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Quasi-TEM Characteristic Impedance of Micromachined
CMOS Coplanar Waveguides

Mehmet Ozgur, Veljko Milanovic´, Christian Zincke, Michael Gaitan,
and Mona E. Zaghloul

Abstract—Micromachined coplanar waveguides (CPW’s) fabricated in
CMOS technology consist of glass-encapsulated metal conductor strips,
fully suspended by selective etching of the silicon substrate. The minimum
amount of etching necessary for proper operation of the micromachined
waveguides is determined by using an isolation criterion. In this paper, the
quasi-TEM characteristic impedance of a CPW is derived, including the
finite conductor thickness and the thicknesses of surrounding dielectric
layers. The employed analytical approach is based on conformal mapping
and the partial capacitance technique. The losses both in conductor
and dielectric layers are neglected. The analytical results and proposed
approximations are verified by integral-equation computation and by
measurement of various sample structures.

Index Terms—Microelectromechanical devices, micromachining, trans-
mission-line theory.

I. INTRODUCTION

Micromachining is one of the important emerging technologies
that offers high functionality and performance at the system level
for a lower cost. Integration and packaging of micromachined
components have been receiving great attention [1]. Among many
micromachined components, waveguides are especially important for
high-frequency applications. Recently, implementation of efficient
microwave coplanar waveguides (CPW’s) has been demonstrated
in CMOS technology by selective etching of silicon substrate [2].
Schematic cross section of such a CPW is illustrated in Fig. 1.

Accurate characterization of micromachined CMOS CPW’s can be
performed by using numerical techniques. However, in many cases,
it is desirable to have fast, compact, and accurate analytic formulas,
which can be integrated into computer-aided design (CAD) environ-
ments. However, closed-form analytic expressions are very difficult to
get for realistic cases. Here, we introduce two simplifications to achieve
closed-form expressions. First, we assume the quasi-TEM mode prop-
agation. As long as the materials are lossless and the cross-sectional
dimensions are much shorter than operating wavelength, this assump-
tion is valid. It has been shown that, for micromachined CPW’s, this
is good up to millimeter-wave frequencies [3]. As a result, propagation
characteristics can be expressed in terms of quasi-static capacitances
that are calculated by using the conformal mapping technique [4], [5].
Second, we assume that by micromachining, the electromagnetic fields
are well isolated from lossy substrate. We introduce a criterion for suf-
ficient substrate isolation in order to be able to neglect the effect of
remaining silicon substrate.
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Fig. 1. Cross-sectional view of a fully suspended CPW.

In the presence of a substrate, usually signal-to-ground strip spac-
ings are significantly larger than strip thickness; therefore, the results
of the conformal mapping with zero-thickness strips have been ac-
ceptable for CPW’s with thick substrate. Difficulty arises once the
CPW is micromachined. In order to keep the impedance the same, the
signal-to-ground strip spacing is decreased. For a standard 50-
micro-
machined CPW fabricated on CMOS, this distance becomes such that
one should consider both thickness of dielectric films and the conductor
thickness. On the other hand, the conformal mapping techniques de-
veloped to calculate quasi-static CPW capacitances assume either zero
conductor thickness with finite thickness dielectric layers [6]–[9] or
semiinfinite dielectric layers with finite conductor thickness [3]. There-
fore, the extension of conformal mapping techniques to handle the mi-
cromachined CPW’s is necessary. Hence, we propose a novel method
to characterize a lossless CPW, with a finite thickness conductor and
finite thickness dielectric layers.

II. A NALYTICAL APPROACH

Consider the micromachined symmetric CPW illustrated in Fig. 1. If
we assume a quasi-TEM mode propagation and neglect the effect of the
remaining substrate, the propagation properties, i.e., the characteristic
impedance and effective permittivity, can be expressed in terms of the
following two capacitances:

Z0 =
1

c
p
CairCtotal

�e� =
Ctotal

Cair

(1)

whereCtotal is the quasi-static capacitance per unit length between the
signal strip and two ground strips,Cair is the equivalent air–line capac-
itance per unit length obtained by removing all dielectrics. As a result
of this assumption, the problem is reduced to the computation of two
capacitances. First, however, we introduce the criterion for sufficient
isolation, which allows us to neglect the effect of the substrate in sub-
sequent calculations.
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A. Criterion for Sufficient Substrate Isolation of a Fully-Suspended
CMOS CPW

The total capacitance,Ctotal, depends on the geometry of the etched
pit, as can be seen in Fig. 1. Since it is very difficult to deal with the
silicon boundary by using conformal mapping methods, it is desirable
to neglect it entirely. In order to do this consistently over different cases,
we introduce the lower half-plane capacitanceChp, which is the sum of
contributions from the thin oxide layer, air gap, and remaining silicon
substrate. To simplify its calculation, we neglect the contribution by the
h111i silicon crystal walls (sidewalls).Chp can then be expressed as a
function of air–gap heighthpit

Chp(hpit) = C(hl; �1 � 1) + C(hl + hpit; 1� �Si) + C(1; �Si)

(2)

where the functionC(h; �) gives the capacitance per unit length be-
tween the signal and ground conductors contributed by only dielectric
layer with the dielectric constant� and the thicknessh. It is calculated
as

C(h; �) = 2�0�
K(k0

h)

K(kh)
; with kh =

ch
bh

b2h � a2h
c2h � a2h

(3)

whereK(k) is the complete elliptic integral of the first kind,k is the
argument of the integral, andk0 is related tok by k0 = (1� k2).
Here,xh is

xh = sinh
�x

2h
; for x = a; b; c: (4)

SinceChp(hpit) is monolithically decreasing withhpit, there exists
a minimumhpit;min for which

Chp(hpit;min)� Chp(1)

Chp(1)
= 0:01 (5)

is satisfied. If the actual pit depth is greater than or equal tohpit;min,
the error in the computation when the remaining substrate is entirely
neglected, will be less than or equal to 1%.

For the CPW structures used in this study,hpit;min values are cal-
culated using the definition given here. For the first CPW in Table I,
hpit;min = 83�m, and for the last two CPW’s,hpit;min = 190�m.
These etching values can be achieved by careful design and post pro-
cessing of CPW’s.

Having defined and calculated the sufficient isolation criterion, in
the remainder of this paper, we will assume thathpit � hpit;min for
all structures and ignore the remaining substrate.

B. Capacitance of a Finite Thickness CPW in Air

Air capacitance of CPW is defined as the capacitance when the di-
electric constant is set as�1 = 1. The conductor boundary in the
RQ-plane [see Fig. 2(a)], which is the upper right quadrant of the gen-
eral CPW structure in Fig. 1 represented in the complex domain, is then
mapped into the real axis in theZQ-plane [see Fig. 2(b)] by using the
Schwartz–Christoffel mapping

r =
z

z

dr

dz
dz; with

dr

dz
=

(z2 � z21)

(z2 � z22)
(6)

(a)

(b)

(c)

Fig. 2. (a) First quadrant of the CPW structure is shown with the
transformation axis (dashed). (b) After the transformation described in (6), the
transformation axis is mapped ontoz-axis. (c) Capacitance contributions due
to horizontal and vertical walls and corners of the CPW.

wherer is a point in theRQ-plane andz is the corresponding point in
theZQ-plane. The transformation axis is shown by the dashed line in
Fig. 2(a). The coordinates in theZQ-plane, i.e.,zi ’s, can be found by
solving the system of nonlinear equations numerically. With the new
coordinates, the overall air capacitance is given by [7]

CQair = �0
K(k0)

K(k)
k =

z3 + z4
z3 + z1

(z1 + z3)2 � (z3 � z1)2

(z3 + z4)2 � (z3 � z1)2
:

(7)

To view this capacitance as a sum of several contributions from ideal
sources turns out to be very useful; therefore,CQair is viewed as con-
sisting of three components, as illustrated in Fig. 2(c) (subscriptQ
stands for quarter-plane and “air” denotes that the particular capaci-
tance is air capacitance) in the rest of this paper.

• CHQair due to the horizontal surfaces

CHQair = �0
K(k0)

K(k)
; with k =

c

b

b2 � a2

c2 � a2
: (8)

• CCQair due to corners of the structure

CCQair = CQair � (CHQair + CV Qair): (9)

• CVQair due to vertical walls

CVQair = t=2s; wheres = (b� a)=2: (10)

For practical dimensionsCCQair is a small contribution to the overall
capacitance; nevertheless, for higher accuracy, it should be taken into
account. The change inCCQair can be approximated using the fol-
lowing relation, which is obtained by curve-fitting several points:

~CCQair = 0:03�0 1� exp(�5t=s) : (11)
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Fig. 3. CalculatedZ for symmetric CPW’s (t in micrometers).

C. Capacitance of a Finite-Thickness CPW Encapsulated in a
Dielectric Membrane

Following the partial capacitances concept introduced in the pre-
vious section, the contribution corresponding to the capacitance be-
tween horizontal surfaces of the conductors can be found by using
the capacitance function. The horizontal capacitance for one quadrant
(with zero-thickness, but the same horizontal dimensions) is expressed
as

CHQ =
1

2
C(h; �1) (12)

whereh is the thickness of the dielectric layer. The capacitance due
to corner discontinuity, i.e.,CCQ, requires extensive calculations. For
practical systems whenh andt are comparable, we can assume that all
the fields are effectively in the dielectric layer. As a result,CCQ and
CV Q are written as

CCQ � �1CCQair CVQ = �1CV Qair: (13)

D. Total Capacitance

The seminumerical approach can be summed in the following capac-
itance formulas:

Cair =4CQair

Ctotal = C(hu; �1) + C(hl; �1) + 4�1 CQair � �0
K(k0)

K(k)
:

(14)

In the above equations,k is as given in (8). However, in these for-
mulas, the calculation ofCair requires the solution of a system of non-
linear equations; instead, ifCCQair is approximated as in (11), then
closed-form analytic expressions are obtained by substitutingCQair in
(14) as follows:

~CQair = �0
K(k0)

K(k)
+

t

a� b
+ 0:03 1� exp(�5t=s) :

(15)

III. D ISCUSSION OF THERESULTS

The capacitance and characteristic impedance were computed for
various values ofa, b, c, t, andh analytically [using (15)], seminu-
merically [using (14)], and numerically (using the integral-equation

TABLE I
COMPARISON OFCOMPUTED AND MEASUREDRESULTS. DIMENSIONS ARE IN

MICROMETERS ANDCAPACITANCES ARE INPICOFARADS/CENTIMETERS

method). In Fig. 3, the characteristic impedance of micromachined
CPW’s as a function oft andh for a = 24�m, b = 30�m, and
c = 130�m is shown.

The effect of conductor thickness on the characteristic impedance
was observed whilet=s changes from 0.1 to 0.5. The comparison of
the results in Fig. 3 indicates very good agreement in the range of in-
terest. In these figures, we also included the zero-thickness conductor
limiting case. The error in characteristic impedance calculation can be
more than 100% in some cases depending on the physical parameters
of the system, if the conductor thickness is neglected. In the current
CMOS fabrication processes, the dielectric film thicknesses for the mi-
cromachining purposes lie in the steepest part of the curves; therefore,
the processes variations can affect the final result substantially.

