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Abstract—Nonlinear semiconductor devices are modeled using
the sparse point representation based upon interpolating wavelets.
The functions of potential, fields, electron, and hole current den-
sities inside the device are represented by a twofold expansion in
scaling functions and wavelets. In most regions where the func-
tions are smoothly varying, only scaling functions are employed
as the bases. In contrast, in small regions with sharp material or
field variations, additional basis functions, i.e., wavelets, are intro-
duced. A nonuniform mesh generated in this manner is fully adap-
tive, dynamic, and object oriented. Examples of device simulations
are presented, demonstrating good agreement with published lit-
erature and commercial software. The numerical examples also
show substantial savings in computer memory for electrically large
problems.

Index Terms—Interpolating wavelets, microwave devices, non-
linear modeling.

I. INTRODUCTION

DENSELY packed modern integrated circuits consist of
closely spaced active and passive devices, with many

levels of interconnect lines and discontinuities. The highest
speed digital integrated circuits currently under development
are employing completely new transistors such as silicon
germanium (SiGe), gallium arsenide (GaAs), and indium
phosphide (InP) heterojunction bipolar transistors (HBT’s),
with upper cutoff frequencies of 45, 60, and even 225 GHz.
Even CMOS-on-insulator (CMOS/SOI) integrated circuits are
capable of operating at clock rates in the 500–2000-MHz range,
while the SiGe, GaAs, and InP chips have been demonstrated to
operate at clock rates as high as 10–50 GHz. The interconnects
on these high-performance components must increasingly be
treated as transmission lines rather than merely as distributed
capacitive loads. In such cases, the performance of an entire
integrated circuit may be adversely affected by the high device
packing density and/or high-speed operation, due to unwanted
effects such as, but not limited to, crosstalk caused by coupling,
surface waves, and unintended radiation. It is thus apparent
that integrated circuits designed with these transistors must be
developed based on advanced design tools that consider all
the circuit elements simultaneously, including active devices,
passive components, radiation elements, and the electronic
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packaging into which the integrated circuits are placed. The
possibility of achieving this type of global circuit modeling
approach has been demonstrated in [1] and [2].

Recently, a new category of orthogonal systems, referred to
as “orthogonal wavelets,” has appeared in the literature [3].
The wavelet expansion technique has proven to be an efficient
method in the approximation of functions. Different classes
of wavelets have been used to analyze a variety of passive
circuit components. For example, Daubechies wavelets have
been employed in [4] for the analysis of microstrip floating
structures. In [5], Battle–Lemarie wavelets have been imposed
for the extraction of the internal inductance and skin-effect
resistance matrices of multiple lossy transmission lines. In
this paper, we shall consider the application of multiresolution
analysis to the modeling of active semiconductor devices with
nonlinearities.

The use of scaling functions and wavelets as a complete set
of basis functions is referred to as multiresolution analysis [6].
To derive a new algorithm, the potential distribution inside
the semiconductor and electron and hole current densities are
represented by a twofold expansion in scaling functions and
wavelets. Using only scaling functions allows correct modeling
of smoothly varying electromagnetic fields and materials pa-
rameters. In regions with large field variations, additional basis
functions (wavelets) are introduced. In our derivations, we have
employed a special class of wavelets; namely, the interpolating
wavelets. This wavelet system has already been applied to the
solution of boundary problems for partial differential equations
(PDE’s). For this type of wavelet, the evaluation of differential
operators is simplified due to their elegant representations in
terms of cubic polynomial functions in the spatial domain.

Several different approaches for solving PDE’s using
wavelets have been proposed, including the multiresolution
time-domain (MRTD) methods with adaptive gridding [7], [8].
In [9], the author used wavelets for finding regions requiring
grid refinement in a finite-difference method. It has been noted
by several authors that nonlinear operators such as multipli-
cation are too computationally expensive when performed
directly in a wavelet basis, and several attempts have been
made to deal with this problem. Keiser [10] has used Coifman
wavelets to obtain approximations of point values in a wavelet
method, thus simplifying the treatment of nonlinearities. In
this paper, we will explore and extend an approach proposed in
[11] to deal with nonlinearities using the so-called sparse point
representation (SPR).

