2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Microwave Theory and Techniques
Volume 48 Number 5, May 2000

Table of Contents for this issue

Complete paper in PDF format

Laterally Resolved Microwave Surface-Resistance Measurement of High-Tc Superconductor Samples by Cavity Substitution Technique

Mukul Misra, N. D. Kataria and G. P. Srivastava Senior Member, IEEE

Page 791.

Abstract:

Microwave surface impedance measurement of a high-temperature superconductor (HTS) is a sensitive probe to test its quality, particularly if a microwave device is to be fabricated. Most microwave characterization employs resonance techniques in which the components of the surface impedance are extracted from the measured Q value and the shift in the resonance frequency. In this paper, we present a modification of the widely used complete end-plate substitution technique to measure the surface resistance of samples having dimensions smaller than the dimension of the end plate at 20 GHz, as well as to facilitate the laterally resolved surface resistance measurement of large-area HTS samples. From the knowledge of the electromagnetic-field configuration in a TE011-mode cylindrical cavity, the loss contribution from the HTS sample is analyzed theoretically and measured experimentally in the temperature range of 20-100 K. The design of the cavity is discussed to optimize the sensitivity of the measurement by the placement of the sample and to maximize the difference in the measured Q value.

References

  1. A. B. Pippard, "An experimental and theoretical study of relation between magnetic field and current in superconductor", Proc. R. Soc. Lond. A, Math. Astron. Phys. Sci., vol. A216, pp.  547-568, 1953.
  2. N. D. Kataria, M. Jaya Kumar and G. P. Srivastava, "Microwave surface impedance of high temperature superconductors and device applications,"in Studies of High Temperature Superconductors, A. V. Narlikar, Ed. New York: Nova Sci., 1996,vol. 18, pp.  45-100. 
  3. R. C. Taber, "A parallel plate resonator technique for microwave loss measurements of superconductors", Rev. Sci. Instrum., vol. 61, pp.  2200-2206,  1990.
  4. J. Krupka, M. Klinger, M. Kuhn, A. Baranyak, M. Steller, J. Hinken and J. Modelski, "Surface resistance measurements of HTS films by means of sapphire dielectric resonators", IEEE Trans. Appl. Superconduct., vol. 3, pp.  3043-3048, Sept.  1993.
  5. D. E. Oates and A. C. Anderson, "Surface impedance measurements of YBaCuO thin films in stripline resonators", IEEE Trans. Magn., vol. 27, pp.  867-871,  Mar.  1991.
  6. B. A. Tonkin and Y. G. Proykova, "Modular system for microwave surface impedance measurement of high-temperature superconductors", Superconduct. Sci. Technol., vol. 6, pp.  353-359, 1993.
  7. S. Sridhar and W. L. Kennedy, "Novel technique to measure the microwave response of high Tc superconductors between 4.2 and 200K", Rev. Sci. Instrum., vol. 59, pp.  531-536, 1988.
  8. M. Jayakumar, N. D. Kataria and G. P. Srivastava, "10-GHz cylindrical cavity resonator for characterization of high-Tc superconducting bulk and thin films", IEEE Trans. Magn., vol. 30, pp.  4605-4607, Nov.  1994.
  9. M. Misra, N. D. Kataria and G. P. Srivastava, "Sensitivity in the measurement of microwave surface resistance of high-Tc superconducting samples of different size by cavity method", Supercond. Sci. Technol., vol. 12, pp.  48-53, 1999.
  10. E. Silva, M. Lancura and R. Marcon, "Microwave surface resistance peak at Tc in Bi2 Sr 2 CaCu2O8+x film", Physica C, vol. 276, pp.  84-90,  1997.
  11. L. Hao and J. C. Gallop, "Spatially resolved measurements of HTS microwave surface impedance", IEEE Trans. Appl. Superconduct., vol. 9, pp.  1944-1947,  May  1999.
  12. E. Argence and T. Kahan, "Electromagnetic cavities,"in Theory of Waveguides and Cavity Resonators, Glasgow: Scotland: Blackie, 1967, pp.  361-372. 
  13. N. Klein, H. Chaloupka, G. Muller, S. Orbach, H. Piel, B. Roas, L. Schultz, U. Klien and M. Peiniger, "The effective microwave surface impedance of epitaxial YBa2Cu3O7- thin films", J. Appl. Phys., vol. 67, pp.  6940-6945, 1990.
  14. P. Hartemann, "Effective and intrinsic surface impedances of high-Tc superconducting thin films", IEEE Trans. Appl. Superconduct., vol. 2, pp.  228-235, Dec.  1992.
  15. J. Wosik, R. A. Kranenburg, J. C. Wolfe, V. Selvamanickam and K. Salama, "Millimeter wave surface resistance of grain-aligned Y1Ba2Cu3Ox bulk material", J. Appl. Phys., vol. 69, pp.  874-879,  1991.
  16. Microwave Engineer's Handbook, Norwood, MA: Artech House Inc., 1984,vol. 1, pp.  180-181. 
  17. A. M. Portis, Electrodynamics of High-Temperature Superconductors, Singapore: World Sci., 1992,vol. 48.
  18. P. A. Smith, N. MacNalford and T. W. Button, "Frequency dependence of surface resistance of bulk high temperature superconductors", Electron. Lett., vol. 26, pp.  1486-1487,  1990.
  19. R. Pinto, "Microwave surface resistance of high-Tc superconducting films,"in Studies of High Temperature Superconductors, A. V. Narlikar, Ed. New York: Nova Sci., 1996,vol. 17, pp.  147-173. 
  20. D. A. Bonn, S. Kamal, K. Zhang, R. Liang, D. J. Barr, E. Klien and W. N. Hardy, "Comparison of influence of Ni and Zn impurities on electromagnetic properties of YBa2 Cu 3O6.95", Phys. Rev. B, Condens. Matter, vol. 50, pp.  4051-4063, 1994.
  21. Y. Kobayashi, T. Imai and H. Kayano, "Microwave measurement of temperature and current dependences of surface impedance of high-Tc superconductors", IEEE Trans. Microwave Theory Tech., vol. 39, pp.  1530-1538, Sept.  1991.
  22. S. Y. Lee, B. J. Soh, J. W. Ahn, J. Y. Cho, B. H. Park, C. S. Jung, V. B. Federov, A. G. Denisov, Y. H. Kim, T. S. Hahn, S. S. Choi, B. Oh and S. H. Moon, "Use of a dielectric-loaded cylindrical cavity in measurements of the microwave surface resistance of high-Tc superconducting thin films", IEEE Trans. Appl. Superconduct., vol. 7, pp.  2013-2017, June  1997.
  23. M. J. Lancaster, Z. Wu, T. S. M. Maclean and N. MacNalford, "High temperature superconducting cavity for measurement of surface resistance", Cryogen., vol. 30, pp.  1048-1050, 1990.