We also present measurement results along with computation results
for three different structures in Table I.

A seminumerical and an analytical quasi-TEM formulation for a
lossless micromachined CPW system has been presented in this paper.
The isolation criterion gave a reliable tool to minimize the effect of
remaining silicon on the operation of micromachined CMOS CPW’s.
The errors introduced with this criterion are significantly smaller than
the ones due to variation in process parameters.
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Remote Millimeter-Wave Beam Control by the
Illumination of a Semiconductor

G. F. Brand

Abstract—The aim of this paper is to use diffraction gratings, produced
by projecting a grating pattern onto a semiconductor wafer from a remote
location, to control the direction of a reflected beam. We find the condi-
tions for which diffraction at the specular angle is small so that most of the
radiation goes into adjacent interference maxima whose directions may be
controlled by changing the period of the projected pattern. Some prelimi-
nary experiments are reported.

Index Terms—Diffraction, gratings, millimeter-wave devices, optical
control, photoconductivity, solid-state plasmas.

I. EARLIER WORK

A diffraction grating can be produced by projecting a grating pat-
tern onto a semiconductor wafer. Where the light falls, the conduc-
tivity is high because of the formation of a photo-induced electron–hole
plasma, elsewhere the conductivity remains low. Diffraction experi-
ments have been reported previously using a mask with fixed period
located close to the semiconductor [1], [2], and using optical fibers to
convey laser light to the semiconductor [3]. Our projection method al-
lows the period of the grating and, hence, the directions of the interfer-
ence maxima, to be changed simply by moving distant optical compo-
nents. We reported in an earlier paper a transmission experiment [4] in
which a millimeter-wave beam was diffracted as it passed through such
a grating. However, in that experiment, most of the beam proceeded in
the straight-through direction, only a small fraction was diffracted to
the sides. In this paper, we describe a reflection experiment where most
of the beam is diffracted into the interference maxima whose directions
can be controlled.

II. REFLECTION GRATING

The principle can be illustrated by calculating the Fraunhofer diffrac-
tion pattern obtained when a plane wave is reflected from an ideal
grating made of strips of two types of material with reflection coef-
ficients�1 and�2. If the grating is made up ofN (N is even) strips of
the same width of each type of material and the period isD, then the
intensity of the diffracted beam in the direction� can be written, in the
Fraunhofer approximation, as

I(�) =
I0
4

sin ks
D

4

ks
D

4

2

sin ks
ND

2

N sin ks
D

2

2

� �1 exp �jks
D

4
+ �2 exp jks

D

4

2

(1)

wherek is the wavenumber ands = sin � � sin �, in which� is the
angle of incidence and� is the angle of diffraction.
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The directions of the interference maxima are given byks(D=4) =
m(�=2) (m integer). Substituting in (1) gives the intensities in the fol-
lowing directions:

I =
I0
4
j�1 + �2j

2; if m = 0

I = 0; if m is even, not0

I =
I0
4

2

m�

2

j�1 � �2j
2; if m is odd. (2)

Note thatm = 0 corresponds to the case� = �, i.e., reflection at the
specular angle.

The ideal grating, for our present purpose, would have: 1) zero in-
tensity at the specular angle; in other words, no reflection in that di-
rection and 2) greatest intensity in the directions of the adjacent inter-
ference maxima. This could be achieved if we could create strips with
�2 = ��1. Then,j�1 + �2j = 0 andj�1 � �2j = 2�1.

In Section III, we consider reflections from a silicon wafer, when it
is dark and when it is illuminated, to see how close we can come to this
ideal situation.

III. D IFFRACTION CALCULATIONS

Suppose plane waves described byexp j(kr�!t) are incident at an
angle� on a wafer of thicknessl. The reflection and transmission coef-
ficients for the perpendicular polarization, found by applying Fresnel’s
equations [5] are

� =
(1� ~n2 ~�2) exp(j2k~n cos ~�0l)� 1

(1� ~n~�)2 exp(j2k~n cos ~�0l)� (1 + ~n~�)2

� = �
4~n~� exp jk(~n cos ~�0 � cos �)l

(1� ~n~�)2 exp(j2k~n cos ~�0l)� (1 + ~n~�)2
(3)

where~n is the complex refractive index. The relations linking the var-
ious complex and real quantities are

" = "r + j
�

"0!
= ~n2 = (n+ j�)2

where"r is the real part of the permittivity (for silicon"r = 11:8),
� is the conductivity, and! is the angular frequency. In (3),~�0 is the
complex angle of propagation in the wafer and~� = cos ~�0= cos �. The
corresponding expressions for the parallel polarization may be obtained
by replacing~n~� by ~n=~� and� by ��.

If the semiconductor is backed by a perfect conductor, the reflection
coefficient for the perpendicular polarization is

� =
(1 + ~n~�) exp(j2k~n cos ~�0l)� (1� ~n~�)

(1� ~n~�) exp(j2k~n cos ~�0l)� (1 + ~n~�)
: (4)

The grating is made up of strips that are not illuminated with reflec-
tion coefficient�1 (calculated using�1 = 0) and the strips that are,
�2. A value for�2 exactly equal to��1 is unattainable; the best that
can be achieved is to havej�1 + �2j as low as possible andj�1 � �2j
as high as possible. In a situation similar to our experiment, where the
incident plane wave is perpendicularly polarized, strikes at an angle of
� = 20� and has a frequency of 105 GHz (wavelength 2.86 mm), the
best results would be obtained when the silicon wafer had a conductor
backing and the thicknessl was 0.63 mm.

Fig. 1 shows two representative Fraunhofer diffraction patterns, cal-
culated using (1) for two different levels of illumination. The incident
wave is the same as above, the wafer thicknessl = 0:63 mm and the
period of the patternD = 20 mm. When the illumination is weak
and the conductivity is low (�2 = 2 S m�1), the diffracted signal re-
mains small and most of the beam is specularly reflected at� = 20�

0018–9480/00$10.00 © 2000 IEEE
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(a)

(b)

Fig. 1. Fraunhofer diffraction (intensity versus�) on reflection from a strip
grating for two representative values of� of the illuminated regions.

[see Fig. 1(a)]. On the other hand, when the illumination is strong and
the conductivity is high (�2 = 50 S m�1), the diffracted signals at
� = 11:5� and� = 29:0� greatly exceed the specular reflection [see
Fig. 1(b)].

In this simple treatment, the conductivity is taken to be uniform from
the front to the back face of the silicon. A more complete treatment
would take into account the generation of electron–hole pairs close to
the illuminated surface, diffusion into the silicon, and recombination
near the surface.

IV. EXPERIMENT

The experimental arrangement is shown in Fig. 2. The light source
was a pulsed arc lamp (Oriel Series Q flash lamp with a 5-J xenon bulb
and typical pulse length of 9�s). The pattern in the cutout mask had
clear and opaque regions of equal width and a periodD0

= 8 mm.
The mask and lens (focal length 133 mm) were placed so the projected
pattern had a periodD = 20 mm. The millimeter-wave source was a
105-GHz IMPATT solid-state oscillator. It was located 500 mm from
the wafer, the incident beam was perpendicularly polarized, and the
angle of incidence was� = 20

�. OneW -band horn and detector was
mounted in a fixed position to monitor the specular reflection. A second
horn was mounted on a stepper-motor-driven stage to scan along a line
located 500 mm from the wafer, as shown in the figure. Diffraction took
place from a circular region (diameter 50 mm). The area beyond was
covered by microwave absorber.

The silicon wafer was n-type intrinsic with high resistivity
1000–3500
 � cm (dark conductivity 0.10–0.03 S m�1), a diameter
of 76 mm, and a thickness of 0.38 mm. The conductor backing
was copper. This value of thickness is much less then the preferred
0.63 mm. In order to obtain the required phase change on reflection
from a dark region, a 0.58-mm layer of mylar was placed between the
semiconductor and conductor backing.

Fig. 2. Experimental arrangement.

Fig. 3. Signal versus time when the light pattern is projected onto
semiconductor. (a) and (b) At them = 0 position. (c) At them = �1 position.

Fig. 3 shows the time variation of the reflected signals when a light
pattern is projected onto the semiconductor. The specularly reflected
signal (m = 0) is shown at two scales [see Fig. 3(a) and (b)]. The
signal diffracted into the first interference maximum (m = �1, 78 mm
away) is shown in Fig. 3(c). A comparison of the traces in Fig. 3(b)
and (c), plotted with the same scale, demonstrate that when there is a
projected pattern and the light intensity is a maximum, them = �1

signal greatly exceeds them = 0 signal. No signal is observed in the
m = �1 direction when the pattern is absent.

Our diffracting object is not infinite in extent and our source and de-
tector are quite close, so it is not surprising that the diffraction depends
on exactly how the pattern of light and dark regions falls within the cir-
cular boundary. Fig. 4 shows how the diffraction pattern in the vicinity
of the first interference maximum is observed to vary as the shadow
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Fig. 4. Scans of the diffraction patterns in the vicinity ofm = �1 as the
shadow pattern is translated across the silicon wafer. The insets show the shadow
patterns.

pattern is translated across the silicon wafer. Calculations show this
behavior to be expected.

Blurring of the grating edges due to sideways diffusion of the carriers
is estimated to be less than 1 mm under the conditions of this experi-
ment.

Similar results were obtained when the silicon was illuminated from
the rear. The copper conductor was replaced by a 100 wires per inch
nickel mesh. This mesh, with a reflectance of 0.96 at 105 GHz, reflected
the millimeter waves, but allowed light to pass through.

In conclusion, the experiments described here have demonstrated
that a diffraction grating, produced by projecting a grating pattern onto
a semiconductor wafer, can redirect a millimeter-wave beam. The new
direction being determined largely by the period of the projected pat-
tern. A measure of fine control over the direction can be achieved by
translating the pattern across the wafer.
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A Distributed-Feedback Antenna Oscillator

Shin-Lin Wang, Young-Huang Chou, and Shyh-Jong Chung

Abstract—In this paper, a new design of the active transmitting antenna
array, called the distributed-feedback antenna oscillator, is proposed. The
active array is formed by serially connecting several unit cells to a closed
loop. Each unit cell contains an amplifier and a two-port antenna, with an
overall insertion gain larger than 0 dB and a phase delay equal to a multiple
of 360 . The signal traveling on the loop is amplified and radiated in each
unit cell. The radiation fields from all the antennas are then combined in
free space. A four-element feedback antenna oscillator operating at 10 GHz
is demonstrated by using two-port aperture-coupled microstrip antennas.
Simulation results show that multiple oscillation modes with different fre-
quencies and different radiation beams may be excited in the antenna os-
cillator. By experiment, it is found that each oscillation mode can be built
by tuning the biases of the oscillator. The measured radiation pattern for
each mode agrees very well with the predicted one. For a single-mode op-
eration with a broadside pattern, bandstop filters of a simple geometry are
designed and embedded in the oscillator to suppress the unwanted oscil-
lation modes. Finally, the influence of the bias condition on the radiation
power of the single-mode oscillator is investigated.

Index Terms—Active antenna, feedback, oscillator, spatial power com-
bining.

