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Abstract—An efficient algorithm combining the adaptive
integral method and the discrete complex-image method (DCIM)
is presented in this paper for analyzing large-scale microstrip
structures. The arbitrarily shaped microstrips are discretized
using triangular elements with Rao–Wilton–Glisson basis func-
tions. These basis functions are then projected onto a rectangular
grid, which enables the calculation of the resultant matrix–vector
product using the fast Fourier transform. The method re-
tains the advantages of the well-known conjugate-gradient
fast-Fourier-transform method, as well as the excellent modeling
capability offered by triangular elements. The resulting algorithm
has the memory requirement proportional to ( ) and the
operation count for the matrix–vector multiplication proportional
to ( log ), where denotes the number of unknowns. The
required spatial Green’s functions are computed efficiently using
the DCIM, which further speeds up the algorithm. Numerical
results for some microstrip circuits and a microstrip antenna
array are presented to demonstrate the efficiency and accuracy of
this method.

Index Terms—Adaptive integral method, fast Fourier transform,
Green’s function, microstrip, method of moments.

I. INTRODUCTION

A CCURATE and efficient electromagnetic simulations
are essential for the design of microstrip structures, such

as microwave integrated circuits, microstrip antennas, and
microstrip reflectarrays. A variety of numerical methods have
been developed in the past for this purpose. Among all these
methods, the method of moments (MoM) is a popular choice
because it discretizes only the microstrips, thus leading to a
minimum number of unknowns. The MoM analysis can be
carried out either in the spectral domain [1], [2] or spatial
domain [3]–[6]. The spectral-domain MoM has an advantage
in that the spectral Green’s functions can be obtained and
calculated easily. However, the basis and testing functions
are restricted to those that have analytical Fourier transforms,
such as the rooftop and piecewise sinusoidal basis functions.
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Furthermore, the evaluation of the doubly infinite integrals
in the matrix elements is cumbersome and time consuming.
The spatial-domain MoM has no restriction on the basis
and testing functions. However, it requires the evaluation of
the Sommerfeld integral associated with the spatial Green’s
functions. Several different techniques have been developed
for this evaluation. One such technique is called the discrete
complex-image method (DCIM). This method circumvents the
numerical evaluation of the Sommerfeld integral and yields
the closed-form solution [7], [8], which has been employed
to analyze microstrip structures [3], [4]. The preferred choice
of basis functions for the spatial-domain MoM is the one
developed by Raoet al. [9], which is now commonly known
as the Rao–Wilton–Glisson (RWG) basis function, because
it provides a great capability to model arbitrarily shaped
microstrip structures.

To simulate a large-scale electromagnetic problem, it is often
necessary to employ a large number of unknowns. For the
conventional MoM, whether in the spectral or spatial domain,
the memory requirement is always proportional to ,
where denotes the number of unknowns. This requirement
can easily become prohibitive even on the most powerful
computers. Even if the memory permits, the computing time
can become very excessive because direct matrix inversion
solvers, such as Gaussian elimination andLU decomposition
methods, require floating-point operations. When an
iterative solver such as the conjugate gradient (CG) method is
employed for solving the MoM matrix equation, the operation
count is per iteration because of the need to evaluate
the matrix–vector product. This operation count is still too high
for an efficient simulation.

To make the iterative method more efficient, it is nec-
essary to speed up the matrix–vector multiplication. By
exploiting the translational invariance of the Green’s function,
the matrix–vector product can be computed using the fast
Fourier transform (FFT). When this is combined with the CG
method, the resulting algorithm is called the conjugate-gradient
fast-Fourier-transform (CGFFT) method [10]–[13]. The use
of the FFT reduces the operation count to per
iteration. However, the method works only when the structure
is modeled with uniform rectangular grids, which necessitates a
staircase approximation in the modeling of an arbitrary geom-
etry. This is often considered as the most serious drawback of
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the CGFFT method. To model an arbitrary geometry accurately,
one has to use triangular elements. However, the triangular
discretization does not allow the application of the FFT to speed
up the matrix–vector multiplication. One approach is to use
the fast multipole method (FMM), which was first developed
for free-space problems [14] and then extended to microstrip
problems [15]–[18]. Another approach is to project triangular
elements onto uniform grids using either the sparse-ma-
trix/canonical grid method [19], the precorrected-FFT method
[20], or the adaptive integral method (AIM) [21]–[23], which,
thus far, has only been applied to the free-space problems.

