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On Nonlinear Modeling of Microwave Devices
Using Interpolating Wavelets
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Abstract—Nonlinear semiconductor devices are modeled using packaging into which the integrated circuits are placed. The
the sparse point representation based upon interpolating wavelets. possibility of achieving this type of global circuit modeling

T_h_e fqnc_tions of pot_ential, fields, electron, and hole current (_jen-_ approach has been demonstrated in [1] and [2].
sities inside the device are represented by a twofold expansion in

scaling functions and wavelets. In most regions where the func- R“ecently, anew categc?,ry of orthogonal §ystem§, referred to
tions are smoothly varying, only scaling functions are employed &S “orthogonal wavelets,” has appeared in the literature [3].
as the bases. In contrast, in small regions with sharp material or The wavelet expansion technique has proven to be an efficient
field variations, additional basis functio_ns, i_.e., wavelets, are intro- method in the approximation of functions. Different classes

duced. A nonuniform mesh generated in this manner is fully adap- o \yayelets have been used to analyze a variety of passive
tive, dynamic, and object oriented. Examples of device simulations . it ts. F le. Daubechi lets h
are presented, demonstrating good agreement with published lit- circul Componen S. or example, {:Iu ec !es wgve et . ave
erature and commercial software. The numerical examples also been employed in [4] for the analysis of microstrip floating

show substantial savings in computer memory for electrically large structures. In [5], Battle—Lemarie wavelets have been imposed

problems. for the extraction of the internal inductance and skin-effect
Index Terms—interpolating wavelets, microwave devices, non- resistance matrices of multiple lossy transmission lines. In
linear modeling. this paper, we shall consider the application of multiresolution
analysis to the modeling of active semiconductor devices with

I. INTRODUCTION nonlinearities.

) o ) The use of scaling functions and wavelets as a complete set
D ENSELY packed modern integrated circuits consist qff pasis functions is referred to as multiresolution analysis [6].

closely spaced active and passive devices, with mamy derive a new algorithm, the potential distribution inside
levels of interconnect lines and discontinuities. The highegfe semiconductor and electron and hole current densities are
speed digital integrated circuits currently under developme,@tpresemed by a twofold expansion in scaling functions and
are employing completely new transistors such as silicQfyelets. Using only scaling functions allows correct modeling
germanium (SiGe), gallium arsenide (GaAs), and indiugk smoothly varying electromagnetic fields and materials pa-
phosphide (InP) heterojunction bipolar transistors (HBT'S)ameters. In regions with large field variations, additional basis
with upper cutoff frequencies of 45, 60, and even 225 GHgynctions (wavelets) are introduced. In our derivations, we have
Even CMOS-on-insulator (CMOS/SOI) integrated circuits agmployed a special class of wavelets; namely, the interpolating
capable of operating at clock rates in the 500-2000-MHz ranggayelets. This wavelet system has already been applied to the
while the SiGe, GaAs, and InP chips have been demonstratedftion of boundary problems for partial differential equations
operate at clock rates as high as 10-50 GHz. The interconngeISE's). For this type of wavelet, the evaluation of differential
on these high-performance components must increasingly §srators is simplified due to their elegant representations in
treated as transmission lines rather than merely as distribuiggins of cubic polynomial functions in the spatial domain.
capacitive loads. In such cases, the performance of an entirggayeral different approaches for solving PDE’s using
integrated circuit may be adversely affected by the high deviggyelets have been proposed, including the multiresolution
packing density and/or high-speed operation, due to unwantgfle-domain (MRTD) methods with adaptive gridding [7], [8].
effects such as, but not limited to, crosstalk caused by coupling;[9], the author used wavelets for finding regions requiring
surface waves, and unintended radiation. It is thus appargRy refinement in a finite-difference method. It has been noted
that integrated circuits designed with these transistors mUStEﬂﬁ‘several authors that nonlinear operators such as multipli-
developed based on advanced design tools that considercglion are too computationally expensive when performed
the circuit elements simultaneously, including active device@i,(ecﬂy in a wavelet basis, and several attempts have been
passive components, radiation elements, and the electropjgde to deal with this problem. Keiser [10] has used Coifman

wavelets to obtain approximations of point values in a wavelet
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domain, except in a small region of sharp variation near the pare will obtain the scaling function of the interpolating wavelets
junction. It is ideal to have a nonuniform grid, which is fine inp(z). From the construction, it follows that(x') has a compact

