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Analysis of Inhomogeneously Filled Waveguides
Using a Bi-Orthonormal-Basis Method

Enrique Silvestre, Miguel Angel Abian, Benito Gimeno, Albert Ferrando, Miguel V. Andviésnber, IEEEand
Vicente E. Boria

Abstract—A general theoretical formulation to analyze inhomo-  loaded guides [7], [8]-{10]. There are, as well, a number
geneously filled waveguides with lossy dielectrics is presented inof matrix formulation methods to analyze inhomogeneously
this paper. The wave equations for the tranverse-field components filled waveguides in which the fields are expanded in a set of

are written in terms of a nonself-adjoint linear operator and its . ; .
adjoint. The eigenvectors of this pair of linear operators define a basis functions [11]-{16], and based on Laplace and Fourier

biorthonormal-basis, allowing for a matrix representation of the ~transforms techniques [17].

wave equations in the basis of an auxiliary waveguide. Thus, the In this paper, we develop a rigorous and computationally
problem of solving a system of differential equations is transformed efficient method to obtain the modal spectrum in inhomoge-
into a linear matrix eigenvalue problem. This formulation is ap- neously filled waveguides with lossy dielectric of arbitrary

plied to rectangular waveguides loaded with an arbitrary number fi Starti th the diff tial i .
of dielectric slabs centered at arbitrary points. The comparison pronies. otarting wi € difierential equations governing

with theoretical results available in the literature gives good agree- the propagation of the tranverse electric and magnetic fields,
ment. we identify a pair of linear nonself-adjoint operators, whose

Index Terms—DPielectric-loaded waveguides, eigenvalues, eigen-eigenveaors satisfy a piorthogonality relationship. The key ?l'
vectors, numerical analysis, waveguide theory. ement of our approach is to transform the system of differential
equations into a linear matrix eigenvalue problem by means
of the Galerkin method, using the eigenvectors of an auxiliary
problem. From a computational point-of-view, this method

NHOMOGENIOUSLY filled waveguides have receiveds very efficient because the integrals involved in the matrix
considerable attention in the last decades because of tiediments are, in principle, frequency independent, so they have
applications in a variety of waveguide components. The mod@sbe evaluated only once to obtain the dispersion curves, thus
of propagation of such waveguides are not, in general, TM generating a robust and efficient code. This method has been
TE modes, but hybrid modes. The boundary value method t&gplied to study open dielectric waveguides, as reported in [18]
been used to calculate the modal solutions for concentric [8))d [19]. Comparisons between our results and the available
[2] and eccentric [3] dielectric-loaded circular guides, as weflumerical published data fully validate the theory presented
as for rectangular guides filled with dielectric slabs [4], [5]. Ifere.
that method, the electromagnetic field is expanded in terms of
analytical functions in the relevant regions of the waveguide,
and a linear eigenvalue problem is obtained after imposing the Il. THEORETICAL FORMULATION
boundary conditions in the corresponding interfaces. When the
guide is filled with two or more dielectrics, the determination Our starting point are Maxwell’'s equations for uniform cross-
of the propagation constants and of the mode fields becomgstion waveguides partially or totally filled with a lossy di-
difficult because of the transcendental equations involveglectric media defined by its dielectric permittivityz, v) =
Alternatively, a variational method is used in [6] to calculateye,.(x, ). We assume that the considered media does not have
the eigenvalues in rectangular waveguides loaded with losslessgnetic properties = ;. Thus, the solution of the problem
dielectric slabs. The finite-element method has been extensiveln be obtained as a superposition of fields with explicit har-
applied to find the eigenvalues and modal fields in dielectrifonic dependence on(we assume that the time dependence
is always implicit and has a harmonic fort** for all vector
fields)
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in terms of the transverse components of the electric and mégrmal adjointto the linear operatak, and is defined as follows
netic fieldse; = |¢ | andh, = Zz . Following [20], we can (see [21]):
obtain a set of equations for them as follows:
(v, Lu) = (L'v, u) & / v* (r) - Lu(r) dS
thfr(x, y) *S
e — [ (tn)" utryas ©)
(2a) i

{Vf Fen(a, Yk — /JQ}ht = (V, x hy) x

whereu(r) andwv(r) are two-dimensional vector complex func-
tions defined on a two-dimensional closed and bounded region
Vts,,(%y)) S, with boundaryC. They are members of a Hilbert spakte