In this paper, the AIM is extended to the analysis of large-
scale microstrip structures. The arbitrarily shaped microstrips
are first discretized using triangular elements with the RWG
basis functions. The basis functions are then translated onto a
rectangular grid. This enables the utilization of the FFT to carry
out the matrix–vector multiplication. The method retains the ad-
vantages of the traditional CGFFT method, as well as the excel-
lent modeling capability offered by triangular elements. The re-
sulting algorithm has the memory requirement proportional to

and the operation count for the matrix–vector multiplica-
tion proportional to . The required spatial-domain
Green’s functions are computed efficiently using the DCIM,
which further speeds up the algorithm. Numerical results for
some microstrip circuits and a large microstrip antenna array
are presented to demonstrate the efficiency and accuracy of this
method.

II. FORMULATION

In this section, we first discuss the mixed-potential integral-
equation (MPIE) formulation combined with the DCIM. We
then discuss the details of the AIM for the microstrip problems.
Finally, we briefly mention the approach used to calculate radi-
ation patterns and extract-parameters to be presented in this
paper.

A. MPIE Formulation

Consider a general microstrip structure residing on an infinite
substrate having relative permittivity and thickness . The
microstrips are in the– plane and excited by an applied field

. The induced current on the microstrips can be found by
solving the following MPIE:

(1)

where the vector and scalar potentials can be expressed as

(2)

(3)

in which and denote the Green’s functions for the mag-
netic vector and electric scalar potentials, respectively. Denote

, the -component of , as . The Green’s functions
and can be expressed as an inverse Hankel transform of

their spectral-domain counterparts

(4)

where the integral is commonly known as the Sommerfeld in-
tegral. The analytical solution of (4) is generally not available,
and the numerical integration of the Sommerfeld integral is time
consuming. This problem can be alleviated using the DCIM
[7], [8], which yields closed-form expressions. The DCIM ex-
tracts the quasi-dynamic and surface-wave contributions from
the spectral-domain Green’s function and approximates the re-
mainder as complex images by Prony’s method. The spatial-do-
main Green’s function can then be obtained analytically using
the Sommerfeld identity.

To solve the integral equation (1), one first divides the mi-
crostrips into triangular elements and then expands the current
on the microstrips using the RWG basis function [9]

(5)

where is the number of unknowns. Applying Galerkin’s
method to (1) results in the matrix equation

(6)

in which the impedance matrix and vector have the ele-
ments given by

(7)

and

(8)

where and denote the support of and , respectively.

B. AIM Algorithm

For a large-scale problem, the memory demand for the
storage of matrix and the computing time to solve (6) can
become very excessive when either direct matrix inversion
solvers, such as Gaussian elimination andLU decomposition
methods, or iterative solvers, such as the CG method, are em-
ployed directly. For example, an iterative solver requires
operations per iteration for the matrix–vector multiplication.
To employ AIM to accelerate the matrix–vector multiplication,
one first encloses the whole structure in a rectangular region
and then recursively subdivides it into small rectangular grids.
One then translates the original basis functions on the triangular
elements to the rectangular grids. If any one of the Cartesian
components of and is denoted as , the
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impedance matrix element of (7) can be expressed as a linear
combination of matrix elements in the form of

(9)

where can be either or . The can be approxi-
mated as a combination of the Dirac delta functions on the rect-
angular grids

(10)

where is the translation coefficient for the basis
function is the order of the translation, and

is the coordinate of the grid. The trans-
lation coefficient can be found based on the criterion that the
translated basis function produces the same multipole moments
as the original basis function

for (11)

where the reference point is chosen as the center
of the basis function. The closed-form solution of (11) has been
given by Bleszynskiet al. [22]. Once this translation is found,
one can approximate the matrix element of (9) as

(12)

With the translation formulation given above, one can now
rewrite the impedance matrix element with the form of (7) as

(13)

where , , and denote the translation coefficients for the
-component, the-component, and the divergence of the basis

function, respectively. in (13) offers a good accuracy to
approximate in (7) when the basis and testing functions
are at a large distance. To utilize (13), the impedance matrix is
decomposed into and a residual matrix

(14)

In matrix form, can be written as

(15)

where , , and are sparse matrices with each row con-
taining only nonzero elements. The translational in-

variance of and enables the use of the FFT to accelerate
the computation of the product of this matrixwith a vector.
When the elements with a very small value are neglected, the
residual matrix is very sparse. Only when and are very
close does has an appreciable value. These features make
the algorithm less memory and central processing unit (CPU)
time demanding. Employing the CG method as the iterative
solver, one can write the matrix–vector multiplication as

(16)

where can be evaluated using the FFT as

(17)

As one can see from the analysis described above, the
memory requirement of the AIM is proportional to due
to the sparsity of matrices and . The CPU time per iteration
is dominated by the FFT computation of the matrix–vector
product, which is proportional to . In contrast, for
the conventional MoM, the CPU time for the matrix fill is of

and the CPU time per iteration is also of .

