832 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 48, NO. 5, MAY 2000

An Efficient Algorithm for Analyzing Large-Scale
Microstrip Structures Using Adaptive Integral
Method Combined with Discrete
Complex-Image Method

Feng Ling Student Member, IEEEChao-Fu WangMember, IEEEand Jian-Ming JinSenior Member, IEEE

~ Abstract—An _efficient algorithm combining the adaptive Furthermore, the evaluation of the doubly infinite integrals
integral method and the discrete complex-image method (DCIM) in the matrix elements is cumbersome and time consuming.
is presented in this paper for analyzing large-scale microstrip The spatial-domain MoM has no restriction on the basis

structures. The arbitrarily shaped microstrips are discretized d testing functi H it . th luati f
using triangular elements with Rao—Wilton—Glisson basis func- and testing IUnctions. HOWEVeT, it TEGUIFES the evailation ©

tions. These basis functions are then projected onto a rectangular the Sommerfeld integral associated with the spatial Green’s
grid, which enables the calculation of the resultant matrix—vector functions. Several different techniques have been developed
product using the fast Fourier transform. The method re- for this evaluation. One such technique is called the discrete
tains the advantages of the well-known conjugate-gradient ., p1ex-image method (DCIM). This method circumvents the

fast-Fourier-transform method, as well as the excellent modeling ical luati fthe S feld int | and vield
capability offered by triangular elements. The resulting algorithm  NUMerical evaluation of thé sommerield integral and yields

has the memory requirement proportional to O(N) and the the closed-form solution [7], [8], which has been employed
operation count for the matrix—vector multiplication proportional ~ to analyze microstrip structures [3], [4]. The preferred choice
to O(N log IN), where N denotes the number of unknowns. The of basis functions for the spatial-domain MoM is the one
required spatial Green’s functions are computed efficiently using developed by Raet al. [9], which is now commonly known

the DCIM, which further speeds up the algorithm. Numerical - h . .
results for some microstrip circuits and a microstrip antenna as the Rao-Wilton-Glisson (RWG) basis function, because

array are presented to demonstrate the efficiency and accuracy of it provides a great capability to model arbitrarily shaped

this method. microstrip structures.
Index Terms—Adaptive integral method, fast Fourier transform, To simulate a large-scale electromagnetic problem, itis often
Green’s function, microstrip, method of moments. necessary to employ a large number of unknowns. For the

conventional MoM, whether in the spectral or spatial domain,
the memory requirement is always proportional @N?),
where N denotes the number of unknowns. This requirement
CCURATE and efficient electromagnetic simulationgan easily become prohibitive even on the most powerful
are essential for the design of microstrip structures, sugBmputers. Even if the memory permits, the computing time
as microwave integrated circuits, microstrip antennas, agén become very excessive because direct matrix inversion
microstrip reflectarrays. A variety of numerical methods hawsolvers, such as Gaussian elimination &ndi decomposition
been developed in the past for this purpose. Among all thesthods, require)(N?) floating-point operations. When an
methods, the method of moments (MoM) is a popular choigerative solver such as the conjugate gradient (CG) method is
because it discretizes only the microstrips, thus leading toeghployed for solving the MoM matrix equation, the operation
minimum number of unknowns. The MoM analysis can bgount isO(NN?) per iteration because of the need to evaluate
carried out either in the spectral domain [1], [2] or spatigdhe matrix—vector product. This operation count is still too high
domain [3]-[6]. The spectral-domain MoM has an advantager an efficient simulation.
in that the spectral Green’s functions can be obtained andrg make the iterative method more efficient, it is nec-
calculated easily. However, the basis and testing functiopgsary to speed up the matrix-vector multiplication. By
are restricted to those that have analytical Fourier transformggpoiting the translational invariance of the Green’s function,
such as the rooftop and piecewise sinusoidal basis functiofifa matrix—vector product can be computed using the fast
Fourier transform (FFT). When this is combined with the CG
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the CGFFT method. To model an arbitrary geometry accurate¥s?, thexz-component ofG 4, asG,,. The Green’s functions
one has to use triangular elements. However, the triangutag andG, can be expressed as an inverse Hankel transform of
discretization does not allow the application of the FFT to spe#tkir spectral-domain counterparts
up the matrix—vector multiplication. One approach is to use
the fast multipole method (FMM), which was first developed oo (2)

