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Nonreciprocity and the Optimum Operation
of Ferrite Coupled Lines
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Abstract—The first full-wave normal-mode analysis of ferrite
coupled lines (FCL’s) magnetized in the longitudinal direction is
presented in this paper. It is found that the tangential and axial
components of the guided electric and magnetic fields undergo a
different change in the process of reversing the direction of mag-
netization. These changes cause the same input wave to decompose
into the eigenmodes of the FCL differently for different direction of
magnetization and, consequently, cause the nonreciprocal behavior
of the magnetized FCL. A new optimum nonreciprocal operation
condition is obtained, and applications to FCL circulators built on
microstrips and striplines are discussed.

Index Terms—Coupled transmission lines, ferrite circulators,
ferrite devices.

I. INTRODUCTION

SINCE THE experimental discovery of ferrite coupled lines
(FCL’s) [1], several papers [2]–[5] have discussed the non-

reciprocity in FCL’s and the search for its optimum operation
condition. Although the most promising potential applications
are in distributed circulators for higher microwave frequencies,
e.g., 60 GHz and above, devices operating at lower frequencies
are discussed in this paper to demonstrate the behavior. Mazur
and Mrozowski [2] used the coupled-mode method to show that
the even and odd modes of a unmagnetized FCL become cou-
pled when longitudinal magnetization is applied to the ferrite.
They demonstrated that the behavior of a magnetized FCL was
due to such coupling. They also found an optimum operation
condition to be equal propagation constants for the unmagne-
tized FCL . However, the con-
dition is not appropriate for a realistic design project because
of the weak-coupling assumption intrinsic to all coupled mode
theory. In 1995, Teoh and Davis [3] proposed a normal-mode
approach. They explained the behavior of the magnetized FCL
as the superposition of right- and left-hand-side elliptically po-
larized normal modes. They found that the phase difference be-
tween lines for normal mode one and normal mode two

of the magnetized FCL is frequency dependent. For op-
timum operation, the normal mode equivalent to the

condition is , . It is this phase
quadrature that is responsible for the nonreciprocal behavior of
the magnetized FCL.
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Subsequent experimental results confirmed both the coupled
mode and normal mode understanding. However, neither of the
experiments performed as well as might be expected. In Mazur's
experiment [4], the measured isolation losses were 15–20 dB,
insertion losses were 2.5–3 dB, and return losses were about
18 dB. Also, the Teohet al. experiment [5] is not any better
than Mazur's. A possible reason lies in the optimum condition
of . Numerical calculation of the eigenmodes
shows that the phase information is difficult to use because
and are functions of space. The values of and also
depend on which components of the electric (magnetic) field
are used in the calculation so and cannot be uniquely de-
fined. Consequently, the condition cannot be
relied upon to provide the optimum operation condition of the
structure. The other possible reason lies in the assessment of the
performance. Neither the coupled- nor normal-mode approach
permits a full assessment of the performance of the magnetized
FCL at either optimum operation condition ( or

). Both theories neglect the internal struc-
ture of the guided mode and assume perfect power transfer be-
tween lines at the optimum operation point. It is shown below,
however, that this assumption is not true. The power transfer
reaches its maximum at these optimum operation points, but it
is not necessarily 100%. It is necessary to determine the actual
value of the power transfer coefficient of magnetized FCL’s in
order to select the best structure.

In this paper, the first full-wave normal-mode theory has been
developed for the design of the FCL. By studying the energy
flow carried by each line, a new normal-mode optimum oper-
ation condition is constructed through the integration of the
component of the Poynting vector. Complete descriptions of the
modes are obtained and all the information is retained within the
optimum operation condition because both the imaginary and
real parts of the electric and magnetic field enter the calcula-
tion through the integration. The arbitrariness of the use of
and is, therefore, avoided. The new condition is based on a
direct calculation of the power exchange ability of the two cou-
pled lines in the magnetized FCL. Therefore, not only can the
optimum operation point of a given FCL be found, a comparison
of the optimum operation points of different FCL structures can
also be made so that an overall best FCL can be identified.

It is well known that the propagation constant of a guided
mode of a magnetized FCL is unchanged when the direction
of the longitudinal magnetization reverses [6]. In this paper, we
describe how the guided mode itself changes in the reversing
process. Due to this change, the same input wave will be decom-
posed into the eigenmodes of the magnetized FCL differently
for the different directions of magnetization. It is found that the

0018–9480/00$10.00 © 2000 IEEE



XIE AND DAVIS: NONRECIPROCITY AND OPTIMUM OPERATION OF FCL’S 563

Fig. 1. Sketch of the proposed three-port distributed circulator.