the region around the sharp variation and coarse in areas wharpport[—p + 1, p — 1] and is symmetric around = 0. If

the solution is smooth. As will be described in the followingve make one step in the subdivision scheme for the sequence
sections, the SPR can provide a nonuniform grid that is fulf, 1}, we obtain the two-scale relation

adaptive and dynamic. In other words, the SPR is fully object ot

oriented. The SPR itself is based on the new concept of inter- _

polating wavelets. The application of the SPR creates an op- o) = Z (/22w = k). “)
portunity to consider the grid as a dynamic object that is fully
integrated into the solution. The nonuniform grid becomes fullJsing an integer translation gf(x), we have a basis i, and
adaptive, in that changes in the grid follow the changes in tkee interpolant of any continuous functigifz) in V; can be
solution for each time step. defined as

k=—p+1

Il. INTERPOLATING SUBDIVISION SCHEME Pfa) = 2}; fo,up(x — k).

Introduced by Deslauriers and Dubuc [12], the dyadic grids . i i i
on the real line (or the subspace of the scaling functions) gzﬁnlgctje;?lam of any continuous functigfitz) in V; can be

Vi={wneRlpu=27kkez}, jez () Pot) =3 fowonels)
i.e., the grid points, are the integersiip and half-integers for k
.Vl' In general, the dygdic griizl’]_»Jr]L qontains all the gr!d points wherey; x(z) = o(2/z — k), k € Z is a basis inV;. Here,
in V;, as well as additional points inserted halfway in betwegfbtationV; is used as a function space and grid. Since the basis
each of the points ir¥;. More information and additional functions are cardinalp; x(z; ) = ok, j, k. I € Z, there

references describing interpolating subdivision schemes cani@ one-to-one correspondence between grid points and basis

found in [3]. functions.
Given function values onV;, {f;x}rcz, Where  The scaling function spaces introduced above generate a
fi.k = [f(z;x) is a function defined on the grid pointsiagder of spaces
in V;, the interpolating subdivision scheme defings;  in
V,+1. The even numbered grid points, 1, ox already exist in eCcVacV,CcViCh

V;, and the corresponding function values are left unchanged. . .
. . and the interpolating scheme enables us to move through these
Values at the odd grid points;; 2x+1 are computed by poly-

. ! . ! aces (i.e., to achieve either refinement or coarsening). Addi-
nomial interpolation from the values at the even grid points. V?g ( 9)

g . . | ; i he diff -
denote this interpolating polynomial By +1 or1. The degree Ional spaces$V; can be introduced to encode the difference be

p — 1 of this polynomial is odd to make the scheme symmetrigfveenvj andVis

i.e., we interpolate from an even number of function values. Vi, = V; @W'
. L j+1 J J-
Formally, we define one step of the subdivision scheme as

{fj+l,2k = fj,k

fit1, 2041 = Pig1, oe11(Tj41, 2041)

Introducing a basi§«; x }xecz in W;, we can write
VkeZ (2) Piprf(x) = Pif(x) = Z d; 1w, k()
k

where Py, 21+1(«) is chosen such that wherew; 1(x) = (27 — k). The functiony () is a wavelet

andd; ; are wavelet coefficients. One of the simplest possible
3) choices is to define)(x) as

Lo . P(x) = o2z —1).

Thus, we us@ symmetric points on the coarser ghiglto inter-

polate one new function value on the finer g¥ig. ;. For dyadic This wavelet was introduced by Donoho [13]. This choice is
grids, we can explicitly define the interpolating polynomial. Fogalled the Lazy wavelet transform [14]. This transform does not
the case = 4, a cubic polynomial, the computed values at odgerform any operation other than subsampling into the odd in-
grid points are dexed samples.