' . . Ga,q(p) = Ga,q(kp)HO (kpp)kp dk,, 4)
for free-space problems [14] and then extended to microstrip oo

problems [15]-[18]. Another approach is to project triangular . . .
elements onto uniform grids using either the sparse-m‘é{here the integral is commonly known as the Sommerfeld in-

trix/canonical grid method [19], the precorrected-FFT methd§9ral- The analytical solution of (4) is generally not available,
[20], or the adaptive integral method (AIM) [21]-[23], which,and the numerlc_al integration of the Som_merfeld |_ntegral istime
thus far, has only been applied to the free-space problems. consuming. Th'_s problem can be allewa_ted using the DCIM

In this paper, the AIM is extended to the analysis of Iargé?]' [8], which y_|elds clo_sed-form EXPressions. Th_e D_CIM ex-
scale microstrip structures. The arbitrarily shaped microstriff@ts the quasi-dynamic and surface-wave contributions from
are first discretized using triangular elements with the RWES€ Spectral-domain Green’s function and approximates the re-
basis functions. The basis functions are then translated ontg'@nder as compleximages by Prony’s method. The spatial-do-
rectangular grid. This enables the utilization of the FFT to cargaIn Green's function can then be obtained analytically using
out the matrix—vector multiplication. The method retains the a 1€ Sommerfelo_l identity. _ i . ,
vantages of the traditional CGFFT method, as well as the excel-10 SCIVe the integral equation (1), one first divides the mi-
lent modeling capability offered by triangular elements. The r&IOSrPS into triangular elements and then expands the current
sulting algorithm has the memory requirement proportional f§! the microstrips using the RWG basis functitir) [9]
O(N) and the operation count for the matrix—vector multiplica- N
tion proportional toO(NV log N). The required spatial-domain J— Z L, (r) (5)
Green’s functions are computed efficiently using the DCIM, o
which further speeds up the algorithm. Numerical results for
some microstrip circuits and a large microstrip antenna arrg§rere vV is the number of unknowns. Applying Galerkin's
are presented to demonstrate the efficiency and accuracy of {Rthod to (1) results in the matrix equation
method.

ZI=V (6)
II. FORMULATION in which the impedance matri& and vectorV have the ele-

In this section, we first discuss the mixed-potential integralnents given by
equation (MPIE) formulation combined with the DCIM. We
then discuss the details of the AIM for the microstrip problem&zmn

Finally, we briefly mention the approach used to calculate radi-_ // // ¢ NG N_Llog v
ation patterns and extrastparameters to be presented in this Jwho . J )7, m(©) - £ () Ga(r.7') k2 m(r)
paper.

£, (r")Gy(r, r’)} dr’ dr 7
A. MPIE Formulation

Consider a general microstrip structure residing on an infini?gfd

substrate having relative permittivity. and thickness:. The vo_ B ¢ J 8
microstrips are in the—y plane and excited by an applied field m= ] (r) - £ (r) dr (®)
E“. The induced current on the microstrips can be found by
solving the following MPIE: whereT,,, andT;,, denote the support df, andf,,, respectively.

B. AIM Algorithm

For a large-scale problem, the memory demand for the
storage of matrixZ and the computing time to solve (6) can
where the vector and scalar potentials can be expressed as become very excessive when either direct matrix inversion

solvers, such as Gaussian elimination &l decomposition
= / N gt methods, or iterative solvers, such as the CG method, are em-
Alr) = //5 G (r’r ) 'J(r ) ds 2) ployed directly. For example, an iterative solver requivgs/?)
operations per iteration for the matrix—vector multiplication.
To employ AIM to accelerate the matrix—vector multiplication,
N N one first encloses the whole structure in a rectangular region
o(r) = //S Gy(r, ) V' - I(x') ds () and then recursively subdivides it into small rectangular grids.
One then translates the original basis functions on the triangular
in which G 4 andG,, denote the Green’s functions for the magelements to the rectangular grids. If any one of the Cartesian
netic vector and electric scalar potentials, respectively. Denatemponents of,,,(r) andV - £,,(r) is denoted a%.,,,(r), the