2 2 _ 32 — . ith i
{Vt +e-(z, k5 — B }Ct Vi <Ct e (2,) with inner product

(2b)

(v, u) = / v* (r) - u(r)dS

wheree,.(z, y) is the relative dielectric permittivityio is the 5
free-space wavenumbeky = w,/jioz0), and the operatoV, = / (U; (r)ug(r) + vy (r)u, (r)) ds (6)
is the transverse gradient operator. The axial components s
andh. are determined by, andh, through constraint relations for gj o, v € H. WhenL' = L, we say that_ is formally
given by Maxwell’s equations. self-adjoint

For our purposes, it is more interesting to rewrite (2) in & The set of (3) is a system of eigenvalue equations for the non-
different way. We will express the two previous equations in &it-adjoint operatof. and its adjointLt
two-dimensional matrix form. Botla, andh; are two-dimen-
sional vector fields that are represented by two component vec- Lu, = 2w, L'v,, = (8)%vm (7)
tors. Thus, the differential operators acting on them can be e>% — b ande = &
pressed as 2 2 matrices. Equation (2b) involves tranverse two? fgz’;i:en:/:;()’r’sz fez;.nonsel ¢ adioint operator do not Satis
dimensional vectors only. However, (2a) includes the three-%i-ortho genv ) ! op . fy
mensional axial vectoN; x h;) on its right-hand side. On the * ~ go_nahty relation. Th_e same applies to the eigenvectors
one hand, it is easy to check that the double three-dimensiofiafts adjoint. In our case, this means tia,, w,) 7 én, and
vector product in (2a) can be rewritten in terms ofxa 2 matrix (U, ”""ZI 7éth6"”f"’ 6"’".8?.;”9 ;he Ifront(?]ckert dec;tadsymttr)]ol.
acting onh; (using, e.g., the completelyantisymmetrictensoriﬁ‘ppl‘f"ren Y, the Impossibility of using the standard orthog-
two-dimensions..,). On the other hand, for reasons that wilPnality relations associated to a self-adjoint operator would
become clear later, it is more convenient to rewrite (2b) ng{event us from expanding arbitrary functions in terms of its

. . ; i ideri i
in terms ofe;, but in terms of the closely related vector fleloe|genvecto_rs_. However, since we are consideringLaL'} ,
I R R . . : . system, this is not so because we can take advantage of what it
¢ = i_ef } (* is the conjugation operation). After manipus< .oiled thebiorthogonality relation[22]

lating 2b)lin a suitable way, one can obtain the following equiv-
alent set of equations in matrix form: (Vn, Um) = Onm. (8)
h., 5 [ ha The biorthogonality relations were successfully used by Paiva
L [ILJ =p [/LJ and Barbosa to analyze inhomogeneous biisotropic planar

o o guides [23]. Despite its apparently formal character, this
L [_C’g} =(p*)? {_ g} (3) relation has a very clear physical meaning. If we write the
* inner product in its integral from and restore the original

whereL andLT are 2x 2 matrix differential operators given bythree—dlmensmnal notation, (8) reads

o 0 Vi + kier(x, , .
¢ +koer(e, y) wherez represents the unitary vector along thélirection. In
_| BV —5yVe 4a) the waveguide literature, the relation (9) is known as the orthog-
—-F,V v (42) ; . ;
zVy zVa onality condition for the waveguide modes [20].
The previous relation allows us to expand any vector function
) J of H in terms of either thd. eigenvectors{u,, }, or those of
It — Vi + kEer(z, y) 0 its adjointLt, {v,,}
0 Vi + kei(z, v)
[ v v by F=2 cntn =3 dnvm (10)
=V.t;  V,Iy " m