Given a representation of a function in the sp&ge;, one
Jit1 2041 = ( = fiok—1+ 9 5k + 95 k1 — 15, k+2)/16~ can decompose it into a coarser scale representatidp amd

) ) o ) a correction inl¥;. Starting with a representation ¥, this
Repeating the aforementioned subdivision recursively, we oflscomposition can be repeatéd- j, times

tain representations on successively finer g¥igas; increases,
and in the limitj — oo, we have a representation of the funcZ frwprn(z) = Z Fio, 6@jo, k()
tion f(«) at all dyadic rational points. k k
If the subdivision starts with the Kronecker delta sequence + Z Z d; 1 ().
{60, 1 }nez 0NV, and is then refined t¥;, in the limitj — oo, jo<i<d k&

Piy1 onq1(wj, kq1) = fiwsts for —p/2 <1< p/2.
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On the right-hand side, our function is decomposed into TABLE |
the scaling function representation on a coarse Mljd and FILTER COEFFICIENTSg; FOR THEFIRST DERIVATIVE APPROXIMATION
J
wavelets on successively finer scales.
n 2 1A 0 1 2 3 4
IlIl. SPARSEPOINT REPRESENTATION 0<z<h -25/12 | 4 -3 | 4/3 |-1/4
The idea behind the use of a wavelet basis is that certain func- » <« <2k -1/41 -5/6 |3/2} -1/2 | 1/12
tions are well compressed in such a basis. As a result, only a z> y121-2/3| 0 (2/3]-1/12

few basis functions are needed to represent the function with a
small error. Assume that a function is representedvbgoints

on a uniform grid, and the same function is represented, with B@lds for a sufficiently smooth functioifi(z) and for a large
errore, by N, wavelet coefficients, wherd, < N. We would enough level/. Further, the number of significant coefficients
like to be able to compute derivatives and multiply function&’s depends or as

in this wavelets basis i®(V,) time. The interpolating wavelet N, < cpe™ /P

transform provides the means to achieve this goal. The chosen -
basis has the property that each wavelet coefficient correspopdgquivalently
to a function value at a grid point.

. -p
Assume that we have the wavelet representation e S NP

J-1 Combining the last three inequalities, we can achieve a bound
Prf(@) = FiokPio k(@ + D D diathix(@). on the error versus/, as
" e |£(2) = Psf (@)oo < eaNS? (6)

erec; (¢ = 1, 2, 3) denote constants for a given function
iL‘). This result indicates that the sparse interpolating wavelet
approximation is of ordep in the number of significant coeffi-
ientsiV,.

costly when performed in a wavelet basis due to interactio
between scales in a wavelet representation. It would be id
to transform theN, wavelet coefficients taV, point values.

Such a transform does exist for the interpolating wavelets dfi L .
to the one-to-one correspondence between wavelet coefficient o perform the multiplication iO(X) time, we need to

and point values. To obtain a sparse wavelet representation,%gCncy the SPR pattern.of the product. The SPR of the prpduct
remove all wavelet coefficients with magnitude less than sona" l_:)e chose_n as_thg union ofth_e t_WO operand representations. If
threshold value. We then have the threshold expansion a pom_t value is missing, it is again interpolated from the coarser
scale in the SPR.
Pyf(x) = Z Fio. ko k(@) + Z Z d; w1 () Differentiation can be applied to the SPR of the function. For
& G keI K each point for which we wish to approximate the derivative,
(5) we locate the closest point in the SPR and choose the distance
where the sef/(¢) contains indexes of all significant coeffi-to that point as the step length A centered finite-difference
cients. The inverse transform can be performed, but only fstencil of ordep can then be applied, whepds the order of the
those points that correspond to the significant wavelet coefiirterpolating wavelets in the SPR. If any point is missing, it can
cients inl(e). If any point value is needed that does not exist, lie interpolated from a coarser scale. If any point in the stencil
will be interpolated from the coarser scale recursively. The at located outside the boundary, a one-sided stencil of the same
gorithm will terminate since we have all values on the coarsestder is employed. The finite-difference approximation of the

Operations such as differentiation and multiplication can b}_‘

grid Vj,. first and second derivatives are, respectively,
This inverse transform leads us to an SPR. Note that the SPR ) 1 ) .
is not a representation in a basis; rather, it is simply a collec- Fila) =5 > dif(z+ih)

tion of point values{ f; « }(;, »yer(e)- The SPR can be computed

without explicitly forming a sparse wavelet representation, i.€N .

it is possible to store the point values in the SPR, instead of (@) == Z gl f(x +ih).

the wavelet coefficients. The wavelet coefficients are only com- h* 4

puted to decide if the corresponding point value is to be includeg, 5, interval, the filter coefficients! and ¢/ depend onz

in the SPR or not. o o , since a one-sided approximation near the boundaries is used:

To examine the approximation error arising from using thg e values for the cage= 4 are presented in Tables | and II.

threshold expansion (5), we need the maximum norm In these tables, the filter coefficients for the first and second

l9]co = max_ |g(x)]. d_erivatives are shown at t_he left-hand-side boundary. The coef_ﬁ—
0<z<1 cients at the right-hand-side boundary are reversed in order, with

We are interested in the dependence of the error on the thresHJIBOSite signs. When the threshold parameter 0, the above

parameter. Donoho [13] and Holmstrém [11] have shown thatinite-difference approximations become ordinary finite-differ-
the estimation ence approximations on a uniform grid.

In the case of two dimensions, partial derivatives in each
|f(x) = Prf(z)lec < cre direction are evaluated using the one-dimensional (1-D)
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TABLE I [ 20pm -
FILTER COEFFICIENTSg,’ FOR THE SECOND DERIVATIVE APPROXIMATION .ﬂ_
n -2 -1 0 1 2 3 4 5
0<z<h 15/4 1 -77/6 | -107/6 | -13 | 61/12 | -5/6
p - substrate
h<z<2h 5/61-5/4]-1/3 | 7/6 |-1/2| 1/12
> -1/12 | 4/3 | -5/2 | 4/3 | -1/12

approximation. The step length is chosen as the distance —
to the closest point in the SPR, as measured along any of th T

coordinate directions.

IV. STATEMENT OF THE PROBLEM n+ 0.75 pm

The basic physical model consists of three coupled PDE’s
the Poisson equation for the electric field and two continuity
equations for the electrons and holes. These equations are su Y

plemented by the expressions for the electron and hole currer T — T
densities. Since the goal of this paper is to apply wavelets to sim |“‘_°'fr? —|
plify the analysis, the drift-diffusion approximation is used in "

the current density expressions. The mathematical model cor U1 = Cathode Contact

sists of Poisson’s equation U0 = Anode Contact

Fig. 1. Idealized 2-D cross section of a silicon diode.

VQU:—g(Nd—Na—i-p—n). @)

_ ) Fig. 1 presents a representative example of a (2-D) cross sec-
The electron and hole carrier concentrations are found from g of a silicon abrupt diode. The potential, electron, and hole

continuity equations carrier concentrations satisfy appropriate initial, boundary, and
on 1 interface conditions. In general, there are semiconductor/con-
i aV -J,=0 (8) ductor interfaces (contacts), semiconductor/isolation interfaces,

and external boundaries. We assume thermal equilibrium and
charge neutrality on ohmic contacts

ap 1
o Ty =0 ®) np = n;
and the electron and hole current densities satisfy p—n+D=0
J, = —qu.nVU + ¢D,Vn (10) wheren, is an intrinsic carrier concentration alis a given

doping function.
These conditions are provided by a condition on the electric
Jp = —quppVU — gD, Vp. (11) potential, which is given by the built-in voltadé,; and the ap-

The first term in (10) and (11) represents the conductivil'?)'ed potentialt/,
current due to the electric field, and the second term represents U=U,+U,.
a current flow due to diffusion. ¢ '

Assuming the Einstein relation for both electrons and holes At the outside boundaries, we always assume a vanishing out-

[15] ward electric field and vanishing outward current densities
D, =L VU -i=Jy =J, =0.
kgT In order to solve the drift—diffusion equations, itis convenient
D, = NPT- to express all variables in terms of scaled quantities. Several dif-