I. INTRODUCTION

Due to the advantages of compact sizes, low weights, and low costs,
active transmitting antennas have attracted much attention in the ap-
plications of communication and radar systems at the microwave and
millimeter-wave frequencies [1]–[3]. By integrating a passive planar
antenna with solid-state devices, the active transmitting antenna per-
forms not only as a radiator, but also as an oscillator. The design of an
active antenna is essentially that of an oscillator, which could be mainly
grouped into two types, i.e., the negative-resistance and feedback types.
In the first type, a two-terminal device (IMPATT or Gunn diode) [4] or
a three-terminal device [MESFET or high electron-mobility transistor
(HEMT)] [5] was first used to create a negative-resistance one-port.
The antenna with a suitable input resistance was then connected to the
one-port as a radiation load. In the feedback type, a two-port antenna
was generated and connected to a pre-designed amplifier [6], [7]. The
signal coming from the output of the amplifier was fed to one port of
the antenna. With most of the signal power radiated to free space, some
of it was coupled out through the second port of the antenna, which
was then fed to the amplifier’s input. In this design type, the antenna
possessed the function of a feedback resonator. To start the oscillation,
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Fig. 1. (a) Conceptual diagram of the distributed feedback antenna oscillator.
(b) Circuit layout of a unit cell using the two-port aperture-coupled microstrip
antenna.

the closed-loop small-signal gain should be larger than 1–2 dB and the
electrical length of the loop should be a multiple of 360�.

By forming several active antennas as an array, the powers radi-
ated from the antennas can spatially combine in free space, resulting
in a high output power. This spatial power-combining technique can
solve the problems of limited available powers from solid-state devices
and high propagation losses in transmission lines, especially for mil-
limeter-wave systems. To stably synchronize the oscillating frequen-
cies of the active antennas, strong injection-locking signals should be
applied to the antenna oscillators. These injection signals may come
from the mutual couplings between oscillators through an embedded
mutual-coupling network [8] or be supplied by an external stable source
through a feeding network [9], [10].

In this paper, we propose a new design of active transmitting an-
tennas, called thedistributed-feedback antenna oscillator, as shown in
Fig. 1(a). This design is actually an extension of the feedback-type ac-
tive antenna, which is formed by serially connecting several unit cells
to a closed loop. Each unit cell contains an amplifier and a two-port
antenna, with an overall insertion gain larger than 0 dB and a phase
delay equal to a multiple of 360�. This structure can be viewed as a
strong coupling active antenna array. The signal traveling on the loop
is amplified and radiated in each unit cell. The radiation fields from all
the antennas are then combined in free space.

II. DESIGN AND SIMULATION

A symmetrical four-element (2� 2) distributed-feedback antenna
oscillator operating at 10 GHz is demonstrated using the unit cell, as
shown in Fig. 1(b). The antenna used is a two-port aperture-coupled
microstrip antenna [7]. The antenna patches were fabricated on a sub-
strate of"r = 2:33 andh = 31 mil (thickness) and the amplifier
circuits were on a substrate of"r = 2:2 andh = 20 mil. The signal
was fed to the antenna patch through the feeding aperture on the ground
plane separating the two substrates and was coupled back to the circuit
layer through another aperture under the same patch. The two-port mi-
crostrip antenna was designed to be with a transmission loss (due to the
radiation of the patch) of 8.5 dB at the center frequency of 10 GHz and
a 10-dB return-loss bandwidth of 3.6%. The amplifier designed using

Fig. 2. Simulation results of the four-element antenna oscillator atV = 2 V
andV = �0:3 V. (a) Open-loop gain and phase as functions of frequency. (b)
Antenna signal phases as functions of frequency.

an NE32484A HEMT possessed a small-signal gain of about 10 dB at
10 GHz. Note that, by using the two-port aperture-coupled microstrip
antennas, no dc block capacitors were needed to isolate the amplifiers’
biases. The antenna spacing of the oscillator was set to be 0.6�0 at the
design frequency. The whole oscillator was simulated using the har-
monic-balance method by the commercial software HP Series IV. In
the simulation, the free-space mutual coupling between antennas was
neglected.

Fig. 2(a) depicts the simulated small-signal open-loop gain and
phase as functions of the frequency. The amplifiers’ biases were set
to beVds = 2 V and Vgs = �0:3 V. As shown, the loop gain is
larger than 0 dB in the frequency band from 9.7 to 10.5 GHz. Within
this band, three zero crossing points of the phase curve happen at
the frequencies of 9.75, 10.02, and 10.46 GHz, with corresponding
loop gains of 3.3, 5.8, and 1 dB, respectively. This means that the
circuit may oscillate at these three frequencies since both the gain and
phase satisfy the requirements to start the oscillation. It is interesting
to look at the signal phases at the four antennas. Simulation results
depicted in Fig. 2(b) show that the antennas produce in-phase radiation
fields when the circuit oscillates at 10.02 GHz. However, when the
oscillation happens at 10.46 GHz (9.75 GHz), a 90� phase delay
(advance) occurs between adjacent antennas.

III. M EASUREMENT

The designed 2� 2 feedback oscillator was fabricated and measured.
An X-band horn antenna with an HP 8564E spectrum analyzer was
used to detect the radiation fields from the antenna array. During mea-
suring, the amplifiers’ gate bias (Vgs) was first fixed at�0.3 V and
the drain bias (Vds) was then gradually increased from 0 V. AsVds ap-
proached 2 V, the active array oscillated at one of the two frequencies
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Fig. 3. Measured radiation patterns of the four-element antenna oscillator at
the frequencies of 10.090 GHz (V = 3:72 V), 10.853 GHz (V = 2 V), and
9.593 GHz (V = 2 V). The gate biasV is fixed at�0.3 V.

of 10.85 and 9.59 GHz. We were unable to determine which oscillating
frequency was generated first. The oscillation depended on the process
of changing the drain bias. However, whenVds was further increased
near 3.72 V, the oscillating frequency jumped to 10.09 GHz. Further
increase of the bias did not change the oscillating frequency. Thus, as
predicted in the simulation results, the fabricated four-element antenna
oscillator possessed three oscillating frequencies, i.e., 9.59, 10.09, and
10.85 GHz. The deviations of the measured frequencies to the simu-
lated ones are 1.6%,, 0.7%,, and 3.7%, respectively. Fig. 3 illustrates
the measured radiation patterns at these frequencies. It is obvious that
an in-phase pattern was obtained at 10.09 GHz, which agreed with
the corresponding simulation result at 10.02 GHz. Also, as shown in
Fig. 2(b), the simulated antenna phase differences at the other two os-
cillating frequencies are 90� (9.75 GHz) and�90� (10.46 GHz), both
corresponding to a radiation pattern with maxima located at�34�.
Comparing to the experiment results, the radiation patterns at 9.59 and
10.85 GHz, shown in Fig. 3, have the maximum powers appeared at
about�30�, which are very close to the simulations.

For many applications, an active array with a single stable oscil-
lating frequency and a broadside radiation pattern is needed. To this
end, filters with a very narrow stopband may be embedded in the os-
cillator loop to reject the unwanted oscillating frequencies. These fil-
ters should possess a simple geometry to make the design of the whole
oscillator compact. Also, they should provide enough attenuation to
the unwanted frequencies, while having little influence on the signal
propagation at the desired frequency. To fulfill these requirements, the
filter structure shown in Fig. 4(a) was used in this investigation. The
filter was completed by simply putting an open-ended microstrip stub
in the proximity of a microstrip section in the oscillator loop. The stub
length l was designed slightly smaller than half of the guided wave-
length at the oscillating frequency to be eliminated so that the stub’s
input impedance was inductive, with the inductanceL varying fast near
the unwanted frequency. The gap between the stub and microstrip loop
section behaved as a capacitor, with the capacitanceC depending on
the gap lengthg and the gapwidth (or stub width)w. Thus, the equiv-
alent circuit of this filter was a seriesLC resonator shunted to the mi-
crostrip line, as shown in Fig. 4(a). By suitably choosingl, g, andw,
theLCcircuit could be designed to resonate and, thus, be shorted, at the
unwanted frequency. Since the stub inductanceL changes rapidly with
the frequency, the stopband of the filter would be very narrow. Fig. 4(b)
illustrates the measured scattering parameters for a bandstop filter de-
signed at 10.85 GHz. As is shown, the insertion lossS21 of this filter is

Fig. 4. (a) Configuration and equivalent circuit of the bandstop filter.
(b) Measured scattering parameters of a 10.85-GHz bandstop filter with
l = 9:05 mm,w = 3 mm, andg = 0:1 mm.

Fig. 5. Variations of the EIRP’s as functions of the gate biasV , for the
filter-embedded oscillator withV = 3:72 and 2 V.

�3.6 dB at 10.85 GHz, but is only�0.2 dB around 10 GHz. Another
filter (with l = 10:3 mm,w = 3 mm, andg = 0:1 mm) has also been
designed at 9.59 GHz. The measured results showed an insertion loss
of �3.5 dB at 9.59 GHz and�0.3 dB around 10 GHz.

Both the 10.85- and 9.59-GHz bandstop filters were added in the cir-
cuit loop. The experiment showed that the original oscillating signals at
10.85 and 9.59 GHz were effectively eliminated. The active array stably
oscillated at a frequency around 10.08 GHz whenVds was changed
from 2 to 3.72 V, with the radiation beam pointed to the broadside di-
rection. Fig. 5 depicts the variations of the effective isotropic radiation
power (EIRP) as functions of the bias voltages. For a fixed gate bias
of Vgs = �0:3 V, when the drain bias was raised from 2 to 3.72 V,
the EIRP was enhanced by 6.1 dBm (from 21.5 to 27.6 dBm). How-
ever, contrary to these large EIRP variations, the change of the gate
bias caused limited variations of the EIRP. For the active devices (i.e.,
HEMT’s) used, at a fixed drain voltageVds, the more negative is the
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gate biasVgs, the smaller the drain currentId is and, thus, the lower the
dc power (=VdsId) is consumed. Therefore, the dc-to-RF efficiency
can be improved by applying a more negativeVgs without disturbing
the EIRP significantly.

IV. CONCLUSIONS

In this paper, a distributed feedback oscillator with multiple antenna
elements has been proposed and implemented at frequencies near
10 GHz. By using the commercial software HP Series IV, the multiele-
ment oscillator has been simulated, which showed that the oscillator
possessed multiple oscillating frequencies, with each frequency
corresponding to a different array radiation pattern. The experiments
also confirmed the existence of these frequencies. It was found that
the oscillation could be built at one of these oscillating frequencies by
changing the biases of the oscillator. For each oscillating frequency,
the radiation pattern has also been measured, which agreed very well
with the predicted one. In order to attain a single oscillating frequency
with a broadside radiation pattern, narrow stopband filters with a
simple geometry have been designed and embedded in the oscillator to
suppress the unwanted oscillation modes. The measurement verified
the efficacy of these filters. For the filter-embedded antenna oscillator,
the variation of the EIRP with respect to the change of the bias
voltages was measured and compared. The results showed that the
increase of the drain bias could effectively raise the EIRP, while that
of the gate bias did not change it much. Thus, the dc-to-RF efficiency
could be enhanced by using a negative gate bias with a higher voltage.
In the future, several multielement antenna oscillators developed in
this paper can be suitably arranged into a large active array. By means
of the free-space mutual couplings between antennas or external
injection signals, the radiated fields from all the oscillators may be
coherently combined to create a high output power.
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Modeling of Broad-Band Traveling-Wave
Optical-Intensity Modulators

R. Krähenbühl and W. K. Burns

Abstract—In this paper, an accurate simulation tool for the electrical and
optical response of broad-band traveling-wave optical intensity modulators
is presented, which takes into account multisectional electrical transmission
lines. This model is applied to analyze a high-speed fully packaged LiNbO
Mach–Zehnder interferometer.

