2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Microwave Theory and Techniques
Volume 48 Number 5, May 2000

Table of Contents for this issue

Complete paper in PDF format

Optically Induced Mask-Controlled Time-Variable Periodic Microwave Structures

Walter Platte, Stefan Ruppik and Manfred Guetschow

Page 846.

Abstract:

Based on the distributed Bragg reflection performance of stationary light-induced periodic microwave structures, this paper presents different kinds of modified arrangements for the generation of time-variable plasma gratings. Initial experimental investigations concentrate on the alteration of the grating period as a function of time. It is realized by a photographic film slot-array mask of linearly graded slot width transversely moved across an light-emitting-diode-excited photosensitive coplanar waveguide. The characterization of such a mask-tuned filter configuration requires special measuring procedures,which are illustrated and discussed in detail. The principle of operation demonstrated at X-band frequencies offers the potential of being extended to the submillimeter-wave and low-terahertz ranges.

References

  1. M. Matsumoto, M. Tsutsumi and N. Kumagai, "Bragg reflection characteristics of millimeter waves in a periodically plasma-induced semiconductor waveguide", IEEE Trans. Microwave Theory Tech., vol. MTT-34, pp.  406-411, Apr.   1986.
  2. M. Matsumoto, M. Tsutsumi and N. Kumagai, "Radiation of millimeter waves from a leaky dielectric waveguide with a light-induced grating layer", IEEE Trans. Microwave Theory Tech., vol. MTT-35, pp.  1033-1042, Nov.   1987.
  3. W. Platte, "Periodic-structure photoexcitation of a silicon coplanar waveguide for selective optoelectronic microwave control", IEEE Trans. Microwave Theory Tech., vol. 38, pp.  638 -646, May  1990.
  4. V. A. Manasson, L. S. Sadovnik, A. Moussessian and D. B. Rutledge, "Millimeter wave diffraction by a photoinduced plasma grating", IEEE Trans. Microwave Theory Tech., vol. 43, pp.  2288-2290, Sept.  1995.
  5. A. Alphones and M. Tsutsumi, "Leaky wave radiation from a periodically photoexcited semiconductor slab waveguide", IEEE Trans. Microwave Theory Tech., vol. 43, pp.  2435-2441, Sept.  1995.
  6. V. A. Manasson, L. S. Sadovnik, V. A. Yepishin and D. Marker, "An optically controlled millimeter wave beam-steering antenna based on a novel architecture", IEEE Trans. Microwave Theory Tech., vol. 45, pp.  1497-1500, Aug.  1997 .
  7. W. Platte, "LED-induced DBR microwave filter with fiber-optically controlled change of center frequency via photoconductivity gratings", IEEE Trans. Microwave Theory Tech., vol. 39, pp.  359 -363, Feb.  1991.
  8. W. Platte, "Microwave measurements of effective dielectric constant of semiconductor waveguides via periodic-structure photoexcitation", IEEE Trans. Instrum. Meas., vol. 46, pp.  717 -721, June  1997.
  9. W. Platte and W. Barrasch, "High-reflection 30 GHz grating structure optically induced in a CdS film coplanar waveguide on a ceramic substrate", Electron. Lett., vol. 31, pp.  400-401, 1995.
  10. W. Platte, "Spectral dependence of light-induced microwave reflection coefficient from optoelectronic waveguide gratings", IEEE Trans. Microwave Theory Tech., vol. 43, pp.  106-111, Jan.  1995 .
  11. W. Platte, "Best-case reflection analysis of low-loss excited plasma gratings", Frequenz, vol. 50, pp.  178-180, 1996.
  12. W. Platte, "Scattering parameter analysis of light-induced periodic microwave structures", Frequenz, vol. 52, pp.  187-190, 1998.
  13. W. Platte, "CdS-CdSe-Al 2 O3 -based photosensitive coplanar waveguides for optically controlled microwave and millimeter wave components", Frequenz, vol. 53, pp.  46-50, 1999.
  14. N. C. Luhmann, "Instrumentation and techniques for plasma diagnostics: An overview,"in Infrared and Millimeter Waves, K. J. Button, Ed. New York: Academic, 1979,vol. 2, Instrumentation, pp.  1-65. 
  15. H. Grebel and M. Jimenez, "Conditional artificial dielectrics: Phase and amplitude response at microwave frequencies", Proc. Inst. Elect. Eng., vol. 140, pp.  232-236, 1993.
  16. H. H. Brand, J. Brune, A. J. Harth, R. H. Janker, M. G. Maerz, S. L. Martius, D. P. Steup and B. G. Stoeckel, "Terahertz research at the Erlangen university laboratories for high frequency technology", in 5th Int. Space Terahertz Technol. Symp. Dig., Ann Arbor, MI, 1994, pp.  1-26. 
  17. M. Roeper, S. Ruppik and W. Platte, "Geometry variable DBR filter masks", Univ. Federal Armed Forces Hamburg, Hamburg, Germany, Internal Rep. HFT-D141, 1997.
  18. G. Kissel, S. Ruppik and W. Platte, "Frequency tuned DBR filter", Univ. Federal Armed Forces Hamburg, Hamburg, Germany, Internal Rep. HFT-D144, 1998.
  19. T. Fickenscher, German "Optimization of optoelectronic microwave and millimeter wave DBR waveguide filters based on silicon substrates", Ph.D. dissertation, Dept. Elect. Eng., Univ. Federal Armed Forces Hamburg, Hamburg, Germany, 1997.
  20. W. Platte, "Optimum carrier lifetime of semiconductor substrate in optoelectronic microwave grating structures", Proc. Inst. Elect. Eng., vol. 142, pp.  197-201, 1995.