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Resonances in Heterogeneous Dielectric Bodies
with Rotational Symmetry—\Volume
Integral-Equation Formulation

Andrzej A. Kucharski

Abstract—in this paper, a method of determining resonant fre- Il. METHOD OF CALCULATIONS
quencies and field distributions in heterogeneous bodies of revo-
lution is presented. A volume electric-field integral equation is put A. Modal VIE
Inthe soluton process, specially defined divergenceless basis o, _CLUS 5Ume that a body with rotational symmetry is placed
tions are used,pwhich r’edFl)Jces tr):e number of u?]knowns and makes ina free-space'en\'/iro.nment where .no incidept fields exist. We
the algorithm more efficient. The identification of resonances is are interested in finding nonzero field solutions to Maxwell

particularly easy because of the mode separation included in the equations for this particular case. To do so, we start with the

formulation. equivalence principle, and describe the electric field inside the
Index Terms—Dielectric resonators, integral equations, method P0dy with polarization current
of moments.
I(x) = jeo[(x) = =o| Er). )
|. INTRODUCTION

wheres(r) = —j ;¢ ando are the medium permit-
D IELECTRIC resonators [1] are widely used in mic:rowav%vi,[y aEn(; )conii(lf gtivi{; éi)ggéiiiom 7 P

cwcw_tg because of their low cost, small size, and temper_-.l.he polarization current distribution in the body is related
ature stability. In recent years, they have been also often Y- the electric field in the whole space by the well-known

lt'ﬁed ‘13 so-ctallfed lrets_onantd|electrr]|c cavity antennas [2]"[[3].t lixed-potential integral equation (MPIE) [11]. Following
ough most of solutions concern homogeneous resonator stiycy e \MPIE can be put into modal form by expanding all

! )

turgs, recent efforts have peen devoted .to inhomogeneous o E ntities involved into Fourier series in azimuthal component

mamly because of searching for bandwidth enhancement te 1 denotes the number of the azimuthal mode)

niques [4], [5].
A great number of methods have been proposed for analysis

of dielectric resonators. Those techniques include perfect mag-

netic conducting (PMC) wall methods [1], [2], mode-matchin

E..(p,z) + jwAn(p, 2) + Vin®m(p,z) =0 2)

techniques [6], surface integral-equation methods [7], [8 ’here
T-matrix approach [9], and many others. Some of known ap- po [ = o
proaches are limited to closed or partially shielded geometrieé,&m = dn /TFmep dt ©)

other are well suited for homogeneous structures or resonators
consisting of a small number of homogeneous regions. Re-
cently, Viola [10] has given a theoretical background for

efficient modeling of highly heterogeneous bodies of revolutionla _ 11:%’ 11:55 11:;;;?5
(BOR's) using the method-of-moments (MoM) techniques. ™ T F’Z’?
However, his attitude is not well suited for dealing with step L dp T9z 9
discontinuities in dielectric permittivity profiles. Gm—1 + Gt 0 M

In this paper, a simple technique for dealing with heteroge- g a 201 @
neous open (isolated) structures with rotational symmetry ispre- Gmtt — Gt m Gt + Gost '
sented. The technique is based on the volume integral-equation 2 0 -5

(VIE) formulation and modal decomposition of the problem.

In the above formulas, vector components are taken in the
(p, z, ¢) order in usual cylindrical coordinates. The integration
in (3) is on the transverdg, z) surface of the BOR.
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where the electric charge density is related to the currerd,,

through the continuity equation ~
1 (@
gm = _._Vrn : Jrn L
Jw
1 [1a(Jr aJz  gm
- 19 J5) m oy S gel  (6) \1
Jw e Op A Nl
The harmonic gradient operator is defined as ' i
19(p®,, 0P, ~d
Vrnq)rn = ﬁ_ (p ) + 2 + d)mq)rn (7) / =
p 9p 9z p
while the modal Green'’s function appearing in the above equa- %, ;
tions is 5
z
;! o e_jkOR j EE I 3
2 2 — —jma .1
Grn(pa Z P2 ) /0 ¢ do (8) Z; ai+ a-
with oit i - F il P2
R=\/p>+p? —2pp/ cosa+ (z — #')? ©) (b) ©)

Fig. 1. Discretization of the transverse plane of the body. (a) Geometrical
parameters associated with rectangular basis functiong-tflge. (c)z-type.

ko = wy/€otho
=27/ Ao. (10) 2) z-type functions:
The following interesting features of (2) can be found for the h"”(p’z)( +)
( (2 — % ~
casem = 0. z b+ _d)/ pb+a pe(p}ap?)7
1) There is no charge associated with the azimuthal field i Jm P
components [see (6)]. - z € (7, 2)
2) The modal gradient operator has no azimuthal component = (5 —2) 4 p 12y, (12)
P o———,  pe(pihi);
[see (7)]. b; Jmb;
3) G_; = (4 in (4), thus, off-axis matrix components dis- 2 € (z,2)
appear. \ 0, otherwise.