Index Terms—Intensity modulator, optical communication, simulation
tool, traveling-wave devices.

I. INTRODUCTION

High-speed traveling-wave (TW) broad-band optical intensity mod-
ulators are expected to play an important role in future communication
systems. Efficient simulation tools are needed to shorten the time of
their development, reduce their cost, and to improve their performance
in the millimeter-wave frequency spectrum.

Previously, the optical performance of TW modulators have
been modeled by considering microwave optical velocity mismatch
[1], resistive electrode loss [2], and electrical reflections due to
impedance mismatch between electrical connectors and the active
device [3]. However, with the advent of fully packaged devices
having multisectional electrical transmission lines, considerations
such as electrode loss in nonactive sections, reflections from internal
impedance transitions, and contributions from discontinuities between
the high-frequency connector and electrical line have become very
important.

The purpose of this paper is to provide a flexible model for the elec-
trical and optical frequency-domain response of a broad-band TW op-
tical-intensity modulator, by taking into account microwave loss and
impedance transitions of the active and any number of nonactive elec-
trical microwave segments. Both the electrical and optical frequency
domains are obtained by considering the electrical transmission line
as a multisectional microwave cavity. The electrical transmission and
reflection responses of the device are directly given by the frequency
responses of this microwave cavity. In addition, both amplitude and
phase of the microwave-induced optical phase shift are obtained by it-
erative summation of all co-propagating and counter-propagating elec-
trical waves within the active section of the microwave cavity and direct
integration.

II. M ICROWAVE-CAVITY MODEL FOR OPTICAL AND

ELECTRICAL RESPONSE

The electrical performances of the microwave electrode in
high-speed TW modulators are determined by a complex interplay of
device and electrode geometry. This leads to different characteristic
impedances and phase velocities in each section along the microwave
electrode. To account for several line segments with different electrical
characteristics, we treat the electrical transmission line of the modu-
lator as a multisectional microwave cavity. In our considerations and
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Fig. 1. Microwave-cavity model of a multisectional electronic transmission line withN segments, showing the first andjth round trip through the cavity.

calculations, we mainly follow the basic approach as given in [3], but
extend it to the more general case of any number of nonactive sections.
The basic assumptions underlying the development of the model may
be described with reference to Fig. 1. An incident electromagnetic
wave entering the cavity passes forward and backward inside the
cavity, thereby undergoing different reflections, and transmissions
at the segment interfaces, as well as different absorption and phase
changes within the segments, until all power has left the cavity either
as reflected or transmitted power. As shown in Fig. 1, the microwave
electrode of the modulator is treated as a microwave cavity with
field reflection coefficients(Ri) and field transmission coefficients
(Ti) for the segment interfaces, as well as field propagation(Pi)
within the corresponding segment. The reflection and transmission
coefficients are represented by the characteristic impedances(Zi) of
two connecting segments as follows:

Ri =
Zi � Zi�1

Zi + Zi�1
(1)

Ti =
2 � pZi � Zi�1

Zi + Zi�1
(2)

The field propagation(Pi), which describes the electrical loss and
phase change in a section, is given by

Pi = e
�� �l +i�� �l (3)

with section lengthli, microwave loss�i, and characteristic phase con-
stant�i, which is given by

�i =
2� � f � ni

c
: (4)

Here,f denotes frequency,c is the free-space velocity of light, andni
is the microwave index. Referring to Fig. 1, the co-propagating electric-
field component in front of the interfacei + 1 of thejth round trip is
given by

E2j�1;i+1 = E2j�2;i � (�Ri) � Pi +E2j�1;i � Ti � Pi (5)

whereas the counter-propagating electric-field component in front of
the ith interface is given by

E2j;i = E2j�1;i+1 � Ri+1 � Pi + E2j;i+1 � Ti+1 � Pi (6)

which accounts for the fact that a difference of phase change of� oc-
curs for the reflection of an electromagnetic wave entering the interface
from opposite sides(R0 = �R). Equations (5) and (6) define all field
components at any point of any round trip within the cavity, assuming
the initial fieldE1;1 = E0, as well as allE0;i = 0, all E2j;N+1 = 0,

and allE2j+1;1 = 0. The total reflected electrical power is obtained by
summing all electric-field components, which leave the cavity on the
input side

S11 = E1;1 � R1 +

1

j=1

E2j;1 � T1
2

(7)

whereas the total transmitted electrical power is all power, which leaves
the cavity at the output side

S12 =

1

j=1

E2j�1;N+1 � TN+1

2

: (8)

To get the optical response as a result of the interaction of the mi-
crowave voltage, we have to consider the accumulated electric field in
the active section(i = as). Thez-dependent electric field inside the
active section (z = 0 at interfaceas) for any z is then obtained by
summing all forward and backward propagating electromagnetic-field
contributions therein as follows:

E(z) =

1

j=1

E2j�1;as+1 � e�� �(z�l )+i�� �(z�l )

+

1

j=1

E2j;as � e� �z�i�� �z
: (9)

For a time-varying field at angular frequency!, the voltage in the active
section may be obtained fromE(z) as follows:

V (z; t) = Re V (z) � e�i�!�t (10)

whereV (z) is proportional toE(z) in (9).V (z; t) may be written as

V (z; t) =

1

j=1

Re V2j�1;as+1 � e� �l �i�� �l � e�� �z

� cos(�as � z � ! � t)

�
1

j=1

Im V2j�1;as+1 � e� �l �i�� �l � e�� �z

� sin(�as � z � ! � t)

+

1

j=1

Re V2j;as � e� �z � cos(��as � z � ! � t)

�
1

j=1

Im V2j;as � e� �z � sin(��as � z � ! � t): (11)

Here, the initial valueV1;1 = V0 is the amplitude of the applied voltage.
The voltage seen at positionz (0 � z � las) along the length of the
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active section of the modulator by photons that enter the interaction
region(z = 0) at t = t0 can be written as [1]

V (z; t0) =

1

j=1

Re V2j�1;as+1 � e
� �l �i�� �l

� e
�� �z

� cos(� � z � ! � t0)

�

1

j=1

Im V2j�1;as+1 � e
� �l �i�� �l

� e
�� �z

� sin(� � z � ! � t0)

+

1

j=1

Re V2j;as � e
� �z

� cos(��0 � z � ! � t0)

�

1

j=1

Im V2j;as � e
� �z

� sin(��0 � z � ! � t0): (12)

where

� =
2� � f

c
� (nas � nopt) (13)

and

�
0 =

2� � f

c
� (nas + nopt): (14)

Here,nopt is the effective index of the guided optical mode. Notice
that for the case of a counter propagating optical signal, just the sign
of nopt has to be altered. The local change in the wave vector�� of
the optical wave induced by the RF voltage applied to an electrooptic
waveguide may be expressed as

��(z) = ��0 �
V (z; t0)

V0
(15)

where

��0 = �

�

�
� n

3
opt � r �

V0

w
� �: (16)

Here,� is the free-space optical wavelength,r is the pertinent elec-
trooptic coefficient,w is the inter-electrode gap, and� is the elec-
trooptical overlap integral. The frequency-dependent electrooptically
induced phase shift�� for photons incident att = t0 is then given by

��(f; t0) =
l

0

��(z) � dz: (17)

We integrate the above expression and get

��(f; t0) =
��0

V0
�

1

j=1

Re V2j�1;as+1 � e
� �l �i�� �l

� f� � cos(! � t0) + f� � sin(! � t0)

�

1

j=1

Im V2j�1;as+1 � e
� �l �i�� �l

� f� � cos(! � t0)� f� � sin(! � t0)

+

1

j=1

Re V2j;as � b� � cos(! � t0)

+ b�
0

� sin(! � t0)

�

1

j=1

Im V2j;as

� b�
0

� cos(! � t0)� b� � sin(! � t0) (18)

where

f� =
1

�2as + �2
� �as + � � e

�� �l
� sin(� � las)

� �as � e
�� �l

� cos(� � las) (19)

f� =
1

�2as + �2
� � � �as � e

�� �l
� sin(� � las)

� � � e
�� �l

� cos(� � las) (20)

b� =
1

�2as + � 2
� � �as + �

0

� e
� �l

� sin(�0 � las)

+ �as � e
� �l

� cos(�0 � las) (21)

b�
0 =

1

�2as + � 2
� � �

0

� �as � e
� �l

� sin(�0 � las)

+ �
0

� e
� �l

� cos(�0 � las) : (22)

By employing the identity

A � cos�+B � sin� = (A2 +B
2)(1=2) � sin tan�1 A

B
+ �

(23)

we obtain both the amplitude and phase of the optical phase shift in-
duced by the electrooptical microwave interaction

��(f; t0)

=
��0

V0
�

1

j=1

f� � Re V2j�1;as+1 � e
� �l �i�� �l

� f� � Im V2j�1;as+1 � e
� �l i�i�� �l

+ b� � Re[V2j;as]� b�
0

� Im[V2j;as]

2

+

1

j=1

f� � Re V2j�1;as+1 � e
� �l �i�� �l

+ f� � Im V2j�1;as+1 � e
� �l �i�� �l

+ b�
0

� Re[V2j;as] + b� � Im[V2j;as]

2 1=2

� sin tan�1 A0

B0
+ ! � t0 (24)

with

A0 =

1

j=1

f� � Re V2j�1;as+1 � e
� �l �i�� �l

� f� � Im V2j�1;as+1 � e
� �l �i�� �l

+ b� � Re[V2j;as] � b�
0

� Im[V2j;as] (25)

B0 =

1

j=1

f� � Re V2j�1;as+1 � e
� �l �i�� �l

+ f� � Im V2j�1;as+1 � e
� �l �i�� �l

+ b�
0

� Re[V2j;as] + b� � Im[V2j;as]: (26)
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Fig. 2. Layout and cross section of coplanar TW thick electrode structure of the broad-band LiNbOMach–Zehnder interferometer modulator.

(a) (b) (c)

Fig. 3. Measured electrical and optical responses of the packaged modulator (dots) with the corresponding fit curves (solid).

Equation (24) is fully iterative and gives both the amplitude and phase
of the optical phase shift induced by the optical microwave interaction.
It can be programmed to compute, up to a chosen accuracy, the effects
of any electric transmission-line configuration with multiple internal
microwave reflections and absorption.