Modeling of nonlinear semiconductor devices, e.g., transis-
tors or diodes, produces functions (carrier concentration and po-
tential distribution) that are smooth almost everywhere in the
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domain, except in a small region of sharp variation near the p-n
junction. It is ideal to have a nonuniform grid, which is fine in
the region around the sharp variation and coarse in areas where
the solution is smooth. As will be described in the following
sections, the SPR can provide a nonuniform grid that is fully
adaptive and dynamic. In other words, the SPR is fully object
oriented. The SPR itself is based on the new concept of inter-
polating wavelets. The application of the SPR creates an op-
portunity to consider the grid as a dynamic object that is fully
integrated into the solution. The nonuniform grid becomes fully
adaptive, in that changes in the grid follow the changes in the
solution for each time step.

II. I NTERPOLATING SUBDIVISION SCHEME

Introduced by Deslauriers and Dubuc [12], the dyadic grids
on the real line (or the subspace of the scaling functions)

(1)

i.e., the grid points, are the integers in and half-integers for
. In general, the dyadic grid contains all the grid points

in , as well as additional points inserted halfway in between
each of the points in . More information and additional
references describing interpolating subdivision schemes can be
found in [3].

Given function values on , , where
is a function defined on the grid points

in , the interpolating subdivision scheme defines in
. The even numbered grid points already exist in

, and the corresponding function values are left unchanged.
Values at the odd grid points are computed by poly-
nomial interpolation from the values at the even grid points. We
denote this interpolating polynomial by . The degree

of this polynomial is odd to make the scheme symmetric,
i.e., we interpolate from an even number of function values.
Formally, we define one step of the subdivision scheme as

(2)

where is chosen such that

for

(3)

Thus, we use symmetric points on the coarser gridto inter-
polate one new function value on the finer grid . For dyadic
grids, we can explicitly define the interpolating polynomial. For
the case , a cubic polynomial, the computed values at odd
grid points are

Repeating the aforementioned subdivision recursively, we ob-
tain representations on successively finer gridsas increases,
and in the limit , we have a representation of the func-
tion at all dyadic rational points.

If the subdivision starts with the Kronecker delta sequence
on and is then refined to , in the limit ,

we will obtain the scaling function of the interpolating wavelets
. From the construction, it follows that has a compact

support and is symmetric around . If
we make one step in the subdivision scheme for the sequence

, we obtain the two-scale relation

(4)

Using an integer translation of , we have a basis in , and
the interpolant of any continuous function in can be
defined as

The interpolant of any continuous function in can be
defined as

where , is a basis in . Here,
notation is used as a function space and grid. Since the basis
functions are cardinal, , , there
is a one-to-one correspondence between grid points and basis
functions.

The scaling function spaces introduced above generate a
ladder of spaces

and the interpolating scheme enables us to move through these
spaces (i.e., to achieve either refinement or coarsening). Addi-
tional spaces can be introduced to encode the difference be-
tween and

Introducing a basis in , we can write

where . The function is a wavelet
and are wavelet coefficients. One of the simplest possible
choices is to define as

This wavelet was introduced by Donoho [13]. This choice is
called the Lazy wavelet transform [14]. This transform does not
perform any operation other than subsampling into the odd in-
dexed samples.

Given a representation of a function in the space , one
can decompose it into a coarser scale representation inand
a correction in . Starting with a representation in , this
decomposition can be repeated times
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On the right-hand side, our function is decomposed into
the scaling function representation on a coarse gridand
wavelets on successively finer scales.

III. SPARSEPOINT REPRESENTATION

The idea behind the use of a wavelet basis is that certain func-
tions are well compressed in such a basis. As a result, only a
few basis functions are needed to represent the function with a
small error. Assume that a function is represented bypoints
on a uniform grid, and the same function is represented, with an
error , by wavelet coefficients, where . We would
like to be able to compute derivatives and multiply functions
in this wavelets basis in time. The interpolating wavelet
transform provides the means to achieve this goal. The chosen
basis has the property that each wavelet coefficient corresponds
to a function value at a grid point.

Assume that we have the wavelet representation

Operations such as differentiation and multiplication can be
costly when performed in a wavelet basis due to interactions
between scales in a wavelet representation. It would be ideal
to transform the wavelet coefficients to point values.
Such a transform does exist for the interpolating wavelets due
to the one-to-one correspondence between wavelet coefficients
and point values. To obtain a sparse wavelet representation, we
remove all wavelet coefficients with magnitude less than some
threshold value. We then have the threshold expansion

(5)
where the set contains indexes of all significant coeffi-
cients. The inverse transform can be performed, but only for
those points that correspond to the significant wavelet coeffi-
cients in . If any point value is needed that does not exist, it
will be interpolated from the coarser scale recursively. The al-
gorithm will terminate since we have all values on the coarsest
grid .

