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Resonances in Heterogeneous Dielectric Bodies
with Rotational Symmetry—Volume

Integral-Equation Formulation
Andrzej A. Kucharski

Abstract—In this paper, a method of determining resonant fre-
quencies and field distributions in heterogeneous bodies of revo-
lution is presented. A volume electric-field integral equation is put
into modal form, and then discretized with the method of moments.
In the solution process, specially defined divergenceless basis func-
tions are used, which reduces the number of unknowns and makes
the algorithm more efficient. The identification of resonances is
particularly easy because of the mode separation included in the
formulation.

Index Terms—Dielectric resonators, integral equations, method
of moments.

I. INTRODUCTION

D IELECTRIC resonators [1] are widely used in microwave
circuits because of their low cost, small size, and temper-

ature stability. In recent years, they have been also often uti-
lized as so-called resonant dielectric cavity antennas [2], [3]. Al-
though most of solutions concern homogeneous resonator struc-
tures, recent efforts have been devoted to inhomogeneous ones,
mainly because of searching for bandwidth enhancement tech-
niques [4], [5].

A great number of methods have been proposed for analysis
of dielectric resonators. Those techniques include perfect mag-
netic conducting (PMC) wall methods [1], [2], mode-matching
techniques [6], surface integral-equation methods [7], [8],

-matrix approach [9], and many others. Some of known ap-
proaches are limited to closed or partially shielded geometries,
other are well suited for homogeneous structures or resonators
consisting of a small number of homogeneous regions. Re-
cently, Viola [10] has given a theoretical background for
efficient modeling of highly heterogeneous bodies of revolution
(BOR’s) using the method-of-moments (MoM) techniques.
However, his attitude is not well suited for dealing with step
discontinuities in dielectric permittivity profiles.

In this paper, a simple technique for dealing with heteroge-
neous open (isolated) structures with rotational symmetry is pre-
sented. The technique is based on the volume integral-equation
(VIE) formulation and modal decomposition of the problem.
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II. M ETHOD OFCALCULATIONS

A. Modal VIE

Let us assume that a body with rotational symmetry is placed
in a free-space environment where no incident fields exist. We
are interested in finding nonzero field solutions to Maxwell
equations for this particular case. To do so, we start with the
equivalence principle, and describe the electric field inside the
body with polarization current

(1)

where and are the medium permit-
tivity and conductivity at position.

The polarization current distribution in the body is related
to the electric field in the whole space by the well-known
mixed-potential integral equation (MPIE) [11]. Following
[12], the MPIE can be put into modal form by expanding all
quantities involved into Fourier series in azimuthal component
( denotes the number of the azimuthal mode)

(2)

where

(3)

(4)

In the above formulas, vector components are taken in the
order in usual cylindrical coordinates. The integration

in (3) is on the transverse surface of the BOR.
The modal scalar potential is defined as

(5)
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where the electric charge density is related to the current
through the continuity equation

(6)

The harmonic gradient operator is defined as

(7)

while the modal Green’s function appearing in the above equa-
tions is

(8)

with

(9)

(10)

The following interesting features of (2) can be found for the
case .

1) There is no charge associated with the azimuthal field
components [see (6)].

2) The modal gradient operator has no azimuthal component
[see (7)].

3) in (4), thus, off-axis matrix components dis-
appear.

From the above, we can draw the conclusion that EFIE’s for
transverse and azimuthal components are, in this case, decou-
pled, describing and resonance modes, respec-
tively. For , (2) does not exhibit such features, which
results in a hybrid nature of associated resonances (hybrid elec-
tromagnetic (HEM) modes in common notation).

B. Basis and Testing Functions

As the unknown quantity, we choose the electric flux density
[11]. In order to algebraize (2), we expand into a linear

combination of basis functions defined on the transverse sur-
face of the body. Basis function for HEM modes are defined as
follows (see Fig. 1).

1) -type functions:

otherwise.

(11)

Fig. 1. Discretization of the transverse plane of the body. (a) Geometrical
parameters associated with rectangular basis functions. (b)�-type. (c)z-type.

2) -type functions:

otherwise.

(12)

For transverse-field components, we use well-known rooftop
basis functions, which are defined on pairs of rectangles. The
azimuthal component is incorporated into ”hybrid“ basis func-
tion definition with the use of Gauss’ law. One can check with
(6) that the functions of (11) and (12) are divergenceless, which
make them useful for dielectric flux density representation. If
the internal edge of the basis function is on the body contour,
the basis function is defined only on the rectangle interior to.
No basis functions are associated with the edges lying on the
-axis. It is worth noticing that because we do not define sepa-

rate basis functions for the azimuthal field component, the total
number of unknowns is, in this case, reduced.

We have defined two sets of basis functions associated with
vertical and horizontal (in terms of Fig. 1) field components.
The definitions differ with the factor, which is caused by
the fact that, in the case of “-type” basis functions, was ex-
panded instead of , which is a typical step [12] in BOR con-
figurations. In the case of “-type” functions, however, it is not
possible because of difficulties associated with the immediate
neighborhood of the-axis.

For the important case of , simple pulse functions
were used for the “azimuthal” equation, while functions similar
to (11) and (12), but without azimuthal terms (which are, of
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TABLE I
COMPARISON OFCOMPUTED AND MEASUREDRESONANT FREQUENCY

RESULTS FORRESONATOR WITH RADIUS a = 5:25 mm, HEIGHT

h = 4:6 mm, AND " = 38

TABLE II
COMPARISON OFCOMPUTED AND MEASUREDQ FACTOR RESULTS FOR

RESONATOR WITHRADIUS a = 5:25mm, HEIGHT h = 4:6 mm,AND " = 38

course, no longer divergenceless), were applied for the case of
“transverse” equation.