ferent scaling approaches are possible [16], [17]. In this study,
In the following derivations, we consider the mobility of the carwe have followed the approach of De Mari [16]. Without explicit
riersu,, andy, to be constant and field independent. More condeclaration, we always assume that the quantities are scaled.
plicated cases can be solved without major difficulties, althoughThe spatial discretization is performed using a method pro-
these cases may be more computationally expensive. Equatipased by Scharfetter—-Gummel [18]. The discrete model, there-
(7)—(11) summarize the coupled system of PDE’s describing tfege, consists of a system of two nonlinear ordinary differential
semiconductor device. All that remains is to specify boundasguations (ODE’s) of the first order and an algebraic equation.
conditions for a particular geometry. The two ODE'’s are coupled through the algebraic equation.
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0000000800000 0Ce00 00000008000 ®
V. TRANSIENT SOLUTION 0000000000000 00000000CO000000O00000
i i i H 0000000000000 0000000000000000Q00C0O0O0O
In scaled form, the basic semiconductor equations can by 900000000000000000000000000000000
. 000000000000 0CE®000C00®00C0O®0C0OO0®
written as [eNeNeNeNeNeNoNeNoNoNoNoNoNoNeNoNeNoNeNeNoNeoReNoRoRoNoRoNeNoNoNoNe]
000000000000 0OOOOOOOOOOOOOOOOOOOCO
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gQ(IInp) 0 Q0000000000000 0O0O0O0O0ODO0OOOO0OOO0O0OO0O0O0O0OO
? ? 00000000000 OO0OO0OOCOO0OOOOOOOOOCOOOO0OO0
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where vectord/, n, p are now the SPR of the normalized elec- ecccecoceccoecooceccoecoceccoecoo0e
H H H H O00000000000O0O0OO0O0OOO0OOOOOOOOOOOOOO0OO
trostatic potential and carrier concentrations. 00600 006000000000000000000000600
In our calculations we will follow the modified Gummel it- 0 00000000000000000000000000000999
erative approach [18]. The resulting system of ODE’s can beLooooooooooooooooooooooooooooooooo
0000000000000 00O0000CO0O0O0ODO0OOOOO0OO0OO0
solved by an ODE solver, e.g., the fourth-order Runge— KUttTooooooooooooooooooooooooooooooooo
0000000800000 0Ce000000000O®0C0O0®
methOd[lg] 0000000000000 000O0000CO0O0O00O0O0DOO0OOOOO0O0OO0
The iterative procedure to solve the problem (12) canbepre ©00000000000000000000000000000000
. ) 0000000000000 0O0O0OOOOOCOOOOOOOOO0OC
sented in the following seven steps. ®0008000800C0800080008000CE000OG000®
. e e . - 0000000000000 O00OOOOOOOOOOOOOO0OO0OC
Stepl. Setlnltlalvaluesforthefunctlonpandnandflxa 0000000000000 000000O0O00O0O0CO0D0
O0000000000O0OO00O0OODOOO0O0OOOOOOOOOO0OOO
threShOIdvalue [ NoNeoNeoN NololoN NojNoNel NeloNeoN NoloNel NoNeNoN NoNoNeoN NoeNeNoN ]

Step 2:  Obtain SPR for p, n, antl.

Step 3:  Solve the Poisson’s equatign and obtain an SPR Fig. 2. Lowest resolution sizé¢f and highest resolution sizé in the
. interpolating wavelet method.
for the potential.

The basic difficulty in the solution of the transient system is
the requirement that the numerical method must be uncondition-
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Step 4: Make one step in the continuity equatignfor n. : A — o - PR
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Step 6: Update all SPR’s. P .
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ally stable. 2 1
For the solution of the linear algebraic system, we use a fast> Lot Tttt
variant of the Bi-CG iterative solver, called Bi-CGSTAB [20]. § 3o} @, ::: I
It is very important that the Bi-CGSTAB method does not Lt s
involve any use of the transpose matrX . Since we use inter- 20

polation to obtain the missing points in the finite-difference pro-
cedure, it is difficult to explicitly assemble the system mattix
Instead, we calculate all matrix vector products directly, without 10-
forming the matrix4. The matrix vector product is treated as an
operator acting on the SPR of the unknown function.
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VI. GRID ADAPTATION AND INTERPOLATING WAVELETS X, Mesh Units

Accuracy and efficiency are strongly related to the discretizgig. 3. Location in XY plane of nonzero coefficients of interpolating
tion of the equations and, thus, to the chosen mesh. In a stand¥4¢!et expansion, assuming error threshol of 10~°.
finite-difference algorithm, a tensor product mesh is usually se-
lected. The mesh lines continue in the regions far from the jurféinately, there is a high likelihood that a mesh that is optimal
tion, where the potentia| is a S|ow|y Varying function and ther@r the potential will be insufficient for a carrier concentration
is no need for a fine mesh. and vice versa. Attempts to satisfy all criteria will lead to a

The authors of [21] and [22] have introduced methods &fry dense mesh. However, the interpolating wavelets provide a
mesh line termination. The Laplacian discretization in any nodlique opportunity to overcome these difficulties. The SPR of a
(4, 7) at the end of a terminated line is obtained as a linear cofffnction contains the only points that correspond to significant
bination of potential values in the surrounding nodes. The lod&pvelet coefficients.
truncation error is of the order of a third derivative of the po- Assume that we have a continuous function, which is the ini-
tential and it is used as a refinement criterion. Problems of di! condition value. The construction of the mesh can be demon-
cretization and grid adaptation have also been addressed in [38jted for a rectangular domain as follows.