Fig. 2. Cross section of the FCL.

amplitude of the decomposition coefficient keeps constant, but
a phase shift occurs with the reversal of the direction of mag-
netization on the FCL. It is this phase shift, plus the change in
the eigenmode itself, that causes the magnetized FCL to behave
in a nonreciprocal way. In this paper, we describe a way to in-
corporate these changes, and the nonreciprocal behavior of the
magnetized FCL is finally realized through a simple sign change
in an integration.

II. THEORY

The three-port distributed circulator comprising a magnetized
FCL section in cascade with a T-junction, as shown in Fig. 1
(after Mazur [4]). The direction of the applied static magnetic
field is arbitrary (parallel or antiparallel with respect to the
direction of propagation), but it determines the direction of cir-
culation. The main part of the distributed circulator is the FCL,
which is uniform in the -direction for a finite length . The
cross section of the FCL is sketched in Fig. 2. Region I (II) rep-
resents all the material above (below) the coupled lines. It can
be multilayered structure and it can contain ferrite. Lines 1 and
2 represent the two coupled lines. They can be microstrips or
striplines. The metal sidewalls and top walls are present for the
convenience of the finite-element method (FEM), and they also
serve to suppress radiation losses.

The expected behavior of the FCL is sketched in Fig. 3. When
the signal enters port 1 in Fig. 1, the situation in the magnetized
FCL is equivalent to Fig. 3(a) plus (b). An even signal will come
out of the two arms of the FCL and add up to give an output at
port 2 in Fig. 1. When the signal enters from port 2, it divides
at the T-junction and enters the magnetized FCL evenly in a di-
rection opposite to that of . The situation resembles Fig. 3(c),
and an output at port 3 in Fig. 1 is expected. When the signal en-
ters port 3, the situation corresponds to Fig. 3(a) minus (b). The
waves entering the T-junction areout of phase and cancel each
other at port 2. The reflection enters the magnetized FCL as an
odd mode and a situation like Fig. 3(d) is realized. The final
output will be at port 1. Therefore, the expected circulation of

Fig. 3. Expected behavior of the FCL. The dashed line represents (unwanted)
direct signal transfer.

the device is . If the magnetized FCL can per-
form each of the functions in Fig. 3 with 100% efficiency, the
proposed device in Fig. 1 will behave as an ideal circulator. The
determination of the lengthof the FCL, and its efficiency of
power transfer, are the subjects of this paper.

As shown in Fig. 1, the ferrite has input and output interfaces
with the isotropic media. Waves encountering these discontinu-
ities will be scattered, thus, in reality, transmission and reflection
coefficientsatboth interfacesneedtobedetermined. In thispaper,
wearemostlyinterestedinthepowertransferbetweenthetwocou-
pledlinesandindeterminingtheplaneatwhichtoextractthepower
guidedbythelinestogetthebestresult.Tosimplifytheanalysis,we
have assumed that the FCL isof semiinfiniteextent, thus,only the
interface on the input side (the “first interface”) needs to be taken
intoaccount.Whenasignalmeetsthisinterface,itdecomposesinto
the eigenmodes of the magnetized FCL. The extraction of guided
powerintroducesthesecondinterface,andthiswill inevitablyper-
turb the system. Our theoretical prediction is, therefore, only ap-
plicable to the experimental case when this perturbation is small.
Theperturbationcanbeminimizedbydesigningtheoutputsection
to matched the magnetized FCL section so that reflections at the
secondinterfacearenegligible.Theeigenmodesofthemagnetized
FCL will still be decomposed into eigenmodes of the waveguide
of the output section at the second interface. However, since the
reflection isnegligible, thisdecompositionwill causenopower to
be redistributed among the two coupled lines, and the second in-
terface can, therefore, effectively be neglected. The first interface
needstobeanalyzedinanycasetoobtaininformationontheeigen-
modes propagating in the magnetized FCL. Such decomposition
determinesthebehaviorof theFCL.ForanunmatchedFCL,some
amountofpowerwill be reflected back into the FCL at the second
interface.Thisreflectedpowerwillparticipateinthecomplexpro-
cedure happening there, but for simplicity, it is not included here.
However, the inclusionof the discontinuities at both the inputand
outputinterfacesisnecessaryforacompletedescriptionofanFCL
structure,andthiswillbethesubjectofalaterpaper.Experimental
verificationofthetheorypresentedhereisinhand,andwillbepub-
lished at a later date.