Jwpoz X [A(r) + di)(r) =2 x E%(r) 1)

kg
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impedance matrix element of (7) can be expressed as a lineariance oiG, andG, enables the use of the FFT to accelerate
combination of matrix elements in the form of the computation of the product of this matéwith a vector.
oy When the elements with a very small value are neglected, the
Apn = / / / Pm(r)g(r, '), (r') dr’ dr (9)  residual matrixk is very sparse. Only whefy, andf,, are very
Lo ST close doesk,,,, has an appreciable value. These features make
whereg can be eithel7, or G,. The,,(r) can be approxi- the algorithm less memory and central processing unit (CPU)
mated as a combination of the Dirac delta functions on the retime demanding. Employing the CG method as the iterative
angular grids solver, one can write the matrix—vector multiplication as

) (M+1)? ZI=ZI+RI (16)
z/)m(r) ~ 1/)m(r) - Z A'rnué(r - rrnu) (10) A .
u=1 whereZ [ can be evaluated using the FFT as

where A,,. is the translation coefficient for the basis . ) - -
function #,.(r), M is the order of the translation, and 41 =Jwro{AaF [F(GG)"T—‘(A@‘I)}

muw = (Tmu, Ymu) 1S the coordinate of the grid. The trans- . T
lation coefficient can be found based on the criterion that the + Ay F [F(Ga) (A, I)}
translated basis function produces the same multipole moments 1 _ T
as the original basis function - k_gAd]: []:(Gq) “F(Ay I)} } a7
(M41)* As one can see from the analysis described above, the
(@mu = 0)" (Ymu—Y0)" A memory requirement of the AIM is proportional &( V) due
u=1 to the sparsity of matrice® andA. The CPU time per iteration
= // Yo () —20) T (y—10)© dr, is dominated by the FFT computation of the matrix-vector
T product, which is proportional t&(N log N). In contrast, for
for0<gq, 0 <M (11) the conventional MoM, the CPU time for the matrix fill is of

. . O(N?) and the CPU time per iteration is also@f N?).
where the reference poing = (z¢, yo) is chosen as the center

of the basis function. The closed-form solution of (11) has been Excitation and Extraction
given by Bleszynsket al. [22]. Once this translation is found,

one can approximate the matrix element of (9) as The right-hand side of (1) can be different for different

problems. For the radiation and circuit problems, one can use a

(M+1)? (M+1)2 voltage source in the region of the excitation port. As a result,
Ay, = Z Z Armad(To, ¥ o) A (12) only a few elements o¥ in (6) are assigned a nonzero value.
u=l  v=l1 One can also use a current probe as excitation and, in that case,

With the translation formulation given above, one can noWe applied fieldE” is the field produced by the probe in the

rewrite the impedance matrix element with the form of (7) asabsence of the mlcro§trlps. . . . .
Once the current distribution on the microstrips is obtained,

. (M41)* (M+1)* the parameters associated with the current can be extracted. The
Lin = JWo Z Z [(Am,mul\m,m + Ay mulyny)  far-field radiated can be calculated using the standard stationary
u=l  w=l phase method. A simpler approach is to employ the reciprocity

cGo(ry,r'y) theorem [4]. In this approach, the radiated field in the direction
1 of (#, ¢) can be evaluated as
- _QAd,rnuAd,n'u
%o d Jwpoe kT
Gylrant’)] 1) Ew =2 36 o) ar. a8)
S

whereA,, A, andA, denote the translation coefficients for th‘?NhereEg .(r') are the fields in the presence of the dielectric

z-component, thg-component, and the divergence of the bas&bstrate without the microstrips produced by#hand¢-po-

function, respectivelyZy,, in (13) offers a good accuracy 105,64 electric current elements placed at the observation point
approximateZ,,, in (7) when the basis and testing function$, e far zone

3re ata Iarg;z _d|sEanc§. To u_t(ljhzel (13), the impedance matrix ISz vr_port circuit problems, itis necessary to extract the scat-
ecomposed int&@ and a residual matrik tering parameters. In genera¥, linearly independent excita-