C. Excitation and Extraction

The right-hand side of (1) can be different for different
problems. For the radiation and circuit problems, one can use a
voltage source in the region of the excitation port. As a result,
only a few elements of in (6) are assigned a nonzero value.
One can also use a current probe as excitation and, in that case,
the applied field is the field produced by the probe in the
absence of the microstrips.

Once the current distribution on the microstrips is obtained,
the parameters associated with the current can be extracted. The
far-field radiated can be calculated using the standard stationary
phase method. A simpler approach is to employ the reciprocity
theorem [4]. In this approach, the radiated field in the direction
of can be evaluated as

(18)

where are the fields in the presence of the dielectric
substrate without the microstrips produced by the- and -po-
larized electric current elements placed at the observation point
in the far zone.

For -port circuit problems, it is necessary to extract the scat-
tering parameters. In general, linearly independent excita-
tions are required for the -port network. The current distri-
bution along the microstrip line associated with theth port can
be expressed as

(19)

Here, port is assumed to be in the-direction, and and
are the characteristic impedance and propagation constants of
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Fig. 1. Relative error in the approximate matrix elements as the function of
distance between the basis and testing functions based on the multipole moment
approximation. The significant error at smallr=a is compensated for by the
residual matrixR.

Fig. 2. S-parameters for the branch-line coupler (dimensions in millimeters).
� = 2:2; h = 0:794 mm.

the microstrip line at port, respectively, which can be deter-
mined in advance. The coefficients and can be extracted
by the three-point curve-fitting scheme proposed in [5]. The
least-square fit of more current samples can result in a more ac-
curate solution. To obtain correct results, one has to make sure
that the sampling points are away from the discontinuity and
excitation plane, which also indicates that the microstrip line
should be long enough to have the standing-wave pattern. Once

Fig. 3. Current distributions andS-parameters for the radial stub.
� = 10:0; h = 0:635 mm, width= 0:6 mm, radius= 5:0 mm, and angle
= 60 . (a) Current distribution atf = 8:0 GHz. (b) Current distribution at
f = 11:0 GHz. (c)S-parameters.

all ’s and ’s are obtained, one can obtain the following equa-
tions associated with the-parameters

(20)

Repeat this process times for different excitation schemes,
one can obtain equations for all the -parameters. In some
practical cases, the properties of symmetry and reciprocity can
be utilized to reduce the number of excitations.

III. N UMERICAL RESULTS

Before we apply the proposed method to realistic problems,
the accuracy of this algorithm is examined. As shown in the
preceding section, the original impedance matrix element has
the form of (7). After the translation based on the multipole
moment approximation, the new matrix element with the form
of (13) is obtained. To check the accuracy of the translation, we
plot the relative error between the matrix elements in (7) and
(13) as the function of the distance between the basis and testing
functions. The result is given in Fig. 1, where the edge length
is with being the wavelength in the medium. The size
of the rectangular grid is about . From the figure, one can
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Fig. 4. Current distributions andS-parameters for the parallel-coupled
bandpass filter.� = 10:0; h = 0:635 mm. (a) Current distribution at
f = 9:0 GHz. (b) Current distribution atf = 11:0 GHz. (c)S-parameters.

see that the relative error is less than 1% when and the
distance between the basis and testing function is more than five
times the grid size. That is the typical situation in the following
examples.

We now apply the algorithm to some circuit and antenna prob-
lems. The triangular mesh is generated usingIDEAS and is then
processed for extracting edge information. All the computations
are performed on one processor of an SGI Power Challenge
(R8000). The iterative solver used is the biconjugate gradient
(BCG) method with the diagonal preconditioner. The solution
tolerance based on the residual norm is set to 10.

We first consider some simple circuits for the verification
purpose. The first example is a microstrip branch line coupler,
which is a four-port circuit. This structure has been analyzed

Fig. 5. Current distributions andS-parameters for the cascaded microstrip
radial stub.� = 10:0; h = 0:635 mm. The spacing between stubs is 7.5
mm. (a) Current distribution atf = 9:0 GHz. (b) Current distribution atf =

11:0 GHz. (c)S-parameters.

using the finite-difference time-domain (FDTD) method [24],
and it is found difficult for regular FDTD grids to match all of
the circuit dimensions exactly. In contrast, all the dimensions in
our case are precisely modeled. The numbers of facets and un-
knowns are 884 and 1206, respectively. The-parameters ob-
tained are shown in Fig. 2, compared with those calculated by
the conventional MoM. Excellent agreement is observed. These
results can also be verified by comparison with those of the
FDTD method and the measured data in [24]. A slight frequency
shift occurs in the FDTD analysis due to its inability to match
all the dimensions.