This inverse transform leads us to an SPR. Note that the SPR
is not a representation in a basis; rather, it is simply a collec-
tion of point values . The SPR can be computed
without explicitly forming a sparse wavelet representation, i.e.,
it is possible to store the point values in the SPR, instead of
the wavelet coefficients. The wavelet coefficients are only com-
puted to decide if the corresponding point value is to be included
in the SPR or not.

To examine the approximation error arising from using the
threshold expansion (5), we need the maximum norm

We are interested in the dependence of the error on the threshold
parameter. Donoho [13] and Holmström [11] have shown that
the estimation

TABLE I
FILTER COEFFICIENTSg FOR THEFIRST DERIVATIVE APPROXIMATION

holds for a sufficiently smooth function and for a large
enough level . Further, the number of significant coefficients

depends on as

or equivalently

Combining the last three inequalities, we can achieve a bound
on the error versus as

(6)

where denote constants for a given function
. This result indicates that the sparse interpolating wavelet

approximation is of order in the number of significant coeffi-
cients .

To perform the multiplication in time, we need to
specify the SPR pattern of the product. The SPR of the product
can be chosen as the union of the two operand representations. If
a point value is missing, it is again interpolated from the coarser
scale in the SPR.

Differentiation can be applied to the SPR of the function. For
each point for which we wish to approximate the derivative,
we locate the closest point in the SPR and choose the distance
to that point as the step length. A centered finite-difference
stencil of order can then be applied, whereis the order of the
interpolating wavelets in the SPR. If any point is missing, it can
be interpolated from a coarser scale. If any point in the stencil
is located outside the boundary, a one-sided stencil of the same
order is employed. The finite-difference approximation of the
first and second derivatives are, respectively,

and

On an interval, the filter coefficients and depend on
since a one-sided approximation near the boundaries is used;
their values for the case are presented in Tables I and II.

In these tables, the filter coefficients for the first and second
derivatives are shown at the left-hand-side boundary. The coeffi-
cients at the right-hand-side boundary are reversed in order, with
opposite signs. When the threshold parameter , the above
finite-difference approximations become ordinary finite-differ-
ence approximations on a uniform grid.

In the case of two dimensions, partial derivatives in each
direction are evaluated using the one-dimensional (1-D)
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TABLE II
FILTER COEFFICIENTSg FOR THESECONDDERIVATIVE APPROXIMATION

approximation. The step length is chosen as the distance
to the closest point in the SPR, as measured along any of the
coordinate directions.

IV. STATEMENT OF THE PROBLEM

The basic physical model consists of three coupled PDE’s:
the Poisson equation for the electric field and two continuity
equations for the electrons and holes. These equations are sup-
plemented by the expressions for the electron and hole current
densities. Since the goal of this paper is to apply wavelets to sim-
plify the analysis, the drift–diffusion approximation is used in
the current density expressions. The mathematical model con-
sists of Poisson’s equation

(7)

The electron and hole carrier concentrations are found from the
continuity equations

(8)

(9)

and the electron and hole current densities satisfy

(10)

(11)

The first term in (10) and (11) represents the conductivity
current due to the electric field, and the second term represents
a current flow due to diffusion.

Assuming the Einstein relation for both electrons and holes
[15]

In the following derivations, we consider the mobility of the car-
riers and to be constant and field independent. More com-
plicated cases can be solved without major difficulties, although
these cases may be more computationally expensive. Equations
(7)–(11) summarize the coupled system of PDE’s describing the
semiconductor device. All that remains is to specify boundary
conditions for a particular geometry.

Fig. 1. Idealized 2-D cross section of a silicon diode.

Fig. 1 presents a representative example of a (2-D) cross sec-
tion of a silicon abrupt diode. The potential, electron, and hole
carrier concentrations satisfy appropriate initial, boundary, and
interface conditions. In general, there are semiconductor/con-
ductor interfaces (contacts), semiconductor/isolation interfaces,
and external boundaries. We assume thermal equilibrium and
charge neutrality on ohmic contacts

where is an intrinsic carrier concentration and is a given
doping function.