Several different criteria for the grid refinement process are 1) Set the smallest discretization valaeand calculate all
available. One can refine the mesh by taking into account the  mesh points equally spaced by the distah@ethe given
error in the Poisson equation, or the electron/hole continuity ~ domain, as illustrated in Fig. 2. This is the refinement
equations, or through the use of doping concentrations. Unfor-  limit.
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- : . . . . . . . TABLE Il
60L ot oce L NUMBER OF SIGNIFICANT COEFFICIENTS OF THETEST FUNCTION FOR
e e e e e e e e ey a DIFFERENT VALUES OF THE THRESHOLD PARAMETER
50 |- s s 1 Threshold parameter ¢ | The number of significant coefficients
vl e S Te o 0.0 4225
o 4 e ¢ o e e e e e e e 0.00001 1073
'E . . . . . . . . . .
5 . 0.0001 429
£ 30 b . | 0.001 291
[] . . . . . . . . . .
=
> . v
P2y S I PRI
10 -a 3 . L] . L] . - . . . - . . . . ..
p Region H n Region
ole - e e . E - - . :
0 10 20 30 40 50 60
X, Mesh Units - ; o
Fig. 4. Location inX-Y plane of nonzero coefficients of interpolating
wavelet expansion, assuming error threshold ef 10—*.
X
. . r : . . -1 pm Opm Tpm
60} * . : * N * ] Fig. 6. Diagram of 1-D silicon p-n junction.
1020 T T T
- ' - : : : : : - : ' - ®----9 Hole Concentration
S0 . o e e . L R 1018 Electron Concentration
1016@------ R _EEEEEE -0 --00g
@ 40 £ 14 .‘
g . g " »
2 - N
= . . . e ce e . . g o [ ]
g sor . - £ e
- g 1010 (]
b . . . . . - . . . . g ‘.
o
e e e e e e e e . © 48 -
20+ E 5 '\.
. . . - - . - - . - - . . - . IE 6 .“._.
. . . . . . . . L] . . . e 10 ‘...
L . e e e e e e 4] 104
. . . . . . 102
ol . s . v, s .. v . . e 100 . . ‘
0 10 20 30 40 50 60 -1.0 -0.5 0.0 0.5 1.0
X. Mesh Units Distance from P-N Junction, pm

Fig. 5. Location in X—Y plane of nonzero coefficients of interpolating _Fig. 7. Electron and hole carrier concentrations for 1-D abrupt silicon p-n

wavelet expansion, assuming error threshold ef 103 junction at zero external bias.
2) Set the largest discretization valit& and calculate all then compare the interpolated value with the real value
mesh points equa”y Spaced by the distaHca the given of the function at this pOint. If the difference is less than
domain. This is the coarsest limit. These mesh points will ~ the given threshold value, the corresponding node is

define interpo|ating Sca”ng functions. Let us assign the excluded from consideration; otherwise, it is added to the
initial function values to coarse mesh points. Function ~ SPR. Step 3 is repeated with the half-space distance until
values corresponding to coarse mesh points will always  the refinement limit is reached.
be present in the SPR. In Fig. 2, these mesh points withAS an example, we use a function that is smooth and slowly
function values are denoted by black dots. There is a lifarying, except for a small region around the point with coordi-
itation on the choice off. The condition = 27k fora nates(1/2, 1/2)
fix value of J must hold.J is then called an interpolating o, ) = e—e(@=1/27+(u-1/2%) _ g . in(2nz) sin(2ry)
wavelet level.
3) For all intermediate mesh points equally spaced by téhere the peak slope is controlled by the parameteht the
distanceH /2 and different from points defined during theconclusion of the above procedure, we will obtain pictures sim-
previous step, we calculate their interpolating values. War to Figs. 3-5, in which each black point refers to the grid