The expression for the optical phase shift as a function of frequency
obtained above can be applied to a Mach–Zehnder interferometer with
a push–pull electrode configuration. In this case, the optical output
power is represented as [3]

Pout = Td �
Pin

2
� 1 + cos �0 + 2 ���(f; t0) (27)

where�0 is the dc bias,Pin is the optical input power, andTd is the
overall optical losses. For quadrature bias(�0 = 90�) and under small-
signal operation, the above expression becomes

Pout = Td �
Pin

2
� 1� 2 ���(f; t0) : (28)

From the above, the magnitude of the normalized optical frequency
response in decibel electrical is

OR(f) = 20 � log
��(f; t0)

��(0; t0)
: (29)

III. B ROAD-BAND LiNbO3 TW OPTICAL-INTENSITY MODULATOR

The model developed here was applied to study the performance
of a fully packaged broad-band modulator designed for operation at
1.3 �m and fabricated on az-cut LiNbO3 wafer. The potential for
broad-band operation of these devices is limited by velocity mismatch
of the electrical and optical signal, by losses intrinsic to the device elec-
trode, and by impedance mismatch between the device and the 50-

driver or between different segments on the electrode. To overcome
these problems, we employed a thick coplanar electrode structure as
described in [4]. The layout of the device is shown in Fig. 2. We used

a Mach–Zehnder interferometer modulator with a thick coplanar elec-
trode structure, as presented in [5]. Gold electrode thickness(t) was
27�m on an LiNbO3 substrate coated with 0.9-�m SiO2 buffer layer.
Active strip electrode width(s) is 8�m, its gap to the ground planes
(w) is 25�m, and its interaction length(las) is 24 mm. Due to pack-
aging requirements, the electrical transmission line integrated on the
LiNbO3 modulator is composed of the following sections (see Fig. 2):

1) input/output section;
2) tapers;
3) bends;
4) active section

Microwave input/output to the device is applied through coaxial mi-
crowaveV connectors to the input/output section, with dimensions
properly matching the connectors. The tapers were designed to pro-
vide dimensional matches between input/output and active sections of
the modulator, and the bends are necessary to locate optical and elec-
trical access ports at different edges of the LiNbO3 substrate. Using
an HP8722D network analyzer, the electrical and optical responses of
the fully packaged modulator were measured over a 50-MHz–40-GHz
span. For the optical response, an NEL broad-band internally untermi-
nated waveguide detector was used, without correction for the detector
response. Additional information on design and measurement results
is given in [5].

To fit our measurements, we employed a nine-section model
(N = 7) including 50-
 input/output line(Z0 = ZN+1 = 50 
),
input/output transition, input/output taper, input/output bend, and the
active section (see Fig. 2). This results in four kinds of sections with
different impedancesZi, absorptions�i, and microwave indexesni so
that a 12-fit-parameter calculation has to be solved. The initial values
used were: 1) electrical time-domain reflection (TDR) measurements
for the impedancesZi; 2) individual section measurements similar
to those described in [3] for the losses�i; and 3) design values for
the effective indexesni. The lengthsli were given by the layout of
our electrode structure. In the second step, the losses were fitted to
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TABLE I
MODEL PARAMETERS USED TO CALCULATE THE FIT

CURVES OFFIG. 3

match the electrical transmission(S21) measurements. It has been
found that the best match could be obtained by choosing a square root
and cubic frequency-dependent loss term. Due to the short length of
the transition, taper, and bend sections, the value of their loss term
has limited accuracy, and should be measured individually. In the
third step, the impedances were changed such that the amplitudes of
the response for the electrical reflection measurement(S22) were
obtained.

In the final step, the microwave index of the active section was
chosen such that the slope of the optical response at high frequency
is obtained. Also, the other indexes have been adjusted so that the
response of the electrical reflection is matched. It has been found that
the electrical microwave index in the active section closely matches
the optical one(nopt = 2:138). The final curve fit results of (7),
(8), and (29), together with the measurements, are shown in Fig. 3.
The relative optical response has been adjusted to the 3-GHz point
of the fit curve, thereby neglecting any acoustic resonance or other
low-frequency effects, as observed in [5]. As shown, there is a good
agreement between model and measurements, considering variations
of the optical detector response at frequencies higher than 20 GHz.
The final fit parameters are summarized in Table I. As we use here
a nine-section model, the results are slightly different than the ones
obtained in [5] for a five-section model.

IV. CONCLUSION

We have given an iterative model for the reflected and transmitted
electrical response, as well as the amplitude and phase of the optical
response of a general multisectional TW optical intensity modulator.
These expressions are very helpful for the analysis of existing devices,
and they should be useful in future device design.
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Field Expressions and Patterns in Elliptical Waveguide

Sen Li and Bai-Suo Wang

Abstract—The elliptic waveguide have been used in several systems such
as satellite communication and radar feed lines. In this paper, the field ex-
pressions in Fourier series are obtained. The field patterns with over 30
modes with three eccentricities ( = 0 3 0 75 0 9) are plotted.

Index Terms—Elliptical waveguide, field patterns.

In 1938, Chu first studied the transmission of an electromagnetic
wave in an elliptic guide [1]. His classic field plots are used in many
standard text and reference books, where the field pattern of thecE01

is incorrect. The field expressions and plots in elliptic waveguide have
since been studied by many researchers [2]–[5].

However, some of those patterns are with sketches, while others are
only for the first six or eight modes.

In many applications, the plots for higher order modes are inter-
esting. In this paper, the field expressions are discussed by means of
expanding the Mathieu function into the Fourier series [6]. The field
patterns with complete electromagnetic lines are plotted. The density
of the field lines is proportional to the field strength.

The major and minor axes of the ellipse are2a and2b, respectively.
Three kinds of guide sizes, corresponding toe = 0:3; 0:75; 0:9 are a
�b = 10� 9:539392 cm2, 10� 6:614378 cm2, and10� 4:358899
cm2, respectively. The coefficientsA andB in the Fourier expression
of the Mathieu functionscem; sem, and the involved parameters are
calculated. TakecH11 with e = 0:75 e.g.,A1 = 9:9790E � 1, A3 =
�6:4770E � 2, A5 = 1:3454E � 3, A7 = �1:3836E � 5, A9 =
8:5050E� 8,A11 = �3:4785E� 10,A13 = 1:0151E� 12,A15 =
�2:2201E� 15,A17 = 3:7750E� 18,A19 = �5:1333E� 21, and
fc = 8:8967E � 1 GHz.

The field patterns are shown in Figs. 1–3. Two digits below each
mode sign represent its eigenmode number. The eigenmode numbers
beyond 100 are not written.
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Fig. 1. Field patternse = 0:30 (—E: lines, - - -H lines).
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Fig. 2. Field patternse = 0:75 (—E: lines, - - -H lines).
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Fig. 3. Field patternse = 0:90 (—E: lines, - - -H lines).
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A Power and Efficiency Measurement Technique for
Active Patch Antennas

Elmahdi A. Elkhazmi, Neil J. McEwan, and Nazar T. Ali

Abstract—In this paper, the power input to the radiating element of an
active microstrip patch antenna is measured using a small sensing patch,
which is weakly coupled to a radiating edge. Combined with an estimate of
patch radiation efficiency, this also yields a measurement of total radiated
power. The method has advantages of convenience, insensitivity to room
reflections, and a weakly frequency-dependent calibration factor.

Index Terms—Active antennas, antenna measurements, microstrip an-
tennas.

I. INTRODUCTION

Many papers have described active patch antennas for transmitting
applications. These antennas may be defined as an active device very
closely integrated with a passive radiating structure (referred to here
as theradiator), and with little or no intervening circuitry [1]. They
fall into the general classes of self-oscillating antennas and radiating
power amplifiers. The first group may be further divided into those
using a one-port radiator coupled to a negative resistance circuit or de-
vice, and designs using a two-port radiator achieving oscillation via a
feedback path. Performance assessment requires a measurement of the
total power radiated into space, and of the conversion efficiency re-
lating this power to the dc input power. For the class of radiating power
amplifiers, either power-added efficiency (PAE) or overall efficiency
may also be used as figures of merit [2].

II. EXISTING METHODS

Most papers have described measurement of the power output of an
active antenna by coupling it to a receiving antenna of known gain
under far-field conditions (e.g., [3]). The Friis equation may be used
and an estimate for the gain of the radiator under test must be inserted.
If not easily calculable, this could be measured conventionally by com-
parison with a reference antenna, using either an identical copy of the
radiator without active devices or the actual radiator in a passive mode
by disconnecting it from the active device and reconnecting at the same
point to a separate feed line.

For the class of radiating power amplifiers, Anet al. [4] describe
how an identical radiator can be used in a substitution method to mea-
sure the transducer gain of the power amplifier (minus radiator) without
the need to disconnect it. The substitution removes the need to calcu-
late the Friis coupling factor, and the associated uncertainties. Another
form of substitution technique [5], [6] used a substituted passive copy
to measure total power output. In [5], a correction factor1=(1� j�j2),
based on a network analyzer measurement of the input reflection coef-
ficient of the passive copy, was included, as it had also been in [4]. If
disconnection is permitted, these substitutions can use the actual radi-
ator rather than a copy. In [4], an anechoic environment was assumed.
We note that this could be relaxed somewhat if care is taken to keep all
scatterers stationary and to put the substituted antenna in exactly the
same place as the active one. This approach was used in [5].

The point has been somewhat neglected that all these techniques,
including the basic Friis equation method, strictly measure theinput
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power accepted by the radiator at its feed point(s), rather than the total
power radiated into space. However, this enables the amplifier and ra-
diator contributions to overall efficiency to be clearly separated.

III. A N ALTERNATIVE TECHNIQUE

An alternative method now described is to provide the active patch
radiator with a small sensing patch, which is mounted on the same
board as the main patch antenna and placed close to one of its radiating
edges. The sensing patch is connected to an output coaxial connector.
The connection can be made via a coaxial probe from the ground-plane
side of the board, or via a microstrip line taken from the sensing patch.
The sensor and coupling factor are kept small to ensure negligible per-
turbation of the main antenna.

Fig. 1 shows how this was implemented for a particular radiating
power amplifier. The active antenna shown is similar to that described
in [3] and is an experimental version with a one-wavelength line in-
terposed between the patch and power transistor. (The line was in-
cluded to facilitate separate current/voltage waveform measurements,
and might be omitted in an operational version, or possibly replaced by
a quarter-wavelength line to approximate a class-F harmonic termina-
tion, as in [6].)

The high coupling reactance (about 1.4 k
) between the main and
sensing patches implies that the latter approximates to a constant cur-
rent source feeding into its own capacitance to ground. A 50-
 coaxial
load to ground was, therefore, included as shown to improve the match
at port 2 and reduce errors arising from connecting an imperfectly
matched power meter or spectrum analyzer at that point. The ground
capacitance of the sensing patch was arranged as the first element of a
filter designed to have a very flat response over the small band of fre-
quencies at which the antenna might be operated. The simplest filter
could have one additional series or shunt inductor; the example shown
used three extra components, forming a low-pass ladder network and
providing adequate rejection of harmonic outputs when measuring with
a thermistor power meter. If the 50-
 load is unscrewed to form a tem-
porary port 3, correct filter response can be verified by measuringS23.