where the complex expansion coefficients are given by the inner
where I, = (Vie.(z, y))/e-(z, y), and the derivative ap- productse,, = (v,, f) andd,, = {f, u,,). Notice thec's and
pearing in the second matrix &f acts both on the componentsd’s coefficients are not trivially related, unless whens self-
of F and on the vector field,;. The operatol.’ is called the adjoint, in that case;, = d; andu, = v,.
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The previous results define the framework in which our For practical purposes, it is convenient to introduce the dif-
method is developed. Our aim is to find the propagatidierence operatoA = L — L
modes of a realistic waveguide characterized by a complex
relative dielectric permittivity,.(x, ¥). As we have proven, the , _ ;2 s {1 0}
electromagnetic propagation in this waveguide is described by O(E’ (@, y) = &a, y)) 01
the system of eigenvalue (7). L&t be the matrix differential (F, — Fy)vy —(F, — Fy)vgC
operator (4a) representing the waveguide, we are interested - —(F, — F,,)Vy (F, _Fx)vx - (18)
in u, andwv,,, the eigenmodes of and L, respectively, and
B, the propagation constant of thh mode. The system of Thys, the elements of the operafor= L + A in the auxiliary
equations describing this waveguide and that we want to sotygsis{aW #,} are trivially obtained by means of (17)
is then ' '
Ly = 326, + (0, At 19
Lu, = /Jfl'u,n L'y, = (/3:;1)21]771' (12) pq = " 0pg + (Up q) (19)
where the first term is diagonal because the operati ex-

. . . d e ) pressed in its own biorthogonal basis. At this point, it is impor-
terized by arelative d|_e_lectr|c permnnwty@, y) and \.N'th the tant to remark that we have tranformed the differential operator
same boundary conditions as the waveguide described by (

; o tem (11) into a linear matrix eigenvalue problem defined in
The eigenmodes of the auxiliary problefi,,, ©,} and, thus, % (1) g b

Now we define arauxiliary problemas a waveguide charac-

thei i i tant 410 b 6). An analog equation for its adjoint matrix][d,,)] =
eirrespective propagation constants, are supposed 1o be J;;)?[d(m)] can also be derived. Thus, the information con-
fectly known. The equations describing the auxiliary proble

. e ined in the above matrix equations is the same as in the differ-
constitute anothefL, L} system

ential equations for thé and L' operators (11). Diagonaliza-
fa = Ba Lo = (3% 12y tion of the[Z] matrix yields the squared of theh-mode propa-
= Py, L1900 = ()0 (12) gation constant—theth eigenvalue ofL]—and also its trans-
and, consequently, all the properties of a biorthogonal-ba¥@rse magnetic amplitude through the knowledge of theth
apply to the{w,, v,} set. In particular, the,, v,} modes elger?vectov[c(_n)_] (recall that its components qonstltute the ex-
can be used as a basis to represent any arbitrary vector. Ti@sion coefficients of the unknown modg(r) in terms of the

following (10) auxiliary modequ,(r)}). Itis important to note that the diago-
nalization of[ L] not only provides us with the propagation con-
u, = Z Copllp  Um = Z dimyqUq- (13) stants and tranverse magnetic amplitudes of the modes, but also
P q with their whole three-dimensional magnetic- and electric-field

inl d with th ) . Structure. Both the axial component of the magnetic field and the
We are certainly concerned with the matrix representation pf o erse and axial components of the electric field are related

alinear operator of trje riaal Pfo*?'eh_’ The matrix eIement; of o h; through constraints given by Maxwell's equations [20].
the L, operator in the(w,, 9, } basis will then easily be obtainedryis 5t is very important from a computational point-of-view
by qpplylng Fhe standgrd Galerk|_n momer}t method.[21]. BY I%ecause only the diagonalization process for[thlematrix is
serting the first equation of (13) into the first equation of (11}e4ested in the numerical implementation of this method.
and applying the linear properties 57 we find However, the matrixZ] is infinitely dimensional. In order to
Z ey Lty = 32 Z o (14) develop a realistic method, we have to work with a finite set of
(r)p=Tp = Fn ()p™p- auxiliary fields. Unfortunately, there are no general conditions
P P that guarantee the convergence of the expansions. This conver-
The next step in the application of the Galerkin procedure is g@nce will depend on both the nature of th@perator and the
choose a set of weighting functiofis, }, and to take the inner auxiliary problem chosen to define the biorthogonal basis. In
product for eachy, yielding general, we observe that the real modes are better described
by increasing the number of auxiliary modes. In the same way,
Z Cln)pVq, Lty) = B2 Z Cln)p(Ugy Up) = /32c<n)q. (15) auxiliary basis encompassing the most relevant features of the
p P real problem produce faster convergence. In any case, numer-
ical convergence tests must be done by sweeping the number of