A. Vectorial-Wave Equation

Maxwell's equations for time–harmonic waves are

(1)

(2)
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where a time variation of the form is assumed, and is the
electric field, is the magnetic field, is the angular frequency,

and are, respectively, the permittivity and permeability of
free space, is the relative permeability tensor,
and is the scalar relative permittivity of the media
in the coupled waveguides. Assuming uniform magnetization in
the -direction, is given, to a first order of approximation, by

(3)

where , ,
, and . is the gyromagnetic ratio

that has a value of 1.759 10 C/kg, is the bias field, and
is the saturation magnetization.

Assuming perfect conductivity of the metal, all the metal sur-
faces can be treated as boundary conditions, andis, therefore,
zero everywhere in the field regions. The following vectorial
wave equation can be derived from (1) and (2):

(4)

where is speed of light in vacuum. Since the
waveguide is uniform in the-direction, all field components
will have a dependence of where is the propagation
constant. Equation (4) can be cast into Konrad's functional [7]
and can be solved using the FEM [8], [9] to obtain the propa-
gation constant and the modal field patterns .
are obtainable from by using (2).

The guided modes of the magnetized FCL always contain
regions of elliptical polarization, and the power transfer effect
can be explained in terms of the superposition of these ellipti-
cally polarized modes. To obtain good nonreciprocal behavior,
the number of modes should be limited to two, which are de-
noted by , , and , ,
where . The even and odd modes at the input in the
isotropic region are denoted by , , and

, , respectively, where even (odd) mode
is defined as having the electric field , an even (odd) func-
tion with respect to the plane. The input modes can be
delivered from any kind of compatible waveguide. From these
modal fields, the integration

(5)

can be computed, where . Also,
is defined as the integration over the right- (left-)-hand side of
the waveguide cross section. The orthogonality of these modes
implies that . However, , ,

, , , , , and are not zero, nor are and
.

B. Decomposition of the Input Mode at the FCL Interface

At the first interface, where the input waveguide meets the
magnetized FCL (see Fig. 1), the input wave is decomposed into
the eigenmodes of the FCL. This process can be treated using
the modal analysis method [10].

Suppose the input wave consists of of the even mode and
of the odd mode, i.e., , where

and are the complex amplitudes. The reflection from the
FCL is , plus higher order modes.
The transmitted wave is . Boundary condi-
tions at the interface are the continuity of all the tangential-field
components. Both guided modes and evanescent modes should
be included in the boundary conditions in principle, but inclu-
sion of all the guided modes is often enough to give a good an-
swer in practice. In the current problem, to obtain good nonre-
ciprocal effects, we design the waveguide so that only two ellip-
tically polarized modes can propagate in the magnetized FCL.
Also, we assume that the input waveguide can support only two
modes, the even and odd modes. Imposing the boundary condi-
tions at gives

(6)

(7)

(8)

(9)

By multiplying (6) with , and (7) with , and then inte-
grating their subtraction over the cross section of the waveguide,
we get

(10)

where , , and are integration coefficients defined in
(5). The orthogonality of modes has been used in deriving (10).
Further manipulation on the boundary conditions, i.e., (6)–(9),
in a similar way generates three more equations for the reflec-
tion coefficients , , and the transmission coefficients
and . The four equations can then be written in the following
matrix form :

(11)

C. Power Flow in FCL

Any given input will decompose into of mode 1 and of
mode 2 of the magnetized FCL, where and are obtained
from . The field propagating in the FCL is,
therefore,
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The component of the Poynting vector is

(12)

The waveguide is enclosed in a metal tube, thus, there is no net
power flow in the - or -direction. The power passing through
any cross section of the magnetized FCL at distanceis

(13)

where is the power carried by mode 1, and
is the power carried by mode 2. Mode or-

thogonality ensures that no power is carried in between the two
modes. Since no power can escape from the metal enclosure,
and no loss is included in the calculation, is not a function
of .

The FCL contains two coupled lines. In the problem under
consideration, the cross section of the FCL is always symmetric
about , as shown in Fig. 2. It is, therefore, sensible to
associate all power in the region with the left-hand-side
line (the “left line”), and all power in the region with the

TABLE I
EFFECTS OFREVERSING H ẑ ON THE EIGENMODE

OF A MAGNETIZED FCL

right-hand-side line (the “right line”). The power carried by the
right line is

(14)

The power carried by the left line is obtainable from the above
expression by replacing , , , and with ,

, , and , respectively. It can be seen that power is
periodically transferring between the two lines. The periodicity
of the power transfer is

(15)

The power reflected back to the isotropic dielectric region can be
calculated by using and . For example, the power reflected
back to the right line is

(16)

Similar expressions hold for the power reflected back to the left
line of the dielectric waveguide.