506 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 48, NO. 4, APRIL 2000

0.2 T . T T — — T —
30 - . - . . . . - .
> 25 E
=
2 7]
2
& £ 20r- - . e 1
g =
3 fo,,
= ]
o A . . .
0.8 L : ‘ e e e e e e e s
-1.0 -0.5 0.0 0.5 1.0 i
Distance from P-N Junction, pm . .
Fig. 8. Potential distribution for 1-D abrupt silicon p-n junction at zero 0 5 10 15 20 25 30
external bias. ]
X, Mesh Units

Electron Concentration x 1015, cm3

Y, Mesh Units

Fig. 10. Grid points of electron concentration for 2-D abrupt silicon p-n
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point with the assigned function value. These points correspond
to significant coefficients of the test function for different values : : : : : : : :

of the threshold parameter Additional grid points are placed
in the regions where sharp variations of the function occur.

Table Il illustrates a variation in the number of significant Lttt s :
coefficients of the test function versus the threshold parameter 2% [ A .

The finest level of interpolating wavelets.is= 3. The smaller

values ofe correspond to the finer mesh, until the refinement

limit ¢ = 0 is reached.

Theoretically, the different meshes may cause problems wherg
we have, e.g., to add or multiply two different solution com- E
ponents. In such a situation, it is necessary to interpolate the

missing points.

To account for possible changes in the solution during a time ’ ’ torrrlliiiit
step, or to account for abrupt discontinuities or rapidly occurring ottt o
transients in the nonlinear case, it is helpful to include the neigh- o

boring values, i.e., always to retain additional wavelet points

the SPR. After one or several time steps, we extend all the SPI oL """

Fig. 11. Hole concentration for 2-D abrupt silicon p-n junction with zero
external bias.

1]
=
c
=]
.C

in

.
e s P
L

to the complete solution on the finest mesh, and then using thi 0 5 10 o0 B %
mesh as an exact solution, we again form its SPR. If the solu- X, Mesh Units
tion changes In time rapldly, the new SPR will differ from th%ig. 12. Grid points of hole concentration in 2-D abrupt silicon p-n junction

old one.

with zero external bias.
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Fig. 13. Equipotential map and voltage profile for 2-D abrupt silicon p-n junction with zero external bias.

VIl. NUMERICAL RESULTS

After a new algorithm is developed, it is always necessary
to verify its correctness and to test its numerical accuracy. Ti
this end, we have tested our computer programs with inputpe 7 r
rameters either from previously published papers or from well§
known textbooks.

Example 1: Consider a 1-D silicon p-n junction in Fig. 6.
The volume concentration of the implanted acceptosjs=
5 x 10 cm~3 and the volume concentration of the implanted al i
donors, = 1 x 10*®> cm™3. The 1-D problem has been dis-
cretized using the SPR with interpolating wavelets. Unlike an-
alytic solutions, in which assumptions are made to simplify the 1r ]
mathematics, we have faithfully followed the tedious numerica S — -
procedures outlined in the previous sections.

The resulting electron and hole concentrations for an abrug 0 0.2 0.4 06 0.8
silicon p-n junction with zero external bias are presented ir Bias, V
Fig. 7. The potential distribution appears in Fig. 8. Markers on _
the curves show corresponding mesh points. It is apparent frg% 1;)1. ?o_lr_wpanson _df—\/t_curves between ATLAS and wavelet results for a
the figures that all components of the solution have their own abrupt stlicon p-n Junction.
meshes. In the case of the potential distribution, this mesh is
guite coarse. Numerical calculations show that several hundtbedt component. The 2-D electron and hole concentrations
iterations (from 250 to 400) are required to achieve a steadyave been compared with those from the commercial package
state solution of the equations. The number of iterations d&FLAS. The two sets of results are compatible, though not
pends on the value of the threshold parameteks has been exactly identical. To extend the investigation, we plotted the
noted before, the smaller parameter leads to the finer mesh 2dd potential distribution of our results as an equipotential
more iteration steps to achieve the converged solution. As éwmap in the left-hand-side panel of Fig. 13. A potential profile
pected, these two figures are in excellent agreement with [24,y = 0.25 pm from the map was taken and appears as the
Figs. 2-2-2, 2-2-7], indicating the superior numerical precisiaight-hand-side panel of Fig. 13. Again, our results and those
of this new method. from ATLAS were in good agreement.