The above system can be written in matrix form as . . .
auxiliary modes over meaningful ranges and studying the sta-

Ly Ly -+ Ly - )t )t bility of the solutions. _ . o

Loy Loy -+ La, - Cn)2 2 The method we have just presented involves no restriction on
) ) ) ) ) the vector character of the electromagnetic field. The key eigen-
: : =3 : value (7) are completely general and involve the nonself adjoint

Lpy Ly Lpg | | oo C(n)p operatorL. It is remarkable that the nonself-adjoint character

of L is present even when the medium is lossles$a, ) is
(16) areal function)] showing the inherent nonself-adjoint character
where the elements of the matfik] are obtained as of electromagnetic propagation. It is also interesting to note that
itis precisely the nonself-adjoint part &f the second matrix in
Lpg = (94, Luy). (17) (4a), the one responsible for polarization mixing. The diagonal
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a Fig. 3. Rectangular waveguide loaded with a centered dielectric slab.

Fig.1. Cross section of aninhomogeneously filled rectangular waveguide with

arbitrarily placed lossy dielectric slabs. TABLE 1l

NORMALIZED PROPAGATION CONSTANT 3a OF A RECTANGULAR WAVEGUIDE
LOADED WITH A CENTERED DIELECTRIC SLAB

a/2 a/2
Mode | Ref. [6] | This method | Rel. difference (%)
LSE,q | 17.127 17.127 i 0.006
LSEg | 15.147 15.147 i 0.007
a/2
LSEy, | 11.821 11.820 0.008
£, =€, €, e=¢, LSEy | 7.602 7.602 ; 0.013
LSE;; | 15.933 15.932 0.006
LSEs; | 13.783 13.782 0.007
a LSE3; | 10.013 10.012 0.01
. . . . . ) LSE4 | 4.280 4.278 0.05
Fig.2. Rectangular waveguide loaded with a dielectric slab along the sidewall.
LSE;o | 11.637 11.637 i 0.009
TABLE | LSEs | 8.457 8.456 0.01
NORMALIZED PROPAGATION CONSTANT
. . 1
3/kq OF A RECTANGULAR WAVEGUIDE LOADED WITH A DIELECTRIC SLAB LMy | 15.739 15723 0
ALONG THE SIDEWALL LSMy, | 13.203 13.161 0.3
LSM3; | 9.450 9.491 0.4
Mode order | Exact solution | Ref. [9] | This method | Rel. difference (%)
LSMy; | 4.989 4.858 2.6
1 1.27576 1.27327 1.27574 0.002
2 0.97154 0.97101 |  0.97159 0.005 LMy, | 11.369 11.348 0-2
3 0.72865 | 0.72539 |  0.72863 0.003 LSMz | 7.476 7401 1.0
4 0.59390 0.59280 0.59388 0.003

o o ) L strated to deal with open guides like optical fibers [18],
and, thus, nonpolarization mixing, part is self-adjoint in los 19]. We will now focus on dielectric-loaded rectangular

less media. This fact makes evident the close relation betw%é\/eguides. We have develope@@RTRAN code to analyze a
the nonself-adjoint character 6fand the full-vector description rectangular waveguide partially loaded with arbitrarily placed

given by its eigenvectors. Indeed, a cylindrical waveguide unjsey gielectrics of rectangular cross section, as can be shown
formly loaded with a homogeneous dielectric is described bytmeFig_ 1. Thus, the relative dielectric permittivity.(z, y) of
first matrix of (4a) (the second matrix is zero), and only TM angig guide can be expressed as follows: :

TE modes appear. However, when it is filled with an inhomo-

geneous dielectric, due to the second matrix of (4a), most of the N
modes are hybrid. To end, we emphasize the unambiguous andl(z, y) =¢,, + Z(E"i — €ra)
rigorous character of the matrix construction and of the mode i=1
expansions presented here, which are based on the biorthogo- e e
nality property (8) satisfied by the auxiliary basis. X H<$ —x; + 5) - H<$ x; — 5)
IIl. NUMERICAL RESULTS My <y it @) g <y i @)
The present method can be applied to a large variety of 2 2

waveguides. In fact, its suitability has already been demon- (20)
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Fig. 4. (a) Rectangular waveguide loaded with three dielectric slabs. Plots of the real part of the Poynting:vemtopgnent) for the: (bl Eq:, (¢) TEq2,
and (d)TEq3; modes, respectively.