D. Bidirectionality and Nonreciprocity

When the direction of the magnetization is reversed,
the propagation constants and will not change accord-
ingly. This is the well-known bidirectionality theorem [6]. How-
ever, the guided modal field patterns and will
change. The change in the modal patterns is the origin of the
nonreciprocal power transfer effects in the magnetized FCL de-
vice.

1) Effects of Reversing on the Decomposition Coeffi-
cients: As shown in the Appendix A, the guided modal fields

and change according to Table I when the di-
rection of the magnetization is reversed. If the waveguide
does not contain ferrite, i.e., everywhere, the change in
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makes no difference to the waveguide and the eigenmode
of a dielectric waveguide, therefore, has the following property:

(17)

Applying (17) and Table I to (5), the relationships of (18),
shown at the bottom of this page, can be established for the pro-
cedure where , , , and are the phase shifts
associated with the even and odd modes of the input, and the
first and second elliptically polarized modes of the magnetized
FCL, respectively. , , , and do not change in
the procedure. , can also be proved to be real by the use
of (17) since

(19)

Similarly, it can be shown that . On the other
hand, , ,

, and are complex.
Since the eigenmodes of the magnetized FCL are changed,

the same input wave will be decomposed differently for
and magnetization. This change is reflected in the
reflection and transmission coefficient . For a pure odd
input, , , where is the phase of .
From (11) and (18), one can see that if
are the decomposition coefficients (transmission and reflection
coefficients) for magnetization , where the superscript “”
denotes transpose, then ,

will be the decomposition
coefficients for a magnetization. It is interesting to
note that the change is a pure phase shift. The amplitudes of
the transmission and reflection coefficients are unchanged.
Similarly, for a pure even input, , ,

changes from to ,
, , when the

direction of magnetization is reversed. These changes are
summarized in Table II.

2) Effects of Reversing on the Power Flow:The power
flow associated with the right line is given in (14). When the
magnetization is reversed, it can be seen from (18) and Table II

TABLE II
EFFECTS OFREVERSINGH ẑ ON THE REFLECTION AND TRANSMISSION

COEFFICIENTS

that the following changes occur for either a pure even or a pure
odd input:

(20)
Using (20) in (14), it can be found that the first two terms and the
term containing are invariable, while the term
containing changes sign, which is responsible
for the nonreciprocal behavior of the FCL.

For symmetrically placed coupled strips, and
are generally not equal to and ,

unless, as shown in Appendix B, the FCL is symmetrical in
both - and -directions, and its ferrites in regions I and II are
the same material, but magnetized in the opposite direction [see
(39)]. For this special dually magnetized FCL, it can also be
proven that in (14), the coefficient in front of
is zero [see (46)] so that (14) reduces, for and ,
respectively, to

(21)

(22)
where

is the total power flowing in the magnetized FCL, and

Nonreciprocity is clearly demonstrated. It should be noted that
the orthogonality condition and
has been used in obtaining the power flow expressions of the

(18)
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left line. The required length of the dually magnetized FCL to
obtain the largest nonreciprocal effect is

(23)

Similar analysis reveals that the reflected power also has nonre-
ciprocal behavior.

For FCL structures other than this special type, (14) takes a
more complicated form. The power carried on the right line for

, e.g., is

(24)

where

Since neither nor changes sign when the direction of
magnetization is reversed, the magnetized FCL is not com-
pletely nonreciprocal. represents a reciprocal power transfer
behavior, while causes no power to switch, but reduces
the maximum power the two lines can exchange. Since, by
definition, both and are positive quantities, it follows
that .

In this paper, we concentrate on FCL’s whose two coupled
lines are of equal width and zero thickness and symmetrically
placed in the structure, as shown in Fig. 2. For such an FCL,

and are very close to zero. In all the following
numerical calculations, and are less than 1% of . Such
an FCL can basically be regarded as a nonreciprocal device, and
(21), (22), and (23) are good descriptions of its behavior.