As the testing functions, the same functions have been chosen
(Galerkin procedure) together with the scalar product. All quan-
tities involved such as polarization currents, charges, and fields
have been obtained from above electric flux density basis func-
tions.

C. Calculation of Resonant Frequencies

After an algebraization procedure, (2) can be put into the ma-
trix form

(13)

where is the moment matrix and is a column vector
containing electric flux density coefficients for theth Fourier
mode. Matrix equation (13) has nontrivial solutions only when
the determinant of the moment matrix is zero as follows:

(14)

The search of the roots of (14) should be done in the complex
frequency plane, thus giving information on both resonant fre-
quencies and quality () factors of resonances associated with
the mode [3].

When the resonance frequency is known with a satisfying de-
gree of accuracy, the electric-field distributions within the body
can be easily calculated within the multiplicative constant [8].
When one is interested in magnetic field distributions or fields
outside the body contour, some additional computational effort
is needed.

III. V ALIDATION OF THE METHOD

The above procedure has been verified by comparison
with results given in the literature. First, resonant frequencies
and factors of the homogeneous cylindrical resonator
DRD105UD046 have been calculated. A comparison of results

Fig. 2. Resonance frequencies andQ factors of five lower modes of a dielectric
inhomogeneous resonator versus permittivity of the inner part. Dimensions:a =
5:25 mm,h = 4:6 mm, radius of the pluga = a=4, " = 38. The circles
represent values given in [9]. (a) Resonant frequencies. (b)Q factors.

Fig. 3. Changes in the position of complex roots associated withHEM and
HEM modes caused by decreasing dielectric permittivity of the inner part
of the resonator. Dimensions:a = 5:25 mm,h = 4:6 mm, inner part:a =

2:625 mm,h = 2:3 mm, " = 38.

is given in Table I (resonant frequencies) and Table II (
factors). The agreement of results with previously reported
values seems to be excellent for resonant frequency values.
Differences of results for factors are greater; however, it
should be remembered that values given in references also
differ much from each other as well as from measured results.

The second test concerns an inhomogeneous dielectric res-
onator with the cylindrical dielectric plug. The dielectric con-
stant of the outer ring is equal to 38, while the dielectric con-
stant of the plug has been changed from 1 (ring resonator) to
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Fig. 4. Electric field inside the nonhomogeneous dielectric resonator, outer
part:a = 5:25 mm, h = 4:6 mm, " = 38, inner part:a = 2:625 mm,
h = 2:3 mm, " = 1. (a)HEM mode.E-field in plane parallel to and
offset from equatorial plane by 2.15 mm (upper figure) andE-field in meridian
plane� = 0 (bottom figure). (b)HEM mode.E-field in equatorial plane
(upper figure) andE-field in meridian plane� = 0 (bottom figure).

100. The results are given in Fig. 2. Black circles included in
the plots correspond to values reported by Zheng [9]. Again, a
very good agreement of results has been obtained.

Computational efficiency of the code is comparable to
that of a three-dimensional surface integral equation (3-D
SIE) algorithms, when homogeneous structures are taken into
consideration. For highly heterogeneous bodies, 3-D SIE codes
become unacceptably inefficient, while the efficiency of the
present method remains almost unchanged. On the other hand,
thanks to the reduction of problem dimension, this method
allows treatment of situations exceeding the possibilities of
3-D VIE codes [11]. In the above examples, the computation
time was 41 s per frequency for model with 136 unknowns;
for the model with doubled spatial resolution (528 unknowns),

the computation time grew up to 582 s. Computations were
performed on a Sun Ultra 1 workstation.

IV. A PPLICATION EXAMPLE

Satisfied with the results from the previous section, we can
now apply the method for problems involving inhomogeneous
bodies. From Table I, it can be seen, that for some modes, reso-
nant frequencies are very close to each other. It means that when
one of the modes is chosen as the desired mode of operation, the
second one creates a spurious resonance nearby. We will show
how this problem could be dealt with in the use of a heteroge-
neous structure.

Let us consider and modes. The difference
in resonant frequencies of the modes is less than 5%. However,
it can be easily noticed that in the case of the mode,
the electric field is concentrated near the resonator surface [8].
In contrast to this, for the mode, the field is concen-
trated in the inner part. This suggests that, by independently
changing the dielectric permittivity of the inner and outer parts
of the resonator, we probably could change the relative position
of both resonances in the complex frequency plane. This pos-
sibility has been tested in the configuration shown in the upper
left-hand-side corner of Fig. 3. The dielectric constant of the
outer part has been left unchanged , while that of the
inner part has been changed from 38 to 1. From Fig. 3, it can be
noted that while the resonant frequency of the mode is
almost unchanged, the resonant frequency of the mode
is moving toward upper values. For the case, the reso-
nant frequency of is about 18% higher than that of the

mode. The electric-field distributions for both modes
have been illustrated in Fig. 4.

V. CONCLUSION

An efficient method of calculating resonances in heteroge-
neous BOR’s has been presented in this paper. The number of
unknowns involved in the solution process is greatly reduced via
the choice of divergenceless basis functions for nonzero modes.
The method results in a very simple resonance identification
scheme because , , , , etc. modes
can be investigated separately. It is expected that the generaliza-
tion of the method for the case of a multilayered environment
should not present many theoretical difficulties [13].
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