From the above, we can draw the conclusion that EFIE’s for

transverse and azimuthal components are, in this case, decolror transverse-field components, we use well-known rooftop
pled, describingTMo,, and TEy, resonance modes, respecbasis functions, which are defined on pairs of rectangles. The
tively. Form # 0, (2) does not exhibit such features, whictzimuthal component is incorporated into "hybrid“ basis func-

results in a hybrid nature of associated resonances (hybrid efé0 definition with the use of Gauss’ law. One can check with

tromagnetic (HEM) modes in common notation). (6) that the functions of (11) and (12) are divergenceless, which
make them useful for dielectric flux density representation. If
B. Basis and Testing Functions the internal edge of the basis function is on the body contour,

. . .the basis function is defined only on the rectangle interidrto
As the unknown quantity, we choose the electric flux densi . ! ) . :
o0 basis functions are associated with the edges lying on the

D [L1]. In order to algebraize (2), we expaiidlinto a linear z-axis. It is worth noticing that because we do not define sepa-

combination of basis functions defined on the transverse Slrjarf[e basis functions for the azimuthal field component, the total

face of the body. Basis function for HEM modes are defined as L
: number of unknowns is, in this case, reduced.
follows (see Fig. 1).

We have defined two sets of basis functions associated with

1) p-type functions: vertical and horizontal (in terms of Fig. 1) field components.
The definitions differ with thel/p factor, which is caused by
gmi(p, 2) N the fact that, in the case op“type” basis functiongyD was ex-
( ﬁl (p _+pi ) 3 — . pe(ptp); panded instead dD, which is a typical step [12] in BOR con-
PG Jma; figurations. In the case ofz“type” functions, however, it is not
zZ € (7537 22‘2) possible because of difficulties associated with the immediate
=9 .10 =0 5 1 _. (11) neighborhood of the-axis.
P — +¢ — pe(pivpv‘, )7 F H — i i
P a; jma; or the important case ohh = 0, simple pulse functions
z € (2}, 27) were used for the “azimuthal” equation, while functions similar
L 0, otherwise. to (11) and (12), but without azimuthal terms (which are, of
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TABLE | f[GHz]
COMPARISON OFCOMPUTED AND MEASURED RESONANT FREQUENCY 9 T — T T T T — T T T
RESULTS FORRESONATOR WITHRADIUS ¢ = 5.25 mm, HEIGHT ™
h = 4.6 mm,AND &, = 38 oL a
F GH
Vode requency [GHz] n HEM,,
Computed — Computed Measured [7] Computed
present method MoM [8] T-matrix [9] 6
TEo; 4.861 4.829 4.85 4.9604 i
TM, 7.594 7.524 7.60 7.5384
HEM; 6.373 6.333 - 6.3450 sL TEy, N R ]
HEM,, 6.657 6.638 6.64 6.6520 ¢
HEM,, 7.784 7.752 7.81 7.7621
4 1 1 1 i 1 11 1 1 L 1 1 1 1 111 -
1 10 100
TABLE 1 (@)
COMPARISON OFCOMPUTED AND MEASURED () FACTOR RESULTS FOR Q
RESONATOR WITHRADIUS ¢ = 5.25 mm, HEIGHT i = 4.6 mm,AND &, = 38
1000 = I 1 1 1 I L P | 1 T 1 1 1 | 4 l:
Q E HEM. E
Mode Computed — Computed Measu.req Computed o 2 . s il
present method MoM [8] (Transmission . |
method) [7] T-matrix [9]
TEo 40.7 458 51 40.819
TMy; 737 76.8 86 76.921 100 £
HEM,, 304 30.7 - 30.853 C
HEM,, 49.5 52.1 64 50.316 &
HEM;, 329.8 327.1 204 337.66 p.
R H 10 1 1 O] (| ]
course, no longer divergenceless), were applied for the case ] = e L e

“transverse” equation. ®)
As the testing functions, the same functions have been chosei

(Galerkin procedure) together with the scalar product. Allquapm. 2. Resonance frequencies a@héactors of five lower modes of a dielectric

tities involved such as polarization currents, charges, and fieldgmogeneous resonator versus permittivity of the inner part. Dimengieas:

have been obtained from above electric flux density basis fujcz> MM = 4.6 mm, radius of the plug, = a/4, e, = 38. The circles
represent values given in [9]. (a) Resonant frequencies) (fa)ctors.

