
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 48, NO. 4, APRIL 2000 589

Analysis of Inhomogeneously Filled Waveguides
Using a Bi-Orthonormal-Basis Method
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Abstract—A general theoretical formulation to analyze inhomo-
geneously filled waveguides with lossy dielectrics is presented in
this paper. The wave equations for the tranverse-field components
are written in terms of a nonself-adjoint linear operator and its
adjoint. The eigenvectors of this pair of linear operators define a
biorthonormal-basis, allowing for a matrix representation of the
wave equations in the basis of an auxiliary waveguide. Thus, the
problem of solving a system of differential equations is transformed
into a linear matrix eigenvalue problem. This formulation is ap-
plied to rectangular waveguides loaded with an arbitrary number
of dielectric slabs centered at arbitrary points. The comparison
with theoretical results available in the literature gives good agree-
ment.

Index Terms—Dielectric-loaded waveguides, eigenvalues, eigen-
vectors, numerical analysis, waveguide theory.

I. INTRODUCTION

I NHOMOGENIOUSLY filled waveguides have received
considerable attention in the last decades because of their

applications in a variety of waveguide components. The modes
of propagation of such waveguides are not, in general, TM or
TE modes, but hybrid modes. The boundary value method has
been used to calculate the modal solutions for concentric [1],
[2] and eccentric [3] dielectric-loaded circular guides, as well
as for rectangular guides filled with dielectric slabs [4], [5]. In
that method, the electromagnetic field is expanded in terms of
analytical functions in the relevant regions of the waveguide,
and a linear eigenvalue problem is obtained after imposing the
boundary conditions in the corresponding interfaces. When the
guide is filled with two or more dielectrics, the determination
of the propagation constants and of the mode fields becomes
difficult because of the transcendental equations involved.
Alternatively, a variational method is used in [6] to calculate
the eigenvalues in rectangular waveguides loaded with lossless
dielectric slabs. The finite-element method has been extensively
applied to find the eigenvalues and modal fields in dielectric
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loaded guides [7], [8]–[10]. There are, as well, a number
of matrix formulation methods to analyze inhomogeneously
filled waveguides in which the fields are expanded in a set of
basis functions [11]–[16], and based on Laplace and Fourier
transforms techniques [17].

In this paper, we develop a rigorous and computationally
efficient method to obtain the modal spectrum in inhomoge-
neously filled waveguides with lossy dielectric of arbitrary
profiles. Starting with the differential equations governing
the propagation of the tranverse electric and magnetic fields,
we identify a pair of linear nonself-adjoint operators, whose
eigenvectors satisfy a biorthogonality relationship. The key el-
ement of our approach is to transform the system of differential
equations into a linear matrix eigenvalue problem by means
of the Galerkin method, using the eigenvectors of an auxiliary
problem. From a computational point-of-view, this method
is very efficient because the integrals involved in the matrix
elements are, in principle, frequency independent, so they have
to be evaluated only once to obtain the dispersion curves, thus
generating a robust and efficient code. This method has been
applied to study open dielectric waveguides, as reported in [18]
and [19]. Comparisons between our results and the available
numerical published data fully validate the theory presented
here.

II. THEORETICAL FORMULATION

Our starting point are Maxwell’s equations for uniform cross-
section waveguides partially or totally filled with a lossy di-
electric media defined by its dielectric permittivity

. We assume that the considered media does not have
magnetic properties . Thus, the solution of the problem
can be obtained as a superposition of fields with explicit har-
monic dependence on(we assume that the time dependence
is always implicit and has a harmonic form for all vector
fields)

(1)

where is the propagation constant andand represent the
transverse-dependent (depending onand only) three-dimen-
sional vector amplitudes of the electric and magnetic fields, re-
spectively. We are interested in rewriting Maxwell’s equations
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in terms of the transverse components of the electric and mag-
netic fields and . Following [20], we can
obtain a set of equations for them as follows:

(2a)

(2b)

where is the relative dielectric permittivity, is the
free-space wavenumber ( ), and the operator
is the transverse gradient operator. The axial components
and are determined by and through constraint relations
given by Maxwell’s equations.

For our purposes, it is more interesting to rewrite (2) in a
different way. We will express the two previous equations in a
two-dimensional matrix form. Both and are two-dimen-
sional vector fields that are represented by two component vec-
tors. Thus, the differential operators acting on them can be ex-
pressed as 2 2 matrices. Equation (2b) involves tranverse two-
dimensional vectors only. However, (2a) includes the three-di-
mensional axial vector ( ) on its right-hand side. On the
one hand, it is easy to check that the double three-dimensional
vector product in (2a) can be rewritten in terms of a 22 matrix
acting on (using, e.g., the completely antisymmetric tensor in
two-dimensions ). On the other hand, for reasons that will
become clear later, it is more convenient to rewrite (2b) not
in terms of , but in terms of the closely related vector field

( is the conjugation operation). After manipu-
lating (2b) in a suitable way, one can obtain the following equiv-
alent set of equations in matrix form:

(3)

where and are 2 2 matrix differential operators given by

(4a)

(4b)

where , and the derivative ap-
pearing in the second matrix of acts both on the components
of and on the vector field . The operator is called the

formal adjointto the linear operator , and is defined as follows
(see [21]):

(5)

where and are two-dimensional vector complex func-
tions defined on a two-dimensional closed and bounded region

, with boundary . They are members of a Hilbert space
with inner product

(6)

for all , . When , we say that is formally
self-adjoint.