Example 2:Consider an abrupt p diode in 2-D, as It is often difficult to judge the precision of two numerical
depicted in Fig. 1. The doping concentration under theolutions when they show slight differences from one another.
left-hand-side contact isV; = 5.0 x 10> cm™3. In the Detailed laboratory measurements would appear to be the only
substrateN, = 1.0 x 10*®> cm—2 (p-type). Figs. 9 and 10 way to resolve these differences. However, it is extremely diffi-
illustrate the distribution of the electron concentration anclltto measure the potential profiles in such a tiny region inside
its corresponding mesh. The number of nodes in the mesdie diode. The literature does document a few so-called “hero
is 325. Figs. 11 and 12 illustrate the distribution of the holexperiments,”in which specially designed diodes have been fab-
concentration and its corresponding mesh. The number rafated and passivated, and then probed with a scanning tun-
nodes in the mesh is 613. It is apparent that the SPR ru#ling microscope to create approximate measurements of the
the electron concentration differs from the SPR of the hofild distributions. However, it is believed by practitioners in
concentration. Further, each component of the solution hiss field that these measurements are sufficiently indirect such
its own mesh, which is optimally adapted to the behavior dat the simulation results are probably closer representations

Atlas Simulator
Interpolating Wavelets

Current, pA/
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Fig. 15. Current distributions for idealized abrupt silicon p-n junction.
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Fig. 16. Electric-field distributions for idealized abrupt silicon p-n junction.

of the actual device behavior than the reported measurementgh the computationally efficient nonuniform wavelet method
Thus, we believe that we were justified in integrating the simalescribed in the previous paragraphs were generated with the
lated current densities to obtain the device circuit parameterthseshold parameter= 0.1 for the electron and hole concen-
thel-V curve, as depicted in Fig. 14. The two curves in Fig. 14rations, and: = 0.01 for the potential. The full mesh of the
calculated with ATLAS and with our method, do exhibit smaluniform grid consisted of 1089 nodes, in contrast to the 423
differences when the device bias voltage exceeds 0.6 V and ttweles for the nonuniform wavelet approach. The computational
relative error reaches 19% at 0.8 V. The discrepancy betweaesults associated with the nonuniform meshes compared favor-
the two curves is due to slight differences in material paramably with simulation results obtained from the full meshinits re-
ters, including mobility, intrinsic density, etc. If we account fofinement limit of sizeh. The number of iterations in the numer-
the exponential behavior of tHeV curves, the small discrep-ical examples presented above were in the range of 1000-5000
ancy is quite satisfactory; in this case (unlike for the potentiédr different values of the threshold parameter
distribution discussed above), detailed laboratory tests might be
able to resolve the differences between these two methods.

It is worth noting the numerical efficiency of the new ap-
proach. In the solution of the potential distribution, 423 nodes In this paper, we have applied interpolating wavelets to the
were needed to achieve a precision of 1.6% for the waveletsodeling of both the transient and steady-state behavior of typ-
while for a 5% precision, the Silvaco ATLAS simulator requiredcal active microwave devices. The so-called SPR method was
1756 triangles. introduced to obtain a fully adaptive nonuniform mesh. Field,

In Fig. 15, we have plotted the normalized electron currenarrier, and current distributions inside a 2-D diode have been
(the majority carrier current) and the hole current (the minoritsolved. These parameters can be used to study the interactions
carrier current), both under a forward bias of 0.4 V. Fig. 16 ibetween an active device and its surrounding electromagnetic
lustrates the electric-field distributions for 0- and 0.4-V bias. &nvironment. Several numerical examples demonstrated good
can be clearly seen that the depletion region shrinks as the fagreement with results from commercial simulation tools. The
ward bias is applied. The number of iterations required in theterpolating wavelets represent functions in a more efficient
computation was approximately 1000. The meshes developednner, so that many fewer nodes are required to achieve

VIIl. CONCLUSIONS
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high-precision results. The efficiency of this new approach21] M. S. Adler, “A method for terminating mesh lines in finite difference
will become even more profound when the modellng of these formulations of the semiconductor device equatioBnlid State Elec-

tron., vol. 23, pp. 845-853, 1980.

devices is extended to a full three dimensions. [22] A.F. Franz, G. A. Franz, S. Selberherr, C. Ringhofer, and P. Markovich,
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