tions.
. . 8 -
C. Calculation of Resonant Frequencies arl -
After an algebraization procedure, (2) can be put into the ma-
trix form 75 e =10 -
HEM,,
Sm|Dm> = |0> (13) &1 =20
whereS,,, is the moment matrix anfD,,,) is a column vector 5 ‘F : 6. =30 ]
containing electric flux density coefficients for theth Fourier <) en =1 e =10 .
mode. Matrix equation (13) has nontrivial solutions only when < sl \\gﬂ -30 Al i
the determinant of the moment mat®y, is zero as follows: T oen=20 s
i
det(S,,) = 0. (14) HEM,, : :
6
. -0.15 0.1 -0.05 0
The search of the roots of (14) should be done in the complex /2 [GHzZ]

frequency plane, thus giving information on both resonant fre-

quencies and qualityf) factors of resonances associated withig. 3. Changes in the position of complex roots associatedsith, ; and

the modem [3]. HEM,. modes cal_Jsed by decreasing dielectric permitti\_lity of the inner part
When the resonance frequency is known with a satisfying 03%25'3 ;‘;‘,?’,}?mzr 5;’“;’,1?]‘;1‘“:35;25 mm, h = 4.6 mm, inner partu, =

gree of accuracy, the electric-field distributions within the body

can be easily calculated within the multiplicative constant [ﬁ]g given in Table | (resonant frequencies) and Table@ (

ctors). The agreement of results with previously reported
iues seems to be excellent for resonant frequency values.
Differences of results for) factors are greater; however, it
should be remembered that values given in references also
differ much from each other as well as from measured results.
The above procedure has been verified by comparisonThe second test concerns an inhomogeneous dielectric res-
with results given in the literature. First, resonant frequenciesator with the cylindrical dielectric plug. The dielectric con-
and @ factors of the homogeneous cylindrical resonat@tant of the outer ring is equal to 38, while the dielectric con-
DRD105UDO046 have been calculated. A comparison of resuliant of the plug has been changed from 1 (ring resonator) to

When one is interested in magnetic field distributions or fiel
outside the body contour, some additional computational eff
is needed.

I1l. V ALIDATION OF THE METHOD
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the computation time grew up to 582 s. Computations were
performed on a Sun Ultra 1 workstation.

IV. APPLICATION EXAMPLE

Satisfied with the results from the previous section, we can
now apply the method for problems involving inhomogeneous
bodies. From Table I, it can be seen, that for some modes, reso-
nant frequencies are very close to each other. It means that when
one of the modes is chosen as the desired mode of operation, the
second one creates a spurious resonance nearby. We will show
how this problem could be dealt with in the use of a heteroge-
neous structure.

Let us consideHEM;; andHEM;, modes. The difference
in resonant frequencies of the modes is less than 5%. However,
it can be easily noticed that in the case of HiEM;; mode,
the electric field is concentrated near the resonator surface [8].
In contrast to this, for théIEM;> mode, the field is concen-
trated in the inner part. This suggests that, by independently
changing the dielectric permittivity of the inner and outer parts
of the resonator, we probably could change the relative position
of both resonances in the complex frequency plane. This pos-
sibility has been tested in the configuration shown in the upper
left-hand-side corner of Fig. 3. The dielectric constant of the
outer part has been left unchanged = 38), while that of the
inner part has been changed from 38 to 1. From Fig. 3, it can be
noted that while the resonant frequency of HieM; mode is
almost unchanged, the resonant frequency oHE#&1;, mode
is moving toward upper values. For thg = 1 case, the reso-
nant frequency oflEM;; is about 18% higher than that of the
HEM ;> mode. The electric-field distributions for both modes
have been illustrated in Fig. 4.

V. CONCLUSION

An efficient method of calculating resonances in heteroge-
neous BOR'’s has been presented in this paper. The number of
unknowns involved in the solution process is greatly reduced via
the choice of divergenceless basis functions for nonzero modes.

Fig. 4. Electric field inside the nonhomogeneous dielectric resonator, outeR€ method results in a very simple resonance identification

part.a = 5.25 mm,h = 4.6 mm, s, = 38, inner part.a; = 2.625 mm,
hi = 2.3 mm,e.; = 1. (a)HEM;; mode.E-field in plane parallel to and
offset from equatorial plane by 2.15 mm (upper figure) &nifleld in meridian

scheme becausgE,,, TMy,.,, HEM,,, HEM,,,, etc. modes
can be investigated separately. It is expected that the generaliza-

planes = 0 (bottom figure). (bIEM,» mode.E-field in equatorial plane tion of the method for the case of a multilayered environment

(upper figure) andz-field in meridian plane» = 0 (bottom figure).

should not present many theoretical difficulties [13].

100. The results are given in Fig. 2. Black circles included in REFERENCES
the plots correspond to values reported by Zheng [9]. Again, a[1] S. B. Cohn, “Microwave bandpass filters containing highdielectric

very good agreement of results has been obtained.
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