To calibrate the sensor, the main microstrip line was cut near its
center to disconnect the transistor, and the section feeding the patch was
reconnected to a temporary coaxial probe (port 1) fitted at this point.
The radiator and sensor now become a passive two-port. The neces-
sary calibration factor relates the sensor’s output power to the power
accepted by the radiator from the power amplifier, and is

S0

21

2

=
jS21j

2

1� jS11j2
: (1)

IV. RESULTS

In the layout shown, the sensing patch was empirically trimmed to
give inter-port coupling of about�25 dB near the resonant frequency of
the patch. The board was then measured carefully on a well-calibrated
network analyzer (HP 8510C), avoiding room reflections as far as pos-
sible. Fig. 2 shows the resulting plot ofjS0

21j
2. In order to show the

inherent frequency dependence of the sensor, this plot has been taken
with the three added elements of the output filter omitted. Also shown
in this plot is the return loss of the main patch; it can be seen that this is
negligibly affected by the presence of the sensing patch. The plot has
good accuracy where the return loss is better than about�0.5 dB, this
being considered necessary for (1) not to be too sensitive to errors in
measuring this quantity.

The interesting result is thatjS0

21j
2 has a quite slowly varying magni-

tude over a much wider band than the resonant bandwidth of the patch.

0018–9480/00$10.00 © 2000 IEEE
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Fig. 1. Test layout for power and efficiency measurements (board thickness: 1.65 mm," = 2:55, transistor type: Fujitsu FLL351ME).

Fig. 2. Calibration factor of the sensing patch (without filter).

The patch impedance varies widely over this band, which indicates that
the correction for impedance variation is working accurately. The graph
shows small residual frequency dependence on a finer frequency scale
than would be expected from the patch structures alone, and it has
been considered legitimate to smooth it slightly. The variations were
attributed to random network analyzer errors, minor room reflections,
and standing waves on the outer surfaces of the network analyzer test
cables. For measurements between 2.2–2.5 GHz, the smoothed calibra-
tion curve is believed to be accurate to within�0.2 dB. This is prob-
ably a better accuracy than could easily be achieved by coupling to a
separate antenna. For most transistors, the operating point would be se-
lected between 2.15–2.35 GHz, over which range the total variation of
the calibration factor is only 0.4 dB.

The best PAE of the power amplifier was measured by this method as
49.3% at 2.36 GHz with the patch accepting 1.29 W from the transistor.

The RF input power to the amplifier was obtained as the difference of
incident (532 mW) and reflected (190 mW) powers measured using a
directional coupler, and without gate matching. Drain bias was 6 V and
drain current 320 mA with quiescent bias at pinchoff. The measured
efficiency is in good agreement with the figure of 48% quoted in [3].

In measurements taken conventionally by coupling to a second an-
tenna, fine scale frequency dependence of the calibration can be cre-
ated by extraneous scatterers unless the environment has good anechoic
properties. If, however, the spacing is reduced to make the direct path
dominant, frequency dependence arises instead from multiple reflec-
tions between the two antennas. The new method was found to be very
convenient in avoiding these effects and in making it easy to optimize
the operating frequency.

V. SENSORFREQUENCYDEPENDENCE

A simple explanation of the weakly frequency-dependent calibration
factor of the sensing patch is offered by the equivalent circuit shown
in Fig. 3, which would be valid for frequencies near resonance where
the main patch fields can be approximated as pureTM10 mode. The
sensing patch is capacitively coupled to the radiating edge of the main
radiator, which has been represented as a low impedance transmission
line with end radiation conductancesG1; G2. The coupling reactance
greatly dominates the 25-
 impedance level of the parallel internal and
external loads. The sensor, therefore, outputs a power proportional to
!2jV2j

2=(1+!2�2), whereV2 is the edge voltage of the patch and time
constant� is the product of 25
 and the ground capacitanceCG(here,
about 1.5 pF) of the sensing patch. The numerator dependence is the
dominant one in this case. The equivalent source model of the main
patch attributes most of its radiation to magnetic current sources, prin-
cipally at the radiating edges, with intensities proportional toV1 and
V2. An isolated magnetic Hertzian dipole of fixed intensity radiates a
total power proportional to!2. This was found to be roughly true for
single finite length slots, so these!2 dependencies will cancel in the
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Fig. 3. Simple equivalent circuit of main patch and power sensor.

expression forjS0

21j
2. The other principal frequency dependencies in

the system are the relationship between the edge voltagesV1 andV2,
and the radiating array factor of the two slots that affects the total power
radiated. Unlike the input return loss of the patch, none of these factors
determiningjS0

21j
2 exhibits a strongly resonant behavior.

VI. CONCLUSION

In this paper, a new method was described for performance assess-
ment of an active patch antenna. It should be applicable to any active
antenna with a one-port patch radiator, whether self-oscillating or oth-
erwise. Interesting features of this method are that it eliminates the un-
certainties involving in using the standard Friis equation method, or
the substitution method, and largely eliminates error introduced by an
imperfect anechoic environment. The method can be used with good
accuracy in an open laboratory, without anechoic walls, provided rea-
sonable care is taken to avoid strong reflections from nearby obsta-
cles. Another interesting feature is that a nearly frequency-indepen-
dent calibration constant can be obtained over a wider band than the
resonant bandwidth of the patch radiator under test. If desired, a very
low-order filter can be fitted to the sensor to remove the already small
frequency dependence, and this is very convenient when adjusting the
operating conditions such as frequency, drive level, and bias to opti-
mize the output power or the efficiency.

Like the existing methods of power measurement, the technique de-
scribed measures power input to the radiating structure, and an estimate
or measurement of radiation efficiency (e.g., [7], [8]) should be incor-
porated to find the true total radiated power.
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On the Goubau–Schwering Beam Waveguide Using a
Modified Paraxial Approximation

Karl E. Lonngren

Abstract—In this paper, we demonstrate that the beam waveguide can be
easily postulated by using a modified version of the paraxial approximation.

Index Terms—Beam waveguide, paraxial approximation.

Theparaxial approximationis a technique that is gaining currency
in solving diffraction problems in electromagnetic theory. In particular,
it is found that in Cartesian coordinates, the far field is the two-di-
mensional Fourier transform of the field within the aperture. It is de-
scribed in recent literature [1]. The purpose of this paper is to extend the
paraxial approximation and demonstrate that the electromagnetic fields
in the beam waveguide described originally by Goubau and Schwering
[2], [3] can be directly obtained.

Goubau and Schwering calculated the transverse distribution of the
electromagnetic fields that could propagate and be guided by a structure
consisting of periodically displaced lenses. They found that the trans-
verse distribution would be expressed in terms of modes that consisted
of a Gaussian times a Laguerre polynomial in cylindrical coordinates
[2] and a Gaussian times a Hermite polynomial in Cartesian coordinates
[3]. This mode structure was experimentally confirmed at microwave
frequencies [4], [5]. Additional results can be found in [6]–[8].

With reference to Fig. 1(a), and in the spirit of the paraxial approxi-
mation [1], the far fieldE(x; y; z) is written as

E(x; y; z) =
j

� S

E(x0; y0; z0)e�j�r

r00
dx

0

dy
0 (1)

where the single prime indicates the coordinates of the aperture. The
distancer00 is the distance between an element within the aperture and
the far-field point, and is expressed as

r
00 = (x� x0)2 + (y � y0)2 + (z � z0)2: (2)
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(a)

(b)

Fig. 1. Plane-wave element as part of a plane aperture. (a) Plane atz = 0. (b)
Planes atz = �z .

In the standard paraxial approximation for diffraction [1], one ap-
proximatesr00 with

r
00

� r = x2 + y2 + z2 (3)

in the amplitude terms and uses the binomial expansion

r
00

� r �
xx0 + yy0

r
(4)

in the phase terms. The aperture is located atz0 = 0. In addition, the
terms containing

(x0)2

r
and

(y0)2

r

and higher order are neglected, as they are considered to make an in-
significant contribution.

In our modified paraxial approximationwith the beam waveguide
application in mind, we do expect and will require that the wave prop-
agation be predominantly in thez direction, as shown in Fig. 1(b). We
approximater00 with

r
00

� 2zo (5)

in the amplitude terms and expand (2) with the binomial expansion

r
00

� 2zo �
xx0 + yy0

2zo
+

x02 + y02

4zo
+

x2 + y2

4zo
(6)

in the phase terms. The aperture is located atz0 = �zo. We retain the
higher order terms. After substituting (5) and (6) in (1), we obtain

E(x; y;+zo) =
j

�2zo S

E(x0

; y
0

;�zo)

�e
�j� 2z � + +

dx
0

dy
0 (7)

or

E(x; y;+zo)e
j�

=
je�j�2z

�2zo S

E(x0; y0;�zo)

�e
�j� +

dx
0

dy
0

:

(8)

In (8), the two quadratic exponential terms can be removed with
phase correcting lensesat both locations. The term in front of the in-
tegral sign is the normal wave propagation for a distance2zo. After
removing these terms, we obtain

E(x; y;+zo) =
S

E(x0; y0;�zo)e
�j�

dx
0

dy
0

: (9)

Equation (9) is the result that we seek in that the field atz = +zo

is the Fourier transform of the field atz = �zo if the aperture were
infinite in extent. A Gaussian times a Hermite polynomial satisfies this
in Cartesian coordinates, which is the normal mode [3]. Equation (9)
can be transformed to cylindrical coordinates [1] with the result that a
Gaussian times a Laguerre polynomial is the Hankel transform of itself
and, thus, is a mode in cylindrical coordinates [2].
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A Low-Impedance Coplanar Waveguide Using an SrTiO
Thin Film for GaAs Power MMIC’s

Mitsuru Tanabe, Mitsuru Nishitsuji, Yoshiharu Anda, and Yorito Ota

Abstract—A novel structure for coplanar-waveguide transmission lines
with low impedance and low loss is demonstrated in this paper. The new
structure simply has a high dielectric SrTiO thin film underneath the
coplanar conductors. Due to the high dielectric constant of SrTiO, the
coplanar line exhibited characteristic impedance as low as 18
 with a
slot width of 5 m and the center conductor width of 50 m, while a
conventional coplanar line on GaAs showed only 30
 with the same
configuration. The newly developed coplanar structure is easily applicable
for present GaAs monolithic-microwave integrated-circuit (MMIC)
technology, especially for power MMIC’s and low-impedance devices.

Index Terms—Coplanar waveguides, impedance transfomers, MMIC’s,
SrTiO.

I. INTRODUCTION

Coplanar waveguide (CPW) transmission lines have several advan-
tages such as low dispersion, low coupling between adjacent lines,
and low fabrication cost. In spite of these superior features, CPW’s
have not been utilized extensively thus far because of a lack of ap-
propriate design tools with basic coplanar elements. Recently, how-
ever, demands for low-cost GaAs monolithic microwave integrated cir-
cuits (MMIC’s) have been expanding into the millimeter-wave band in
order to realize commercial systems, such as local multipoint distribu-
tion system (LMDS), satellite communication systems, and collision
warning radar system. Thus, the interest in coplanar-line circuits has
increased steadily [1].