3) Optimum Operation Condition:For optimum nonrecip-
rocal operation of a magnetized FCL, the ratio

(25)

has to be tuned to its maximum value. This is the new
normal-mode equivalent to the condition of
[3]. Compared with the old normal-mode condition, the new
normal-mode condition gives a better prediction of the perfor-
mance of the magnetized FCL because it allows a variation of
the phase with position. Both the real and imaginary parts of the

and field entered the calculation through (5), while in the
old normal-mode optimum condition, the phases are assumed
to be constants on the two coupled lines and jump abruptly
from one value of line 1 to the other value of line 2. It is also
better than the condition of [2] in the sense that
no weak coupling assumption is made in its derivation. It can,
therefore, be applied to any structure with strong magnetization
or strong coupling.

The ratio is usually close to, but less than, one at max-
imum. This means that a particularly magnetized FCL may not
perform well even if we find the maximum value of for
the structure. This is contrary to the result of the coupled mode

theory, and the old normal-mode theory, where perfect opera-
tion is predicted once the condition or

is achieved.

III. N UMERICAL RESULTS—COMPARISONS WITHLITERATURE

In order to compare our numerical results with those experi-
mental results that exist in the literature, it is necessary to con-
vert the power transfer factor into the experimentally
measurable quantities insertion loss and isolation, assuming the
losses in the magnetized FCL and T-junction are negligible. For
a signal entering from port 2, an even input mode will be excited,
with power . The power emerging
from ports 1 and 3 is given by (21) and (22). These outputs cor-
respond to

insertion loss (26)

isolation (27)

where is the actual length of the magnetized FCL and
is the required length. It should be noted that

is function of frequency, while is a constant. The situation
with signal entering from ports 1 or 3 is more complicated, but
the performance is expected to be at the same level.

The return loss can be estimated from (16). For
an even input, it is found that the reflection coeffi-
cient of the even mode is much bigger than that of
the odd mode, i.e., . The reflected power
levels are, therefore, and

, which add up at port 2 to give
. The return loss is, therefore,

return loss (28)

As expected, the return loss is directly related to the (normal-
ized) reflection coefficient.

The coupled slotline structure analyzed by Mazur for its
“basis guide” even and odd modes (see [4, Fig. 3]) has been
reexamined. Using Fig. 2 to represent Mazur's structure,
then region I is air and region II consists of three layers: the
first layer beneath the coupled slotlines is a 0.127-mm-thick
dielectric film with , the second layer is a 0.5-mm
ferrite slab with , and the third layer is again air.
Other dimensions in our notation are mm,

mm, and mm. The ferrite is just
saturated with kA/m. Mazur found that

at a frequency of 27.5 GHz. We have solved
for both the magnetized and unmagnetized normal modes of
the structure, using an -field formulation of the FEM [8],
[9]. The unmagnetized modes are used as input modes in the
calculation of the nonreciprocal power transfer. Mazur had
designed his FCL to be 14.3 mm in length. Our numerical
results for mm are shown in Fig. 4. Agreement with
[4, Fig. 7] is good in terms of insertion loss, but less so for
isolation. Our normal-mode theory shows that the optimum
operation point is at GHz, which is significantly
different from 27.5 GHz predicted by the coupled-mode theory.
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Fig. 4. Computed insertion loss and isolation of the FCL used in Mazur's
experiment:̀ = 14:3 mm. Structural details are in the text.

Fig. 5. Computed insertion loss and isolation of the FCL used in the Teohet
al. experiment. Structural details are in the text.

Consequently, the recommended length mm of the
FCL is different from that used in Mazur's experiment. Also,
it should be noted that the maximum value of is only
0.6862, significantly smaller than the desired value of one.

The return loss estimated from (28) is lower than that mea-
sured by Mazur. The calculations on both the return and isola-
tion losses may be improved if the reflections at the T-junction
and at other interfaces of the distributed circulator are included.

The second numerical experiment is on the comparison of the
new normal-mode optimum operation condition to the old con-
dition of [3], [5], and [8]. The FCL structure is shown in Fig. 2,
where region II has a thickness of 1.5748 mm and dielectric con-
stant of , region I consists of two layers, with the first
layer immediately above the coupled striplines a 1.5-mm fer-
rite, which has a saturation magnetization kA/m,

A/m, and dielectric constant . The re-
gion above the ferrite is air. Other dimensions in millimeters are

, , , and (data fol-
lows that of Teoh and Davis [5], [8]). Again, the eigenmodes of
the unmagnetized FCL are used as input. The results on insertion
and isolation losses for an even input for mm are shown
in Fig. 5. The Teohet al.experimental result [5] contains some
spurious signals, which may be due to unwanted reflections at
discontinuities in their device. If we ignore these and consider
the general behavior, the overall envelope of [5, Fig. 12] looks
rather like Fig. 5.