Z=27+R. (14 tions are required for thé&/-port network. The current distri-
. bution along the microstrip line associated with ttieport can
In matrix form, Z can be written as be expressed as
5 1 1 B B
Z = jwpo | AsGaAL + A G AT — %AdGqu (15) Ii(z) = T (@™ — bl (19)

whereA,, A,, andA, are sparse matrices with each row conHere, port: is assumed to be in thedirection, andZy; and3;
taining only (M + 1)? nonzero elements. The translational inare the characteristic impedance and propagation constants of
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Fig. 1. Relative error in the approximate matrix elements as the function
distance between the basis and testing functions based on the multipole mon
approximation. The significant error at smajla is compensated for by the

residual matrixR.
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Fig. 3. Current distributions andS-parameters for the radial stub.
€. = 10.0,~h = 0.635 mm, width= 0.6 mm, radius= 5.0 mm, and angle

= 60°. (a) Current distribution af = 8.0 GHz. (b) Current distribution at

f = 11.0 GHz. (c) S-parameters.

all a;'s andb;’s are obtained, one can obtain the following equa-
tions associated with th&-parameters

N
ZaiSji:bJ, j21,2,~~~,N. (20)
=1

Repeat this proces¥ times for/V different excitation schemes,
one can obtaiVZ equations for all thes-parameters. In some

practical cases, the properties of symmetry and reciprocity can
be utilized to reduce the number of excitations.

I1l. NUMERICAL RESULTS

Fig. 2. S-parameters for the branch-line coupler (dimensions in millimeters). Before we apply the proposed method to realistic problems,

€. = 2.2,h = 0.794 mm.

the accuracy of this algorithm is examined. As shown in the
preceding section, the original impedance matrix element has

the microstrip line at port, respectively, which can be deterthe form of (7). After the translation based on the multipole
mined in advance. The coefficients and; can be extracted moment approximation, the new matrix element with the form
by the three-point curve-fitting scheme proposed in [5]. Thef (13) is obtained. To check the accuracy of the translation, we
least-square fit of more current samples can result in a more ptot the relative error between the matrix elements in (7) and
curate solution. To obtain correct results, one has to make s(t8) as the function of the distance between the basis and testing
that the sampling points are away from the discontinuity arfdnctions. The result is given in Fig. 1, where the edge length
excitation plane, which also indicates that the microstrip line A/20 with A being the wavelength in the medium. The size
should be long enough to have the standing-wave pattern. Onf¢he rectangular grid is about2a. From the figure, one can
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Fig. 4. Current distributions and-parameters for the parallel-coupledusing the finite-difference time-domain (FDTD) method [24],
bandpass fiters. = 10.0.h = 0.635 mm. (a) Current distribution at gnd it js found difficult for regular FDTD grids to match all of
f = 9.0 GHz. (b) Current distribution gf = 11.0 GHz. (c)S-parameters. . Lo . . . .
the circuit dimensions exactly. In contrast, all the dimensions in
our case are precisely modeled. The numbers of facets and un-
see that the relative error is less than 1% whér= 3 and the knowns are 884 and 1206, respectively. Thparameters ob-
distance between the basis and testing function is more than fisaed are shown in Fig. 2, compared with those calculated by
times the grid size. That is the typical situation in the followinghe conventional MoM. Excellent agreement is observed. These
examples. results can also be verified by comparison with those of the
We now apply the algorithm to some circuit and antenna proBDTD method and the measured data in [24]. A slight frequency
lems. The triangular mesh is generated usiEns and is then shift occurs in the FDTD analysis due to its inability to match
processed for extracting edge information. All the computatioadl the dimensions.
are performed on one processor of an SGI Power Challeng&lhe second example to demonstrate the validity of this
(R8000). The iterative solver used is the biconjugate gradienethod is a microstrip radial stub analyzed in [25]. The sub-
(BCG) method with the diagonal preconditioner. The solutiostrate has permittivity,, = 10.0 and thicknesé& = 0.635 mm.
tolerance based on the residual norm is set to*10 To cover the entire frequency band, we consider two different
We first consider some simple circuits for the verificatiomliscretizations. The first one is for lower frequencies (below
purpose. The first example is a microstrip branch line couplé&,GHz), which involves 364 facets and 457 edges. The mi-
which is a four-port circuit. This structure has been analyzestostrip line is truncated at the distance 16.5 mm from the
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Fig. 6. Current distribution on the microstrip antenna array at the frequen
f = 942 GHz.e, = 2.2,h = 1.59 mm,l = 10.08 mm,w = 11.79
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center to make thé&-parameter-extraction accurate. The othe  _eo}

discretization is for higher frequencies, which involves 86

facets and 1194 edges. To provide physical insight into tt 7 e 66 a0 20 The!g o 20 a6 60 80

performance of the stub, we show the current distribution ¢

the surface at two frequenciet= 8.0 andf = 11.0 GHz. The

stub is excited at the left-hand-side port, and the other portis I¢ (b)

open. We can see that most energy is reflectefi-at8.0 GHz,

and is transmitted to the other port At= 11.0 GHz. The Fig. 7. ORadiation patterns of the microstrip antenna array¢(ag 0°. (b)