The set of (3) is a system of eigenvalue equations for the non-
self-adjoint operator and its adjoint

(7)

where and .
The eigenvectors of a nonself-adjoint operator do not satisfy

a orthogonality relation. The same applies to the eigenvectors
of its adjoint. In our case, this means that and

, being the Kronecker delta symbol.
Apparently, the impossibility of using the standard orthog-
onality relations associated to a self-adjoint operator would
prevent us from expanding arbitrary functions in terms of its
eigenvectors. However, since we are considering a
system, this is not so because we can take advantage of what it
is called thebiorthogonality relation[22]

(8)

The biorthogonality relations were successfully used by Paiva
and Barbosa to analyze inhomogeneous biisotropic planar
guides [23]. Despite its apparently formal character, this
relation has a very clear physical meaning. If we write the
inner product in its integral from and restore the original
three-dimensional notation, (8) reads

(9)

where represents the unitary vector along the-direction. In
the waveguide literature, the relation (9) is known as the orthog-
onality condition for the waveguide modes [20].

The previous relation allows us to expand any vector function
of in terms of either the eigenvectors, , or those of

its adjoint ,

(10)

where the complex expansion coefficients are given by the inner
products and . Notice the ’s and
’s coefficients are not trivially related, unless whenis self-

adjoint, in that case, and .
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The previous results define the framework in which our
method is developed. Our aim is to find the propagation
modes of a realistic waveguide characterized by a complex
relative dielectric permittivity . As we have proven, the
electromagnetic propagation in this waveguide is described by
the system of eigenvalue (7). Let be the matrix differential
operator (4a) representing the waveguide, we are interested
in and , the eigenmodes of and , respectively, and

, the propagation constant of theth mode. The system of
equations describing this waveguide and that we want to solve
is then

(11)

Now we define anauxiliary problemas a waveguide charac-
terized by a relative dielectric permittivity and with the
same boundary conditions as the waveguide described by (11).
The eigenmodes of the auxiliary problem and, thus,
their respective propagation constants, are supposed to be per-
fectly known. The equations describing the auxiliary problem
constitute another system

(12)

and, consequently, all the properties of a biorthogonal-basis
apply to the set. In particular, the modes
can be used as a basis to represent any arbitrary vector. Thus,
following (10)

(13)

We are certainly concerned with the matrix representation of
a linear operator of the real problem. The matrix elements of
the operator in the basis will then easily be obtained
by applying the standard Galerkin moment method [21]. By in-
serting the first equation of (13) into the first equation of (11),
and applying the linear properties of, we find

(14)

The next step in the application of the Galerkin procedure is to
choose a set of weighting functions , and to take the inner
product for each yielding

(15)

The above system can be written in matrix form as

...
...

...

...
...

...
...

...

...

...

...
(16)

where the elements of the matrix are obtained as

(17)

For practical purposes, it is convenient to introduce the dif-
ference operator

(18)

Thus, the elements of the operator in the auxiliary
basis are trivially obtained by means of (17)

(19)

where the first term is diagonal because the operatoris ex-
pressed in its own biorthogonal basis. At this point, it is impor-
tant to remark that we have tranformed the differential operator
system (11) into a linear matrix eigenvalue problem defined in
(16). An analog equation for its adjoint matrix

can also be derived. Thus, the information con-
tained in the above matrix equations is the same as in the differ-
ential equations for the and operators (11). Diagonaliza-
tion of the matrix yields the squared of theth-mode propa-
gation constant—theth eigenvalue of —and also its trans-
verse magnetic amplitude through the knowledge of theth
eigenvector (recall that its components constitute the ex-
pansion coefficients of the unknown mode in terms of the
auxiliary modes ). It is important to note that the diago-
nalization of not only provides us with the propagation con-
stants and tranverse magnetic amplitudes of the modes, but also
with their whole three-dimensional magnetic- and electric-field
structure. Both the axial component of the magnetic field and the
transverse and axial components of the electric field are related
to through constraints given by Maxwell’s equations [20].
This fact is very important from a computational point-of-view
because only the diagonalization process for thematrix is
requested in the numerical implementation of this method.