The maximum value of for both even- and
odd-mode input occurs at GHz, quite close to
6.98 GHz, the value obtained in [3] by inspecting the phases

and . This means that at the optimum operation point,
phase does approximately obey the rule of
( in [5]). The length of the FCL found by the
old normal-mode theory mm (modified to 62 mm
by consideration of impedance) is also close to mm
predicted by the new normal-mode theory. However, as with
the coupled-mode theory, this old normal-mode theory does
not have an assessment for the performance of the FCL at its
optimum operation point, and perfect power transfer (equiv-
alent to ) is assumed. It is revealed in the new
normal-mode calculation that the maximum power transfer
factor is 0.72. This modest power transfer factor at the optimum
operation point may be responsible for the poor performance
of Teohet al.'s experiment [5]. Also, there is an uncertainty in
the old normal-mode theory. As mentioned before, the value
of phase depends not only the position of the reference points,
but also on the type of fields used in the calculation. Teohet al.
used the phase of the vertical-component of thefield vectors
in the region immediately beneath each strip to get the result.
Such uncertainty is avoided in the new theory.

The new normal-mode approach requires us to specify an
input mode (odd or even) so that an isotropic input section for
the magnetized FCL is needed. In the above numerical exam-
ples, we used the unmagnetized FCL as the input section, but
it should be borne in mind that other waveguides can also be
used as input sections. The need for an isotropic input section
increases the computing time because eigenmodes of both the
input and magnetized FCL sections need to be calculated. How-
ever, the magnetized FCL is found to perform quite differently
when it is joined to different input sections. This fact suggests
that the inclusion of a properly matched input section is essen-
tial. It seems that analyzing the magnetized FCL alone is not
sufficient for the study of distributed circulators.

IV. NUMERICAL RESULTS—NEW STRUCTURES

A good FCL should have large broad bandwidth
and short total length. It should also be compatible with the net-
work in which it is embedded. Since stripline and microstrip
line are the two most commonly used planar transmission lines,
FCL’s using these lines will be the focus for the remainder of
this paper.

After some computer experiments it was found that the fol-
lowing microstrip FCL gave a satisfactory performance. This is
by no means the most optimal structure, but it is one that gives
a reasonably good and a sufficiently short total
length . With the cross section of the microstrip FCL, as shown
in Fig. 2, the structure has mm, mm,

mm, and . Region I is air and region II
is a ferrite with saturation magnetization kA/m and
dielectric constant .1 The isotropic input section has
the same structure and dimensions as the FCL section, except
that the ferrite medium is replaced by a material with dielectric

1Trans-Tech TT72-3005 Lithium ferrite, Trans-Tech SMAT-10 dielectric,
Trans-Tech Inc., Adamstown, MD.
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Fig. 6. Computed insertion loss and isolation of an FCL using microstrip lines.
Structural details are in the text.

Fig. 7. Behavior of the microstrip FCL using even input. The shaded areas on
the ground plane represent the two coupled microstrips. Magnetization is in the
z-direction.

constant . Solving for the field, with 440 edge el-
ements, the power transfer factor and required length

are calculated. The maximum value of is 0.918 at a
frequency of 10.7 GHz, with required length of mm.
This is a larger value of than was achievable by the
structures suggested by [4] and [5]. Assuming the T-junction is
completely matched with the magnetized FCL, and using

mm in (26) and (27), the power transfer factor was
converted into insertion loss and isolation and the results over
a frequency range of 9.0 to 12.0 GHz are shown in Fig. 6. An
insertion loss of about 0.18 dB and isolation of about 13.87 dB
is achieved at the frequency of 10.7 GHz. The insertion loss is
less than 0.5 dB, and the isolation is greater than 10 dB, at the
band edges.

For confirmation, the field has also been computed with
the same number of elements. The calculated power transfer
factor is about 0.914 at 10.7 GHz, and the required
length at this frequency is 24.11 mm; both are close to what
was obtained from the -field calculation. These differences
reduce when the number of elements used in the field calculation
increases. The-component of the power flow density

at 10.7 GHz is plotted in Figs. 7 and 8 for an even-
and an odd-input, respectively, under a magnetization. The
power flow plots for a magnetization showed that the
direction of power transfer is reversed, but otherwise, they are
mirror images of Figs. 7 and 8 are not shown here. These plots

Fig. 8. Behavior of the microstrip FCL using odd input. The shaded areas on
the ground plane represent the two coupled microstrips. Magnetization is in the
z-direction.