These conditions are provided by a condition on the electric
potential, which is given by the built-in voltage and the ap-
plied potential

At the outside boundaries, we always assume a vanishing out-
ward electric field and vanishing outward current densities

In order to solve the drift–diffusion equations, it is convenient
to express all variables in terms of scaled quantities. Several dif-
ferent scaling approaches are possible [16], [17]. In this study,
we have followed the approach of De Mari [16]. Without explicit
declaration, we always assume that the quantities are scaled.

The spatial discretization is performed using a method pro-
posed by Scharfetter–Gummel [18]. The discrete model, there-
fore, consists of a system of two nonlinear ordinary differential
equations (ODE’s) of the first order and an algebraic equation.
The two ODE’s are coupled through the algebraic equation.
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V. TRANSIENT SOLUTION

In scaled form, the basic semiconductor equations can be
written as

(12)

where vectors are now the SPR of the normalized elec-
trostatic potential and carrier concentrations.

In our calculations we will follow the modified Gummel it-
erative approach [18]. The resulting system of ODE’s can be
solved by an ODE solver, e.g., the fourth-order Runge–Kutta
method [19].

The iterative procedure to solve the problem (12) can be pre-
sented in the following seven steps.

Step 1: Set initial values for the function p and n and fix a
threshold value.

Step 2: Obtain SPR for p, n, and .
Step 3: Solve the Poisson’s equationand obtain an SPR

for the potential.
Step 4: Make one step in the continuity equationfor n.
Step 5: Repeat previous step in the continuity equation

for p.
Step 6: Update all SPR’s.
Step 7: Go to Step 2.
The basic difficulty in the solution of the transient system is

the requirement that the numerical method must be uncondition-
ally stable.

For the solution of the linear algebraic system, we use a fast
variant of the Bi-CG iterative solver, called Bi-CGSTAB [20].

It is very important that the Bi-CGSTAB method does not
involve any use of the transpose matrix . Since we use inter-
polation to obtain the missing points in the finite-difference pro-
cedure, it is difficult to explicitly assemble the system matrix.
Instead, we calculate all matrix vector products directly, without
forming the matrix . The matrix vector product is treated as an
operator acting on the SPR of the unknown function.

VI. GRID ADAPTATION AND INTERPOLATINGWAVELETS

Accuracy and efficiency are strongly related to the discretiza-
tion of the equations and, thus, to the chosen mesh. In a standard
finite-difference algorithm, a tensor product mesh is usually se-
lected. The mesh lines continue in the regions far from the junc-
tion, where the potential is a slowly varying function and there
is no need for a fine mesh.

The authors of [21] and [22] have introduced methods of
mesh line termination. The Laplacian discretization in any node

at the end of a terminated line is obtained as a linear com-
bination of potential values in the surrounding nodes. The local
truncation error is of the order of a third derivative of the po-
tential and it is used as a refinement criterion. Problems of dis-
cretization and grid adaptation have also been addressed in [23].

Several different criteria for the grid refinement process are
available. One can refine the mesh by taking into account the
error in the Poisson equation, or the electron/hole continuity
equations, or through the use of doping concentrations. Unfor-

Fig. 2. Lowest resolution sizeH and highest resolution sizeh in the
interpolating wavelet method.

Fig. 3. Location inX–Y plane of nonzero coefficients of interpolating
wavelet expansion, assuming error threshold of� = 10 .

tunately, there is a high likelihood that a mesh that is optimal
for the potential will be insufficient for a carrier concentration
and vice versa. Attempts to satisfy all criteria will lead to a
very dense mesh. However, the interpolating wavelets provide a
unique opportunity to overcome these difficulties. The SPR of a
function contains the only points that correspond to significant
wavelet coefficients.

Assume that we have a continuous function, which is the ini-
tial condition value. The construction of the mesh can be demon-
strated for a rectangular domain as follows.

1) Set the smallest discretization valueand calculate all
mesh points equally spaced by the distancein the given
domain, as illustrated in Fig. 2. This is the refinement
limit.
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Fig. 4. Location inX–Y plane of nonzero coefficients of interpolating
wavelet expansion, assuming error threshold of� = 10 .

Fig. 5. Location inX–Y plane of nonzero coefficients of interpolating
wavelet expansion, assuming error threshold of� = 10 .