However, the matrix is infinitely dimensional. In order to
develop a realistic method, we have to work with a finite set of
auxiliary fields. Unfortunately, there are no general conditions
that guarantee the convergence of the expansions. This conver-
gence will depend on both the nature of theoperator and the
auxiliary problem chosen to define the biorthogonal basis. In
general, we observe that the real modes are better described
by increasing the number of auxiliary modes. In the same way,
auxiliary basis encompassing the most relevant features of the
real problem produce faster convergence. In any case, numer-
ical convergence tests must be done by sweeping the number of
auxiliary modes over meaningful ranges and studying the sta-
bility of the solutions.

The method we have just presented involves no restriction on
the vector character of the electromagnetic field. The key eigen-
value (7) are completely general and involve the nonself adjoint
operator . It is remarkable that the nonself-adjoint character
of is present even when the medium is lossless ( is
a real function)] showing the inherent nonself-adjoint character
of electromagnetic propagation. It is also interesting to note that
it is precisely the nonself-adjoint part of, the second matrix in
(4a), the one responsible for polarization mixing. The diagonal
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Fig. 1. Cross section of an inhomogeneously filled rectangular waveguide with
arbitrarily placed lossy dielectric slabs.

Fig. 2. Rectangular waveguide loaded with a dielectric slab along the sidewall.

TABLE I
NORMALIZED PROPAGATION CONSTANT

�=k OF A RECTANGULAR WAVEGUIDE LOADED WITH A DIELECTRIC SLAB

ALONG THE SIDEWALL

and, thus, nonpolarization mixing, part is self-adjoint in loss-
less media. This fact makes evident the close relation between
the nonself-adjoint character ofand the full-vector description
given by its eigenvectors. Indeed, a cylindrical waveguide uni-
formly loaded with a homogeneous dielectric is described by the
first matrix of (4a) (the second matrix is zero), and only TM and
TE modes appear. However, when it is filled with an inhomo-
geneous dielectric, due to the second matrix of (4a), most of the
modes are hybrid. To end, we emphasize the unambiguous and
rigorous character of the matrix construction and of the mode
expansions presented here, which are based on the biorthogo-
nality property (8) satisfied by the auxiliary basis.

III. N UMERICAL RESULTS

The present method can be applied to a large variety of
waveguides. In fact, its suitability has already been demon-

Fig. 3. Rectangular waveguide loaded with a centered dielectric slab.

TABLE II
NORMALIZED PROPAGATION CONSTANT �a OF A RECTANGULAR WAVEGUIDE

LOADED WITH A CENTEREDDIELECTRIC SLAB

strated to deal with open guides like optical fibers [18],
[19]. We will now focus on dielectric-loaded rectangular
waveguides. We have developed aFORTRAN code to analyze a
rectangular waveguide partially loaded with arbitrarily placed
lossy dielectrics of rectangular cross section, as can be shown
in Fig. 1. Thus, the relative dielectric permittivity of
this guide can be expressed as follows:

(20)
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(a) (b)

(c) (d)

Fig. 4. (a) Rectangular waveguide loaded with three dielectric slabs. Plots of the real part of the Poynting vector (z-component) for the: (b)TE , (c)TE ,
and (d)TE modes, respectively.

where is the Heaviside function, is the number of di-
electric slabs, and theth dielectric is centered at point ,
its size being by . In our case, the auxiliary problem is
chosen to be a homogeneously filled rectangular waveguide,
characterized by , whose eigenvalues and eigen-
vectors are well known (see, e.g., [24]). Following the theoret-
ical formulation, the matrix elements of , derived from (19),
are given by

(21)

After some algebraic manipulations, these integrals have been
analytically calculated. As a consequence, only a numerical di-
agonalization process has to be performed for each frequency
point, thus resulting in fast code implementation.

We have compared the results of our approach with existing
ones for five different dielectric-slab-loaded rectangular guides.
The first case is a rectangular waveguide of widthand height

, with a dielectric slab along the sidewall, as shown in Fig. 2.
Half of the waveguide is filled with dielectric material whose
relative permittivity is and the other half is vacuum.
This case is particularly interesting because the analytical solu-
tion does exist [20]. To solve this simple case, we have properly

located one dielectric rectangular slab, and we have taken the
vector mode functions of an empty rectangular guide as the aux-
iliary basis. In Table I, we compare our results with the exact so-
lution, and also with results calculated in [9] using the finite-el-
ement method. For the comparison, we present the normalized
propagation constant of the first modes , calculated for the
working frequency given by . Only 200 auxiliary modes
have been used, taking 31 s on a CrayOrigin2000 machine. The
results agree with each other accurately.

