction.

orders of the modes; in our results, the deviation is larger for
the mode. Fig. 4 shows how this error depends on the
distance from the sampling plane to the reference plane. Fig. 4
is for , , , , at the central frequency (9 GHz). The
FDTD parameters calculated with numerical are plotted in
Fig. 5. These results are compared with results without the dis-
persive correction and results obtained by the mode-matching
(MM) technique. The present results were obtained using 3000
FDTD time iterations, which took around 20 min of CPU time
in a 486 personal computer.

V. CONCLUSION

A numerical dispersion relation is derived for the numerical
modeling of evanescent waves in FDTD. In the numerical do-
main of FDTD, evanescent waves decay slower than in the an-
alytical space time domain. This numerical dispersion is ex-
pected to affect the numerical sampling of the propagating and
evanescent modes in the vicinity of a waveguide discontinuity
because numerical attenuation is lower than analytical attenua-
tion. FDTD is used to obtain multimode transmission and reflec-
tion coefficients of a three-dimensional discontinuity. It is nec-
essary to use the numerical FDTD dispersion relation to correct
the obtained multimode parameters in order to achieve a reason-
able degree of accuracy in the numerical results.
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