Low-impedance transmission lines are used as impedance trans-
formers of input matching networks for low-impedance devices such
as power field-effect transistors (FET’s) or photodiodes. For example,
large-periphery GaAs FET’s with the total gatewidth of over several
hundreds micrometers have input impedance of only several ohms. In
order to transform the impedance into the usual 50
, the transmission
lines must have characteristic impedance of, at most, 20
. Conven-
tional CPW’s fabricate simply on a GaAs substrate. In order to realize
characteristic impedance of under 20
, conventional CPW’s must
have narrow slot width of less than 5�m and wide center conductor
width of over 300�m. Therefore, in terms of chip size reduction
and to avoid the difficulties in narrow slots processing, conventional
CPW’s are not suitable for realizing low characteristic impedance.

To provide CPW’s with low characteristic impedance, Gillick and
Robertson demonstrated a new CPW structure with multilayered con-
ductors, and exhibited characteristic impedance of as low as 9
 [2]. In
this paper, we propose another structure more similar to conventional
CPW’s that can realize low characteristic impedance. The idea here is
that the total dielectric constant under the conductors is made higher
than that of the conventional CPW by using a high dielectric-constant
material. If the CPW has a thin film with high dielectric constant un-
derneath the conductors, the capacitance per unit length of CPW would
become higher, which leads lower characteristic impedance than that
of conventional CPW. We chose SrTiO3 (STO) as a high dielectric ma-
terial because STO has already been used as an insulator for bypass
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capacitors to reduce the MMICs’ capacitor area [3] and it is more ap-
plicable for MMIC technology than any other high dielectric materials.

In the following, we show the experimental results of the CPW’s fab-
ricated with a STO thin film on GaAs (STO CPW’s) and then discuss
about the performance of STO CPW’s.

II. FABRICATION AND MEASUREMENT

The STO CPW was fabricated as follows. First, an STO thin film was
deposited on a GaAs substrate by RF magnetron sputtering. The depo-
sition conditions were substrate temperature of 300�C and RF power
of 500 W, with a deposition rate of 0.35�m/h. The center conductors
and ground planes that consisted of 2�m-thick Ti/Au were then formed
on the STO thin film by using evaporation and electroplating methods.
Fig. 1 shows the cross section of the investigated CPW’s. The widths
of center conductors and ground planes were 50 and 500�m, respec-
tively, and the length was 2 mm. The STO film thickness was 1�m.
TheS-parameters were measured with a vector network analyzer up to
60 GHz.

Characteristic impedances were determined by using a circuit sim-
ulator of the Hewlett-Packard Microwave Design System (HP-MDS).
Small-signal sources were connected to the measuredS-parameters on
HP-MDS and real parts of the source impedance were optimized to
make the return loss show the lowest. Fig. 2 shows the dependence of
the measured characteristic impedance on the slot width in the STO
CPW and the conventional CPW. The STO CPW’s exhibits character-
istic impedance about 10
 lower than that of the conventional one
throughout the entire slot width and is reduced with decreasing slot
width down to 18
. Using the�=4 transmission line with this char-
acteristic impedance, the load impedance of 6
 is transformed into
an input impedance of around 50
 according to the well-known for-
mula ZinZL = Z2

o , whereZin denotes input impedance,ZL load
impedance, andZo characteristic impedance of transmission lines. The
value of 6
 corresponds approximately to the real part of the input
impedance of 600-�m gatewidth FET’s.

III. D ISCUSSION

With a circuit simulator, it is possible to extract the total relative
dielectric constants of the substrate, including both the STO thin
film and the GaAs substrate, from the measuredS-parameters. We
conducted the fitting between the measured and simulated data with
varying the relative dielectric constant of the substrate. The STO CPW
with 5-�m-width slots was found to exhibit a total relative dielectric
constant as high as 33. This value is about three times higher than that
of the conventional CPW. With this value, we estimated the available
lowest characteristic impedance of STO CPW’s with the slot-width
constant at 5�m by varying center conductor width. The impedance
would decrease down to 12.6
 with an increase of center conductor
width up to 300�m, as shown in Fig. 3. This means that a load
impedance of 3
 would be transformed into about 50
 with the�=4
impedance transformer. Fig. 4 shows the extracted relative dielectric
constants for another slot widths. The figure shows that the narrower
slot CPW’s tend to have higher dielectric constants. This is because
when the slots become narrower, the electric field concentrates more
to the surface, and the high dielectric constant of an STO thin film
contributes more to the total relative dielectric constant. This fact
helps the STO CPW’s to have the low-impedance characteristics in
narrow slots.

We next evaluated the relative dielectric constant of the fabricated
STO thin film by using a conventional electromagnetic simulator of

0018–9480/00$10.00 © 2000 IEEE
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Fig. 1. Schematic figure of the implemented STO CPW.

Fig. 2. Characteristic impedance of the fabricated STO CPW’s and the
conventional CPW’s with center conductor width of 50�m.

Fig. 3. Relative dielectric constant derived from the fabricated STO CPW’s.

the Hewlett-Packard High Frequency Simulation System (HP-HFSS).
The simulated structure was the same as shown in Fig. 1. The assumed

Fig. 4. Available characteristic impedance of the STO CPW’s for its center
conductor widths.

relative dielectric constants of STO thin film were 100, 200, and 300.
The relative dielectric constant of 300 correspond to that of an STO
bulk substrate, whose value was extracted from the CPW fabricated
on an STO bulk substrate by using a circuit simulator as mentioned in
the previous section. The dependence of the characteristic impedance
on the slot width of both the simulation and experiment is shown in
Fig. 5. The experimental data falls between the two sets of the simulated
data with the dielectric constant of 100 and 200. From this, we may
conclude that the relative dielectric constant of the fabricated STO thin
film was between 100–200. This value is far below that of the bulk
STO. Since the crystalline structure and lattice constant of the STO
differs from that of GaAs, an STO thin film on GaAs is assumed to
have poorer crystallinity and lower relative dielectric constant than a
bulk STO substrate. By improving the crystallinity of the STO thin
film, still higher dielectric constant and lower characteristic impedance
may be achieved. If a relative dielectric constant of near 300 were to
be achieved, the characteristic impedance of an STO CPW with the
slot width of 5�m and the center conductor width of 300�m could be
reached as low as 10.5
.

For transmission lines, losses are also important characteristic. We
investigated losses of 30-
 lines on both the STO CPW and the con-
ventional CPW. The STO CPW with 30-
 characteristic impedance
consisted of 50-�m-width center conductor and 15-�m-width slots,
while the conventional one with the same impedance consisted of
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Fig. 5. Characteristic impedance of the measured STO CPW’s and the
simulated STO CPW’s with" of 100, 200, and 300.

Fig. 6. Losses of the STO CPW and the conventional CPW in characteristic
impedance of 30
.

50-�m-width center conductor and 5-�m-width slots. Fig. 6 shows
losses per unit guide wavelength of the STO CPW and the conventional
CPW. As can be seen from Fig. 6, the losses of the STO CPW is lower
than the conventional CPW throughout the measured frequency range.

Additionally, from the following relation on the guide wavelength,
the distributed elements for MMIC’s could be shorten if STO CPW’s
were utilized, due to its high dielectric constant:

�STO-CPO
�conventional-CPW

=

p
"conventional-CPW
p
"STO-CPW

:

For example, in comparison with 30-
 lines for both the CPW’s at
30 GHz, the STO CPW has a dielectric constant of 24 and the�=4 of
0.7 mm, while the conventional one has a dielectric constant of 12.85
and the�=4 of 1 mm. The STO CPW could shorten the distributed
elements by at least 30%.

IV. CONCLUSION

We have demonstrated the characteristics of the CPW fabricated with
an STO thin film (STO CPW) on GaAs for the first time. It exhib-
ited the impedance of as low as 18
 with a center conductor width
of 50 �m and the slot width of 5�m, while the conventional CPW
showed 30
 with the same configuration. With the wider center con-
ductor of 300-�m width, the impedance decreases to 12.6
. By using a
�=4 impedance transformer, the load impedance of 3
 could be trans-
formed into about 50
. The STO CPW’s exhibit lower loss charac-
teristic than that of the conventional one. Therefore, the STO CPW’s
would be applicable and useful enough for the matching networks for
power MMIC’s or the other low-impedance devices.
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Gradient Evaluation for Neural-Networks-Based
Electromagnetic Optimization Procedures

G. Antonini and A. Orlandi

Abstract—This paper extends the use of a neural network (NN) approx-
imating a function, to the evaluation of the gradient of the same function.
This is done without any extra training of the network. The evaluation of the
function’s gradient is used in NN-based optimization procedures in order
to speed up the convergence and to maintain the overall accuracy.

Index Terms—Modeling, neural network, optimization methods.

I. INTRODUCTION

Artificial neural networks (NN’s) are playing an ever increasing role
in the optimization techniques of a wide set of electromagnetic struc-
tures. Among the major papers dealing with this issue, [1]–[4] and
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Fig. 1. Three-layer FF NN.

their respective references can be considered. An optimization pro-
cedure is substantially the maximization (minimization) of a function
Y = f(X), in whichX is the input vector containing the design pa-
rameters that can be changed in order to obtain the output vectorY

containing the parameters for which the maximum (minimum) should
be obtained.f(�) is the model that relatesY toX. In an NN approach,
the functionf(�) is mapped by an NN with an enormous saving of com-
puting time and memory requirements with respect to other traditional
modeling and simulation techniques to be optimized.

A large class of numerical multidimensional optimization methods
canbedescribedby the following logicsteps:startatapointX0, asmany
times as needed move from pointXi to pointXi+1 by minimizingf(X)
along the line fromXi in the direction of the local downhill gradient
�rf(Xi). Hence, it is necessary to evaluate the function’s gradient at
arbitrary points. Whenf(�) is not analytically known, as in the case of
the NN mapping, the gradient is evaluated by recurring to finite-differ-
ences schemes whose accuracy is often not sufficient (due to roundoff
or truncation errors) to point the way to the maximum (minimum).

This paper proposes a way to evaluate the function’s gradient only
by means of the trained NN designed and used for the function’s
approximation during the optimization. This procedure maintains the
same level of accuracy in the approximation without any significant
increasing of the computing requirements.

II. NN GRADIENT EVALUATION

Let’s consider an already trained three-layer feedforward (FF) NN
such as that in Fig. 1. It hasR inputsX = [x1 � � � xR]

t and two
layers: the hidden layer hasS neurons and the output layer hasT neu-
rons. The outputsY = [y1 � � � yT ]

t are alsoT . Assigning the identi-
fication number 1 to the hidden layer and number 2 to the output one,
the activation functions are

a
1 = �1(n

1) (1a)

Y
2 = �2(n

2) (1b)

in whichn1 andn2 are their local inputs

n
1
S�1 =W

1
S�RXR�1 + b

1
S�1 (2a)

n
2
T�1 =W

2
T�Sa

1
S�1 + b

2
T�1 (2b)

whereWi andbi are the matrices containing the weights and biases
of the network of theith layer and subscripts signify the dimensions of
these matrices. The gradient off(�), mapped by the NN and evaluated
at the arbitrary pointXk, is written as

rf(Xk) =
@Y

@XT�R

=
@Y

@n2T�T

@n2

@XT�R

=
@Y

@n2T�T

@n2

@a1T�S

@a1

@XS�R

=
@Y

@n2T�T

@n2

@a1T�S

@a1

@n1S�S

@n1

@XS�R

: (3)

Fig. 2. Derivative of (6). (a) Analytical. (b) Evaluated by means of (3).