2) Set the largest discretization value and calculate all
mesh points equally spaced by the distancein the given
domain. This is the coarsest limit. These mesh points will
define interpolating scaling functions. Let us assign the
initial function values to coarse mesh points. Function
values corresponding to coarse mesh points will always
be present in the SPR. In Fig. 2, these mesh points with
function values are denoted by black dots. There is a lim-
itation on the choice of . The condition for a
fix value of must hold. is then called an interpolating
wavelet level.

3) For all intermediate mesh points equally spaced by the
distance and different from points defined during the
previous step, we calculate their interpolating values. We

TABLE III
NUMBER OF SIGNIFICANT COEFFICIENTS OF THETEST FUNCTION FOR

DIFFERENTVALUES OF THETHRESHOLDPARAMETER

Fig. 6. Diagram of 1-D silicon p-n junction.

Fig. 7. Electron and hole carrier concentrations for 1-D abrupt silicon p-n
junction at zero external bias.

then compare the interpolated value with the real value
of the function at this point. If the difference is less than
the given threshold value, the corresponding node is
excluded from consideration; otherwise, it is added to the
SPR. Step 3 is repeated with the half-space distance until
the refinement limit is reached.

As an example, we use a function that is smooth and slowly
varying, except for a small region around the point with coordi-
nates

where the peak slope is controlled by the parameter. At the
conclusion of the above procedure, we will obtain pictures sim-
ilar to Figs. 3–5, in which each black point refers to the grid
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Fig. 8. Potential distribution for 1-D abrupt silicon p-n junction at zero
external bias.

Fig. 9. Electron concentration for 2-D abrupt silicon p-n junction with zero
external bias.

point with the assigned function value. These points correspond
to significant coefficients of the test function for different values
of the threshold parameter. Additional grid points are placed
in the regions where sharp variations of the function occur.

Table III illustrates a variation in the number of significant
coefficients of the test function versus the threshold parameter.
The finest level of interpolating wavelets is . The smaller
values of correspond to the finer mesh, until the refinement
limit is reached.

Theoretically, the different meshes may cause problems when
we have, e.g., to add or multiply two different solution com-
ponents. In such a situation, it is necessary to interpolate the
missing points.

To account for possible changes in the solution during a time
step, or to account for abrupt discontinuities or rapidly occurring
transients in the nonlinear case, it is helpful to include the neigh-
boring values, i.e., always to retain additional wavelet points in
the SPR. After one or several time steps, we extend all the SPR
to the complete solution on the finest mesh, and then using this
mesh as an exact solution, we again form its SPR. If the solu-
tion changes in time rapidly, the new SPR will differ from the
old one.

Fig. 10. Grid points of electron concentration for 2-D abrupt silicon p-n
junction with zero external bias.

Fig. 11. Hole concentration for 2-D abrupt silicon p-n junction with zero
external bias.

Fig. 12. Grid points of hole concentration in 2-D abrupt silicon p-n junction
with zero external bias.
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Fig. 13. Equipotential map and voltage profile for 2-D abrupt silicon p-n junction with zero external bias.

VII. N UMERICAL RESULTS

After a new algorithm is developed, it is always necessary
to verify its correctness and to test its numerical accuracy. To
this end, we have tested our computer programs with input pa-
rameters either from previously published papers or from well-
known textbooks.

Example 1: Consider a 1-D silicon p-n junction in Fig. 6.
The volume concentration of the implanted acceptors is

cm and the volume concentration of the implanted
donors cm . The 1-D problem has been dis-
cretized using the SPR with interpolating wavelets. Unlike an-
alytic solutions, in which assumptions are made to simplify the
mathematics, we have faithfully followed the tedious numerical
procedures outlined in the previous sections.

The resulting electron and hole concentrations for an abrupt
silicon p-n junction with zero external bias are presented in
Fig. 7. The potential distribution appears in Fig. 8. Markers on
the curves show corresponding mesh points. It is apparent from
the figures that all components of the solution have their own
meshes. In the case of the potential distribution, this mesh is
quite coarse. Numerical calculations show that several hundred
iterations (from 250 to 400) are required to achieve a steady-
state solution of the equations. The number of iterations de-
pends on the value of the threshold parameter. As has been
noted before, the smaller parameter leads to the finer mesh and
more iteration steps to achieve the converged solution. As ex-
pected, these two figures are in excellent agreement with [24,
Figs. 2-2-2, 2-2-7], indicating the superior numerical precision
of this new method.