The second case is again a rectangular waveguide of width
and height with a centered dielectric slab, as shown in

Fig. 3. In Table II, we present the normalized propagation con-
stant for the LSE and LSM modes calculated for the oper-
ating frequency defined by . We compare our results
with those provided by a variational approach in [6]. The dielec-
tric region size is by with relative permittivity .
As in the previous case, the auxiliary problem is an empty rect-
angular guide. The results of Table II have been obtained using
400 basis functions, the computation time being 103 s on a Cray-
Origin2000 machine. The agreement between both methods is
good.

The third example is a rectangular waveguide loaded with
three dielectric slabs [see Fig. 4(a)]. This structure is used to
model a microwave cure applicator in [5]. In this problem, we
locate a dielectric slab of relative permittivity at the
center of a standard WR-340 guide, which was homogeneously
filled with a dielectric of relative permittivity , whose
modes are the auxiliary basis. In Table III, we give the cutoff
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TABLE III
CUTOFFFREQUENCIES(GHz) OF A RECTANGULAR WAVEGUIDE LOADED WITH

THREEDIELECTRIC SLABS FORDIFFERENTVALUES OFTHE RELATIVE WIDTH

OF THE CENTRAL DIELECTRIC REGION (c=a)

frequencies for four different widths of the central dielectric re-
gion, and we compare our results with those obtained by solving
a transcendental equation [5]. The number of basis functions
employed in this case is 300. The distribution of the electro-
magnetic field is important in the applications of this kind of
structures in order to focus the energy in the central region of
the guide. Our method provides the propagation constants and
the fields of the modes. As an example, we show the Poynting
vector profiles for the first propagating modes in Fig. 4(b)–(d).
In these plots, the operating frequency is 5 GHz, and the rel-
ative width of the central dielectric region is . One
of the most attractive features of our method is the versatility
and flexibility for the analysis and design of complex dielectric
structures filling a rectangular guide, thus becoming a powerful
and effective computer-aided design (CAD) tool. That is to say,
the inclusion of other slabs inside the guide is a very simple task
employing this algorithm, while other techniques require to re-
calculate the full problem in order to find the new transcendental
equation.

The fourth example is a shielded rectangular dielectric wave-
guide. In Fig. 5, we present the dispersion curves for the first
two modes, comparing our results with those obtained with a fi-
nite-difference method [25]. The relative permittivity of the core
is , and the dimensions of the rectangular rod are
and , . The dielectric rectangular rod is shielded
by a metallic rectangular guide of dimensions and

Fig. 5. Dispersion curves for theEH and HE modes of a shielded
rectangular dielectric waveguide. Comparison between our results (solid lines)
and the results obtained with the finite-difference method [25] (dots).

Fig. 6. Dispersion curves for the fundamental mode of a rectangular guide
loaded with a centered inhomogeneous dielectric slab, as a function of the
thickness: (1)c=a = 0:5, (2) c=a = 0:2, and (3)c=a = 0:1. Comparison
between our results (solid lines) and the results obtained with a technique based
on a variational formulation [6] (dots).

. Only 200 basis functions are necessary to obtain the
first modes. The computation time required to obtain the results
shown in Fig. 5 is 12 s per frequency point on a CrayOrigin2000
machine. We find a good agreement with previous results.

Finally, we want to show how our method can also be applied
to analyze waveguides loaded with inhomogeneous dielectric
slabs. The fifth example is a rectangular waveguide loaded with
a centered inhomogeneous dielectric slab. The relative permit-
tivity of the inhomogeneous slab depends on the coordinate
in the form (see Fig. 6)

(22)

with and where the origin of the-axis is at
the center of the waveguide. We have computed the dispersion
curves of the fundamental mode for three different values of
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, using 300 auxiliary modes. In Fig. 6, we compare our re-
sults with those presented in [6] using a variational formulation.

IV. CONCLUSIONS

In this paper, we have developed a method for the analysis
of inhomogeneously filled waveguides with lossy dielectrics.
Once Maxwell’s equations are written in terms of the transverse
components of the fields of guided modes, we have shown that
they can be rewritten as a system of eigenvalue equations for a
nonself-adjoint operator and its adjointand , respectively.
The eigenvectors of the system define a biorthonormal
basis and allow to transform the differential operator system into
a linear matrix eigenvalue problem, using the eigenvectors of an
auxiliary problem to expand the modes of the original problem.

We have developed aFORTRANcode to obtain the modal spec-
trum of rectangular waveguides filled with dielectric slabs. In
principle, our program can deal with any number of lossy dielec-
tric slabs with arbitrary size and location within the rectangular
waveguide. We have tested it by comparison with theoretical re-
sults found in the technical literature. We demonstrate that it can
be used to work out the modal spectrum of a large variety of di-
electric guides.

Finally, we showed that our method can deal with inhomoge-
neous dielectrics. Furthermore, our method can be easily used
to analyze dielectric rods with nonrectangular cross section and
inhomogeneously magnetic-media-filled waveguides.
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