Fig. 9. Field plots ofA H for H ẑ magnetization.

are reminiscent of Fig. 3 (and demonstrate that the performance
of the magnetized FCL is indeed nonreciprocal). It is controlled
by the input condition (even or odd) and by the direction of
magnetization. The imperfect behavior of this FCL is clearly
evident because it can be seen that there is a small amount of
power that is not transferred at the end of the coupled lines, as
predicted.
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Fig. 10. Field plots ofA H for H ẑ magnetization.

To see how the nonreciprocal behavior is achieved for the
magnetized FCL, we reexamined the decomposition coeffi-
cients , , and the eigenmodes and to obtain

(29)

Figs. 9 and 10 show and
for an odd input when the

FCL is magnetized in the-direction . The field vector
arrow used in these plots is defined as follows: direction and
total length represents the transverse component of the field

, while the position of the tip of the ar-
rowhead is determined by the ratio . The field pat-
tern at for this magnetization is

, which can be obtained by directly adding up
Figs. 9 and 10. It is seen that an approximately evendistribu-
tion of power occurs.

At , an extra phase of is
added to the first mode relative to the second mode; the role of
its real and imaginary parts is, therefore, exchanged. The field

Fig. 11. Plots ofH . Definition details are in the text.

pattern at is given by ,
where

(30)

The resulted fields have a big peak in the side and a small
peak in the side, as shown in Fig. 11. Consequently, most
of the input power is switched to the right line. Manipulations
on the electric-field components , give the same answer.

When the direction of magnetization is changed from to
for the same input, it can be seen from Tables I and II

that and ,
respectively, become and

, where is a
common phase factor that is arbitrary and can be set to zero.
The field at for this magnetization is

(31)
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Fig. 12. Plots ofH . Definition details are in the text.

which still produces an even power distribution between the two
coupled lines. However, at , the magnetic field becomes

, where

(32)

(33)
The resulted fields have a big peak in the side, as shown
in Fig. 12. This means most of the input power is switched to the
left line in this magnetization, i.e., opposite to the case
of magnetization.

It is clearly seen that when the direction of the magnetization
on the FCL is reversed, the effects on the decomposition
coefficients and the effects on the eigenmodes

, worked together and
produced the nonreciprocal performance of the FCL. It also
becomes apparent that the incomplete power transfer between
the two coupled lines is due to the different, dependence
of the eigenmodes, so that any component, e.g., and

, do not completely cancel each other everywhere on

Fig. 13. Computed insertion loss and isolation of the FCL using striplines.
Structural details are in the text.

(a) (b)

(c)

Fig. 14. Cross section of the dually magnetized symmetrical FCL.

the left-hand side (right-hand side) half of the structure for
magnetization. This incomplete cancellation

of the eigenmodes is not special for magnetized FCL. It is
an intrinsic characteristic of any coupled lines. Only in an
idealized situation will this ratio become one [11].

A better result can be obtained from an FCL built using
a stripline-type structure rather than microstrip. The cross
section of this stripline FCL is as shown in Fig. 2, with

mm, mm, and .
Region I has a dielectric constant . Region II is
ferrite with a saturation magnetization kA/m and
dielectric constant . The unmagnetized “stripline”
FCL is used as the input section. The power transfer factor

and the required length for an even input are
calculated and the results are converted into insertion loss
and isolation for a mm stripline FCL over the
frequency range of 10–30 GHz, as shown in Fig. 13. An
insertion loss of 0.12 dB and isolation of 15.5 dB are
achieved at 23 GHz, and the insertion loss and isolation are
better than 0.17 and 14 dB, respectively, at the band edges.
It is noted that both the performance and bandwidth of this
stripline FCL are better than those of the microstrip FCL.
Unfortunately, the length of the resulted FCL is larger.
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One way to reduce is to use two ferrites: replacing the di-
electric material (region I) with the same ferrite as region II,
then magnetizing them in opposite directions. The outcome
is a special type of “dual” FCL, as shown in Fig. 14. Such
an FCL has also other advantages. For example, its
and are exactly zero for any frequency.

V. CONCLUSION

A rigorous full-wave normal-mode treatment of the magne-
tized FCL has been presented for use in the design of novel cir-
culators. The eigenmode solution of an FCL magnetized lon-
gitudinally in the -direction was found to bear a simple rela-
tionship to the eigenmode solution of the same FCL when mag-
netized in the opposite direction. By reversing the direction of
magnetization, the change in the decomposition coefficients of
the same input wave into the eigenmodes of themagnetized
FCL is studied. The nonreciprocal effect demonstrated by the
magnetized FCL is explained in terms of the changes in the
eigenmodes and in the decomposation coefficients.