S-parameters from the proposed method and MoM are given"zinz ’

Fig. 3, which shows a good agreement between two methods, , ) )

The agreement between our results and the measured data f?éﬁﬁo res_pectlvel)_/. Th_e memory requwement IS ?1 Mbyte and

[25] is also satisfactory. the CPU time per |_terat|on isl.7s in the AIM algorithm. In con-
Next, a parallel-coupled bandpass filter is analyzed. The ggst, the cqnventlonal MOM requires 2§O—Mbyte memory a_nd

mension of the filter is given by [26, Fig. 8.26]. The substrate h s7-s CPU time per lteration. Thg CPU time for the matrix fll is

permittivity ¢, = 10.0 and thicknes#& = 0.635 mm. The num- only'40% of that in the con.ven.uonal MoM. Tr&pgramet.ers

bers of facets and unknowns are 1086 and 1402, respectiv _h|s structure are shown in Fig. 5. The current distributions at

Again, the current distributions are shownfat= 9.0 GHz and 11© WO frequencieg = 9.0 GHz and/ = 11.0 GHz are also

f = 11.0 GHz. TheS-parameters of this bandpass filter ardVenn the f|gure. . . . _

shown in Fig. 4. Both MoM and AIM resuits agree very well. Finally, a microstrip antenna array is conS|dered,.wh|ch in-

The measured data from [26] are also given in Fig. 4 for co olves 6569 facet_s and 86.68 edges. For the conventional MOM'

parison. The discrepancy at the low frequency range is belie\} § memory reqwrement IS over .600 Mbyte and the CPU time

due to the fabrication error. per iteration is 15.8 s. However, it takes or_lly 22._7 Mbyte and
The examples above demonstrate the accuracy of this aligr—’ sfor the AIM, whgre the FFT has Othe dlme_nspn of 328

rithm. Since the structures analyzed are relatively small (t 8. The AIM a]sq yields an over 70% reduqtlon in the CPU

number of unknowns is below 2000), the saving of CPU ti yime for the matrix fill comparing to the cqnvgnugna] MoM.At'a

is not expected, although the significant memory reduction hégquency off - 9'42 GHz, thg current d|st'r|bgt|on IS showgl n

been achieved. For large-scale problems, we can predict a suls: 6.The !ad'at'(.)n pa_tter_ns inthe .tWO principal plages 0

stantial reduction of CPU time in both the matrix fill and solve‘r.’mdd) = 90" are given in F|g_. 7, which shows excellent agree-

To illustrate the efficiency of this method, we now considerl‘nent between the two solutions.

some large-scale microstrip structures. First, a structure con-

sisting of five radial stubs is analyzed. Each radial stub has IV. COoNCLUSION

the same dimension as in Fig. 3. The spacing between stubsn efficient algorithm combining the AIM and DCIM

is 7.5 mm. The numbers of facets and unknowns are 3982 asdpresented for analyzing large-scale microstrip structures.
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The MPIE is discretized using the RWG basis functions for[17] pP. A. Macdonald and T. Itoh, “Fast simulation of microstrip structures
expansion and testing. The BCG method is employed to solve
the resulting matrix equation. To achieve an efficient solution;; g
we translate the RWG basis functions on a triangular mesh to
a rectangular grid. This permits the use of the FFT to carry

out the matrix—vector multiplication. The resulting algorithm [19

has the memory requirement proportional @/~ ) and the
operation count for the matrix—vector multiplication propor-
tional toO(N log N). The method retains the advantages of the?®)
traditional CGFFT method as well as the excellent modeling
capability offered by triangular elements. The required spatialPl]
Green'’s functions are computed efficiently using the DCIM,
which further speeds up the algorithm. Numerical results for22]
some microstrip circuits and a microstrip antenna array are
presented to demonstrate the efficiency and accuracy of thiss
method.
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