where H (x) is the Heaviside functiony is the number of di- located one dielectric rectangular slab, and we have taken the
electric slabs, and thith dielectric is centered at poiit;, 7;), vector mode functions of an empty rectangular guide as the aux-
its size beinge; by d;. In our case, the auxiliary problem isiliary basis. In Table I, we compare our results with the exact so-
chosen to be a homogeneously filled rectangular waveguidigjon, and also with results calculated in [9] using the finite-el-
characterized by,.(x, v) = ¢,.., whose eigenvalues and eigenement method. For the comparison, we present the normalized
vectors are well known (see, e.g., [24]). Following the theorgbropagation constant of the first mod@g,, calculated for the

ical formulation, the matrix elements @], derived from (19), working frequency given b¥oa = 3. Only 200 auxiliary modes
have been used, taking 31 s on a CrayOrigin2000 machine. The

results agree with each other accurately.
Lpg =326, + k%/ (sr(at,y) _ gr($7y)) (&, x flq) .3dS The se_cond case is again a recFangulgr waveguide of W_idth
s a and heighta/2 with a centered dielectric slab, as shown in
+/ {é y <<Vt5r($a y)  Vign(z, y)) Fig. 3. In Table II, we present the normalized propagation con-
s er(x,y) éxlz, y) stantfq for the LSE and LSM modes calculated for the oper-

. . ating frequency defined byya = 47. We compare our results

X (Vt X hq))} -zdS. (1) with those provided by a variational approach in [6]. The dielec-

tric region size is:/2 by «/2 with relative permittivitye,., = 2.
After some algebraic manipulations, these integrals have be&hin the previous case, the auxiliary problem is an empty rect-
analytically calculated. As a consequence, only a numerical dhRgular guide. The results of Table Il have been obtained using
agonalization process has to be performed for each frequed®p basis functions, the computation time being 103 s on a Cray-
point, thus resulting in fast code implementation. Origin2000 machine. The agreement between both methods is
We have compared the results of our approach with existiggod.

ones for five different dielectric-slab-loaded rectangular guides.The third example is a rectangular waveguide loaded with
The first case is a rectangular waveguide of widthnd height three dielectric slabs [see Fig. 4(a)]. This structure is used to
a/2, with a dielectric slab along the sidewall, as shown in Fig. 2nodel a microwave cure applicator in [5]. In this problem, we
Half of the waveguide is filled with dielectric material whosdocate a dielectric slab of relative permittivity; = 10.0 at the
relative permittivity is=,; = 2.25 and the other half is vacuum. center of a standard WR-340 guide, which was homogeneously
This case is particularly interesting because the analytical sdfilled with a dielectric of relative permittivity,., = 1.5, whose
tion does exist [20]. To solve this simple case, we have propertyodes are the auxiliary basis. In Table Ill, we give the cutoff

are given by
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TABLE Il 1.50
CUTOFF FREQUENCIES(GHZz) OF A RECTANGULAR WAVEGUIDE LOADED WITH
THREE DIELECTRIC SLABS FOR DIFFERENTVALUES OF THE RELATIVE WIDTH
OF THE CENTRAL DIELECTRIC REGION (¢/a)

EH11\

c/a=02 ¥ 125 |
o
Mode | Ref. [5] | This method | Rel. difference (%)
TEe; | 0.778 0.775 0.4
TEey | 2.362 2.360 0.08
TEes | 3.372 3.371 0.03 1.00 ' -
10 20 30

c/a =04 f (GHz)

Mode | Ref. [5] | This method | Rel. difference (%)
Fig. 5. Dispersion curves for theH,; and HE;; modes of a shielded

TBor | 0.625 0.624 0.2 rectangular dielectric waveguide. Comparison between our results (solid lines)
TEge | 1.550 1.553 0.2 and the results obtained with the finite-difference method [25] (dots).
TEy; | 2.668 2.670 0.007

¢/a=06 3 o
Mode | Ref. [5] | This method | Rel. difference (%) €, T_>§ N )