A new optimum operation condition was constructed from
the Poynting vector. This new condition takes into account all
available information such as the propagation constants, the am-
plitude, and the phase of the guided waves, including both
and components. The new condition not only gives a more
accurate description of a given FCL versus frequency than the
old conditions, it also enables the performance of different FCL
structures to be assessed so that an overall best FCL can be iden-
tified.

Detailed theoretical comparisons have been made with exper-
imental circulator results in the literature, and new microstrip
and stripline structures have been described with promising pre-
dicted performance.

APPENDIX A
CHANGES IN THEGUIDED MODAL FIELD PATTERNSWHEN THE

DIRECTION OF THEMAGNETIZATION IS REVERSED

and can be separated into transverse and longitudinal
components

(34)

where is the unit vector in the longitudinal direction, and
and are unit vectors in the direction of the transverse compo-
nents of and . Since the dependence of the fields is al-
ready made explicit by factoring out , can also be split
into a transverse component and a longitudinal component

. Substituting (34) into (1) and (2), we get [12]
for the longitudinal components

(35)

(36)

The transverse componentsand are related to and
through

(37)

(38)
Equations (35)–(38) can be used to describe the behavior of
the fields in the entire waveguide structure, provided that,

, and are treated as functions ofand . The effect of re-
versing the magnetization is to change the sign of. Taking
the complex conjugate of (35)–(38), reversing the sign of,
and then comparing the result with (35)–(38), we find that if
and are the eigenvalue
and eigenvector of an FCL with a magnetization of , then

and will be
the eigenvalue and eigenvector of the same FCL with the oppo-
site magnetization , where , independent of , , and
, is an arbitrary phase shift. The propagation constantis not

changed in this process, which confirms the bidirectionality the-
orem. The change in the modal profile will enable us to predict
the performance of the magnetized FCL when is reversed.

APPENDIX B
POWERFLOW IN DUALLY MAGNETIZED SYMMETRICAL FCL

Unlike a symmetrical dielectric waveguide, in an FCL mag-
netized in the -direction, the power flow on the right-hand side
of the waveguide is generally not equal to the power flow on the
left-hand side of the waveguide. A specially magnetized FCL
is shown in Fig. 14(a), in which both media above and below
the coupled lines are identical ferrites with the same thickness
and width, but magnetized in opposite -directions. The two
lines, and , are also the same and are placed at and sym-
metrical about (see Fig. 2 for the coordinate system). For
such a dually magnetized symmetrical FCL, we have

(39)

The proof of (39) is the following. If we assume

(40)

for the FCL structure shown in Fig. 14(a), then, by reversing the
direction of the magnetization in both ferrites, we get a structure
that looks like Fig. 14(b). Using (18), we get

(41)

Equation (40), therefore, becomes

(42)

If the FCL in Fig. 14(b) is now rotated by 180around the
-axis, we get to Fig. 14(c), and

(43)

The resulted configuration Fig. 14(c) is exactly the same as
Fig. 14(a), except that “” and “ ” are defined in an opposite
way, i.e.,

(44)
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Using (44) and (43) in (42), we get

(45)

which violates (40). The opposite of (40) cannot be true either,
we have, therefore, proven .

In such a dually magnetized symmetrical FCL, it can be
proven that, for a pure even or pure odd input, that

(46)

where

(47)

If we start by assuming

(48)

for the structure of Fig. 14(a), and reversing the direction of
magnetization , we come to Fig. 14(b), and
it follows from the relationships in (20) that and

. Fig. 14(b) is then rotated , and
the structure becomes Fig. 14(c). Since Fig. 14(a) is the same as
Fig. 14(c), we have

(49)

therefore,

(50)

which disagrees with the initial assumption (48). It can also be
proven that the opposite of (48) is not true either, thus,

. However,
, according to the orthogonality of the guided modes. There-

fore, is the only possible answer for an FCL of
this special type.

It follows from (14) that and
, where

(51)

Using (39) in (51) gives , thus, (46) actually means
that , i.e., power is initially evenly

launched into the coupled lines. It should be noted that the above
proof is valid only for pure even or pure odd input. If the input is
a mixture of even and odd modes, the relationships in (20) do not
exist and we then cannot prove or disprove (48). Launching all
or most of the power into one of the lines is a common practice
in reality.
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