The second example to demonstrate the validity of this
method is a microstrip radial stub analyzed in [25]. The sub-
strate has permittivity and thickness mm.
To cover the entire frequency band, we consider two different
discretizations. The first one is for lower frequencies (below
8 GHz), which involves 364 facets and 457 edges. The mi-
crostrip line is truncated at the distance 16.5 mm from the
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Fig. 6. Current distribution on the microstrip antenna array at the frequency
f = 9:42 GHz. � = 2:2; h = 1:59 mm, l = 10:08 mm, w = 11:79

mm, d = 1:3 mm, d = 3:93 mm, l = 12:32 mm, l = 18:48 mm,
D = 23:58 mm,D = 22:40 mm.

center to make the -parameter-extraction accurate. The other
discretization is for higher frequencies, which involves 862
facets and 1194 edges. To provide physical insight into the
performance of the stub, we show the current distribution on
the surface at two frequencies: and GHz. The
stub is excited at the left-hand-side port, and the other port is left
open. We can see that most energy is reflected at GHz,
and is transmitted to the other port at GHz. The

-parameters from the proposed method and MoM are given in
Fig. 3, which shows a good agreement between two methods.
The agreement between our results and the measured data from
[25] is also satisfactory.

Next, a parallel-coupled bandpass filter is analyzed. The di-
mension of the filter is given by [26, Fig. 8.26]. The substrate has
permittivity and thickness mm. The num-
bers of facets and unknowns are 1086 and 1402, respectively.
Again, the current distributions are shown at GHz and

GHz. The -parameters of this bandpass filter are
shown in Fig. 4. Both MoM and AIM results agree very well.
The measured data from [26] are also given in Fig. 4 for com-
parison. The discrepancy at the low frequency range is believed
due to the fabrication error.

The examples above demonstrate the accuracy of this algo-
rithm. Since the structures analyzed are relatively small (the
number of unknowns is below 2000), the saving of CPU time
is not expected, although the significant memory reduction has
been achieved. For large-scale problems, we can predict a sub-
stantial reduction of CPU time in both the matrix fill and solve.
To illustrate the efficiency of this method, we now consider
some large-scale microstrip structures. First, a structure con-
sisting of five radial stubs is analyzed. Each radial stub has
the same dimension as in Fig. 3. The spacing between stubs
is 7.5 mm. The numbers of facets and unknowns are 3982 and

Fig. 7. Radiation patterns of the microstrip antenna array. (a)� = 0 . (b)
� = 90 .

5580, respectively. The memory requirement is 21 Mbyte and
the CPU time per iteration is 1.7 s in the AIM algorithm. In con-
trast, the conventional MoM requires 250-Mbyte memory and
5.7-s CPU time per iteration. The CPU time for the matrix fill is
only 40% of that in the conventional MoM. The-parameters
of this structure are shown in Fig. 5. The current distributions at
the two frequencies GHz and GHz are also
given in the figure.

Finally, a microstrip antenna array is considered, which in-
volves 6569 facets and 8668 edges. For the conventional MoM,
the memory requirement is over 600 Mbyte and the CPU time
per iteration is 15.8 s. However, it takes only 22.7 Mbyte and
3.5 sfor the AIM, where the FFT has the dimension of 128
128. The AIM also yields an over 70% reduction in the CPU
time for the matrix fill comparing to the conventional MoM. At a
frequency of GHz, the current distribution is shown in
Fig. 6. The radiation patterns in the two principal planes
and are given in Fig. 7, which shows excellent agree-
ment between the two solutions.

IV. CONCLUSION

An efficient algorithm combining the AIM and DCIM
is presented for analyzing large-scale microstrip structures.
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The MPIE is discretized using the RWG basis functions for
expansion and testing. The BCG method is employed to solve
the resulting matrix equation. To achieve an efficient solution,
we translate the RWG basis functions on a triangular mesh to
a rectangular grid. This permits the use of the FFT to carry
out the matrix–vector multiplication. The resulting algorithm
has the memory requirement proportional to and the
operation count for the matrix–vector multiplication propor-
tional to . The method retains the advantages of the
traditional CGFFT method as well as the excellent modeling
capability offered by triangular elements. The required spatial
Green’s functions are computed efficiently using the DCIM,
which further speeds up the algorithm. Numerical results for
some microstrip circuits and a microstrip antenna array are
presented to demonstrate the efficiency and accuracy of this
method.
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