Yl

TEy | 0.569 0.570 0.2 e (X
TEy { 1.224 1.221 0.2 a
TEg; | 1.984 2.001 0.9 2 2

c/a =0.8 {o
Mode | Ref. [5] | This method | Rel. difference(%) = 3
TEg; | 0.556 0.558 0.4

1
TEgp | 1.121 1.122 0.1
TEq; | 1.681 1.701 1.2
. . . . . 0 "
frequencies for four different widths of the central dielectric re- 1 5 3 4

gion, and we compare our results with those obtained by solving
a transcendental equation [5]. The number of basis functions
employ(_ed _In th,ls _Case IS 390' The dIS'trlbl.Jtlon of the eerCtrei' . 6. Dispersion curves for the fundamental mode of a rectangular guide
magnetic field is important in the applications of this kind Ofaded with a centered inhomogeneous dielectric slab, as a function of the
structures in order to focus the energy in the central region tockness: (1x/a = 0.5, (2) ¢/a = 0.2, and (3)c/a = 0.1. Comparison

the guide. Our method provides the propagation constants %ﬁEgsgﬂ;?gr:gls%t%(jgt'%'r']n[%?)(ggghe results obtained with a technique based
the fields of the modes. As an example, we show the Poynting

vector profiles for the first propagating modes in Fig. 4(b)—(d).

In these plots, the operating frequency is 5 GHz, and the rél= 1.88d;. Only 200 basis functions are necessary to obtain the
ative width of the central dielectric region éga = 0.6. One firstmodes. The computation time required to obtain the results
of the most attractive features of our method is the versatilighown in Fig. 5is 12 s per frequency point on a CrayOrigin2000
and flexibility for the analysis and design of complex dielectriyachine. We find a good agreement with previous results.
structures filling a rectangular guide, thus becoming a powerful Finally, we want to show how our method can also be applied
and effective computer-aided design (CAD) tool. That is to s&i@ analyze waveguides loaded with inhomogeneous dielectric
the inclusion of other slabs inside the guide is a very simple taglabs. The fifth example is a rectangular waveguide loaded with
employing this algorithm, while other techniques require to r@ centered inhomogeneous dielectric slab. The relative permit-
calculate the full problem in order to find the new transcendentélity of the inhomogeneous slab depends on the coordinate
equation. in the form (see Fig. 6)

kqa

The fourth example is a shielded rectangular dielectric wave- )
guide. In Fig. 5, we present the dispersion curves for the first err(x) =1+ (Erl(max) _ 1) <1 _ <i) ) (22)
two modes, comparing our results with those obtained with a fi- c/2
nite-difference method [25]. The relative permittivity of the core
is €,1 = 2.22, and the dimensions of the rectangular rodare with ¢,1(,,.x) = 9 and where the origin of the-axis is at
andd,, ¢; /d; = 0.99. The dielectric rectangular rod is shieldedhe center of the waveguide. We have computed the dispersion
by a metallic rectangular guide of dimensiaons- 1.88¢; and curves of the fundamental mode for three different values of
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¢/a, using 300 auxiliary modes. In Fig. 6, we compare our req{11]
sults with those presented in [6] using a variational formulation.

[12]

[V. CONCLUSIONS
[13]
In this paper, we have developed a method for the analysis
of inhomogeneously filled waveguides with lossy dielectrics.
Once Maxwell's equations are written in terms of the transvers
components of the fields of guided modes, we have shown that
they can be rewritten as a system of eigenvalue equations for a
nonself-adjoint operator and its adjoibtand ", respectively.
The eigenvectors of the systei, L'} define a biorthonormal
basis and allow to transform the differential operator system intL6]
alinear matrix eigenvalue problem, using the eigenvectors of an
auxiliary problem to expand the modes of the original problem.
We have developedrmpRTRANCOdE to obtain the modal spec- [17]
trum of rectangular waveguides filled with dielectric slabs. In
principle, our program can deal with any number of lossy dielecf18]
tric slabs with arbitrary size and location within the rectangular
waveguide. We have tested it by comparison with theoretical réng
sults found in the technical literature. We demonstrate that it can
be used to work out the modal spectrum of a large variety of difzo]
electric guides.
Finally, we showed that our method can deal with inhomogef21]
neous dielectrics. Furthermore, our method can be easily used
to analyze dielectric rods with nonrectangular cross section arfczi

inhomogeneously magnetic-media-filled waveguides. [23]

[24]
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