Example 2: Consider an abrupt n-p diode in 2-D, as
depicted in Fig. 1. The doping concentration under the
left-hand-side contact is cm . In the
substrate cm (p-type). Figs. 9 and 10
illustrate the distribution of the electron concentration and
its corresponding mesh. The number of nodes in the mesh
is 325. Figs. 11 and 12 illustrate the distribution of the hole
concentration and its corresponding mesh. The number of
nodes in the mesh is 613. It is apparent that the SPR of
the electron concentration differs from the SPR of the hole
concentration. Further, each component of the solution has
its own mesh, which is optimally adapted to the behavior of

Fig. 14. Comparison ofI–V curves between ATLAS and wavelet results for a
2-D abrupt silicon p-n junction.

that component. The 2-D electron and hole concentrations
have been compared with those from the commercial package
ATLAS. The two sets of results are compatible, though not
exactly identical. To extend the investigation, we plotted the
2-D potential distribution of our results as an equipotential
map in the left-hand-side panel of Fig. 13. A potential profile
at m from the map was taken and appears as the
right-hand-side panel of Fig. 13. Again, our results and those
from ATLAS were in good agreement.

It is often difficult to judge the precision of two numerical
solutions when they show slight differences from one another.
Detailed laboratory measurements would appear to be the only
way to resolve these differences. However, it is extremely diffi-
cult to measure the potential profiles in such a tiny region inside
the diode. The literature does document a few so-called “hero
experiments,” in which specially designed diodes have been fab-
ricated and passivated, and then probed with a scanning tun-
neling microscope to create approximate measurements of the
field distributions. However, it is believed by practitioners in
this field that these measurements are sufficiently indirect such
that the simulation results are probably closer representations
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Fig. 15. Current distributions for idealized abrupt silicon p-n junction.

Fig. 16. Electric-field distributions for idealized abrupt silicon p-n junction.

of the actual device behavior than the reported measurements.
Thus, we believe that we were justified in integrating the simu-
lated current densities to obtain the device circuit parameter as
theI–V curve, as depicted in Fig. 14. The two curves in Fig. 14,
calculated with ATLAS and with our method, do exhibit small
differences when the device bias voltage exceeds 0.6 V and the
relative error reaches 19% at 0.8 V. The discrepancy between
the two curves is due to slight differences in material parame-
ters, including mobility, intrinsic density, etc. If we account for
the exponential behavior of theI–V curves, the small discrep-
ancy is quite satisfactory; in this case (unlike for the potential
distribution discussed above), detailed laboratory tests might be
able to resolve the differences between these two methods.

It is worth noting the numerical efficiency of the new ap-
proach. In the solution of the potential distribution, 423 nodes
were needed to achieve a precision of 1.6% for the wavelets,
while for a 5% precision, the Silvaco ATLAS simulator required
1756 triangles.

In Fig. 15, we have plotted the normalized electron current
(the majority carrier current) and the hole current (the minority
carrier current), both under a forward bias of 0.4 V. Fig. 16 il-
lustrates the electric-field distributions for 0- and 0.4–V bias. It
can be clearly seen that the depletion region shrinks as the for-
ward bias is applied. The number of iterations required in the
computation was approximately 1000. The meshes developed

with the computationally efficient nonuniform wavelet method
described in the previous paragraphs were generated with the
threshold parameter for the electron and hole concen-
trations, and for the potential. The full mesh of the
uniform grid consisted of 1089 nodes, in contrast to the 423
nodes for the nonuniform wavelet approach. The computational
results associated with the nonuniform meshes compared favor-
ably with simulation results obtained from the full mesh in its re-
finement limit of size . The number of iterations in the numer-
ical examples presented above were in the range of 1000–5000
for different values of the threshold parameter.

VIII. C ONCLUSIONS

In this paper, we have applied interpolating wavelets to the
modeling of both the transient and steady-state behavior of typ-
ical active microwave devices. The so-called SPR method was
introduced to obtain a fully adaptive nonuniform mesh. Field,
carrier, and current distributions inside a 2-D diode have been
solved. These parameters can be used to study the interactions
between an active device and its surrounding electromagnetic
environment. Several numerical examples demonstrated good
agreement with results from commercial simulation tools. The
interpolating wavelets represent functions in a more efficient
manner, so that many fewer nodes are required to achieve
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high-precision results. The efficiency of this new approach
will become even more profound when the modeling of these
devices is extended to a full three dimensions.
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