From (2), one obtains

@n1

@X
=W1 (4a)

@n2

@a1
=W2 (4b)

and

@a1

@n1
=

@�1

@n1
= diag

@�1

@n11
� � �

@�1

@n1S
(5a)

@Y

@n2
=

@�2

@n2
= diag

@�2

@n21
� � �

@�2

@n2T
: (5b)

The derivatives in (5) are analytically calculated in closed form because
the activation functions are known. These derivatives depend onn

1 and
n
2, which are evaluated by means of (2). By substituting (4) and (5) in

(3), one obtains an algebraic expression to evaluaterf(Xk).
As a test, Fig. 2 shows the comparison between the derivative with

respect tox of the simple function

f(x) = e
�( ) (6)

evaluated analytically and the derivative evaluated by means of (3) from
an FF NN, with six neurons in the hidden layer, trained to approximate
(6). The two curves overlap one another and the percentage difference
between them is less than 0.01%.

Expression (3) for the function’s gradient can be generalized for an
FF NN with multiple layers in the following form:

rf(Xk) =

N

i=1

@�i

@ni
W

i (7)

in whichNa is the number of activation functions.

III. N UMERICAL APPLICATION

As an example, consider the printed circuit board (PCB) shown in
Fig. 3, consisting of four copper (�cu = 5:8 � 107 S/m) traces of equal
width w = 360 �m, thicknesst = 36 �m and heighth = 1:2 mm
on the reference infinite perfectly conductive ground plane. The di-
electric constant is"r = 4:7 (glass epoxy). Each one of the lands
is lengthl = 12 cm and terminated at both ends on a resistive load
RL = 117 
. The voltage source is at one end of conductor 1: it has
a trapezoidal shape with amplitudeVS = 1 V, �r = �f = 50 ps, pe-
riod T = 400 ps, and duty cycle� = 0:5. Conductors 1 and 3 are
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Fig. 3. Four-conductor PCB.

Fig. 4. Near-end crosstalk on conductor 3. (a) Upper bound. (b) Lower bound.

fixed at an edge-to-edge separation distanced = 2:52 mm, conduc-
tors 2 and 4 can be moved and their minimum distance to 1 and/or 3
is dmin = 127 �m. The goal is to find the position of 2 and 4 in order
to minimize the near-end crosstalkV3NE on conductor 3. The per unit
length (p.u.l.) parameters of this multiconductor transmission line are
evaluated by means of the software in [5] for 50 possible positions of
2 and 4. An FF NN has then been trained to evaluateV3NE. This NN is
used in a variable metric method [6] minimization procedure requiring
the evaluation of gradients. As described in [2] and [3], the usage of an
NN as a function model speeds up the optimization; in this example,
a saving of computing time around the 70% has been noticed with re-
spect to the usage, for the same problem, of a traditional simulator to
evaluateV3NE. In the proposed example, in 15% of the cases, a better
convergence to the minimum is obtained than when the function’s gra-
dient is approximated by finite differences. Among the useful results
of the analysis of the configuration in Fig. 3, Fig. 4 shows the variation
band with the upper and lower limits of the crosstalkV3NE for all pos-
sible positions of conductors 2 and 4 with respect to 1 and 3.

IV. CONCLUSION

The evaluation of the function’s gradient by means of the same
weights and biases of an FF NN approximating the function has been
shown to be a useful tool in order to decrease the computing efforts
during NN-based optimization procedures of electromagnetic struc-
tures. Furthermore, the computational accuracy is preserved because,
in this way, there is no need to make recourse to a finite-difference
approximation of the derivatives.
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Analysis of Hollow Conducting Waveguides Using
Superquadric Functions—A Unified

Representation

Sheng-Li Lin, Le-Wei Li, Tat-Soon Yeo, and Mook-Seng Leong

Abstract—Waveguides of various geometries have found many applica-
tions. The analysis of the wave modes inside these waveguides are usually
subject to cross sections of the waveguides and specific, but convenient,
coordinates systems have to be chosen in the analysis. In this paper, the
boundary geometries of waveguides (which include rectangular, circular,
elliptical, triangular, coaxial, etc.) are represented in a unified manner by
a superquadric function. In this paper, with the Rayleigh–Ritz method, the
wave propagation characteristics in a hollow conducting waveguide of the
superquadric cross section are analyzed in a unified manner. From the anal-
ysis, it is realized that the superquadric function can be utilized to accu-
rately model the boundary of various waveguide structures through varia-
tion of the shape parameters. The comparisons between the analytical and
computational results show this method is accurate and efficient.

Index Terms—Guided waves, Rayleigh–Ritz method, waveguide analysis,
waveguide modes.

I. INTRODUCTION

The electromagnetic wave propagation characteristics in conducting
waveguides has been intensively studied in the past several decades [1],
[2]. When the waveguide geometric shapes are simple and regular, the
conventional mode-matching method can be used. The integral-equa-
tion method, the finite-element method, or other numerical techniques
must be used when the cross-sectional shape becomes complicated or
the dielectric loading is inhomogeneous. The integral equation method
needs small computational storage, but it becomes quite complicated
to solve multimaterial problems. The finite-element method can handle
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Fig. 1. Superquadric representation of waveguide cross-sectional geometry for

 = 2; 5; 10 and100 and ata=b = 2.

waveguide problems with irregular cross-sectional shapes and the prob-
lems with multimaterials, but it generates spurious modes that need to
be overcome.

In the literature [3], the Rayleigh–Ritz method with the entire poly-
nomial basis functions was presented to analyze hollow elliptical wave-
guide modes. The Rayleigh–Ritz method was proven to be a straight-
forward, robust, and accurate technique, and the complete polynomial
trial functions were used to ensure the field equations in the inscribed
polygon of the ellipse to be satisfied. Furthermore, the orthogonal poly-
nomial method has been used successfully in the analysis of TM modes
of polygonal cross-sectional waveguides [4]. Further, in [5], the poly-
nomial method without the requirement of orthogonality has been pro-
posed to analyze the elliptical waveguide, and the polynomials are di-
rectly used to describe the ellipse instead of its inscribed polygon.

In this paper, the superquadric representation, which can accurately
model a wide variety of different shapes in one unified formulation
[6], is used to describe the cross section of the waveguide. The
superquadric representation can be seen as the extension of the con-
straint function in [4] and [5]. The wave propagation characteristics
in rectangular, circular, and elliptical cross-sectional waveguides are
analyzed by the Rayleigh–Ritz method in the unified manner. In
addition, some other cross-sectional waveguides are also studied in
this paper by this method. For instance, the triangular and coaxial
cross-section waveguides are also analyzed in a similar manner by
combining the superquadric function and polynomials to describe
the waveguide geometries. In short, a wide range of waveguides can
be analyzed in this unified method. Both TE and TM modes in the
conducting waveguides have been studied. The cutoff wavenumbers
obtained here are compared with those exact results and a very good
agreement is found.

II. GENERAL MATHEMATICAL ALGORITHM

A. Superquadric Representation of Waveguide Cross Sections

A superquadric function has the following form:

x

a




+
y

b




� 1 = 0 (1)

wherea andb are the semiaxes in thex andy directions, respectively,
and
 is a “squareness parameter,” which controls the behavior of the
loop radius of curvature. Fig. 1 illustrates the effects of the squareness
parameter on the geometry of the waveguide for
 = 2; 5; 10, and100
and an aspect ratio ofa=b = 2. As can be seen from the variations, a
value of
 = 2 corresponds to an ellipse, while the loop squareness
increases with
. When
 = 10, the corresponding geometry is a rect-
angular one with rounded corners. When
 = 100, the corresponding
geometry becomes rectangular. It is evident that the superquadric rep-
resentation can be utilized to model numerous waveguides of different

cross-sectional configurations through variation of the shape parame-
tersa, b, and
. Also, the function itself is capable of providing rounded
corners on a rectangular shape and allows accurate representation of
many other practical geometries.

B. Rayleigh–Ritz Procedure and Polynomial Functions

For the cylindrical waveguide of uniform cross section, thez-de-
pendent electromagnetic fields can be expressed byejk z . The cutoff
wavenumberkc can be obtained by lettingkz = 0. The wave equation
for the longitudinal component of the electric and magnetic fields is

r2

T

Ez

Hz

+ k2c
Ez

Hz

= 0 (2)

wherer2

T represents the Laplacian operation in transverse plane. The
Dirichlet and Neumann boundary conditions for TM and TE waves are
written as

Ez jD = 0 (3)

@Hz

@n
D

= 0 (4)

whereD denotes the boundary of the waveguide andn̂nn stands for the
normal direction of the cross section.

The Rayleigh–Ritz procedure is employed by setting the energyw
as a function ofu (representing eitherEz orHz) as follows:

w(u) =
1

2 D

@u

@x

2

+
@u

@y

2

dx dy�
k2c
2 D

u2 dx dy:

(5)

Express the fieldu as a series of polynomials

u(x; y) =

m

i=1

Ci�i: (6)

Substituting (6) into (5) and minimizing the energy functionw due to
ci, we obtain

[KKK][CCC]T = k2c [MMM ][CCC] (7)

where the matrix elements are given by

ki; j =
D

@�i
@x

@�j
@x

+
@�i
@y

@�j
@y

dx dy (8)

and

mi; j =
D

�i�j dx dy: (9)

It should be pointed out herein that numerical solutions to the two in-
tegrations in (8) and (9) can be obtained for any given
 quantity in
general while the analytical solutions to them can be derived for some
special cases.

For the TM case, we have

�i(x; y) =  (x; y)fi(x; y) (10)

and for the TE case

�i(x; y) = fi(x; y): (11)

The (x; y) is the constraint function for the waveguide cross sec-
tions, which satisfies the boundary conditions given by (3), while the
Neumann boundary condition in (4) can be automatically satisfied by
the polynomial functions themselves in (11).

We construct the functionfi(x; y) in the following way.
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TABLE I
CUTOFF WAVENUMBERS (k ) OF TM WAVES IN A CIRCULAR WAVEGUIDE

FOR (DEG= 9)

• Let

r = Int
p
i� 1 (12)

where theInt(�) function takes the integer part of the argument.
• Define

t = (i� 1)� r2: (13)

• Thus, whent is even

s =
t

2
and fi(x; y) = xrys (14)

and whent is odd

s =
t� 1

2
and fi(x; y) = xsyr: (15)

The functionfi(x; y) has a degree ofr + s.

III. COMPUTATIONAL RESULTS

A. Cutoff Wavenumbers in Rectangular, Circular, and Elliptical
Waveguides

For rectangular, circular, and elliptical cross-sectional waveguides,
the constraint function in (10) can be directly represented by the su-
perquadric function

 =
x

a




+
y

b




� 1: (16)

The relationships between the shape parameters and geometries are
given, for instance, by the following. For
 = 2

a = b; circular
a 6= b; elliptical

(17)

and for
 = 100

a = b; square
a 6= b; rectangular.

(18)

The cutoff wavenumbers of TM waves in a circular waveguide, the
cutoff wavelength of theTE11 mode in an elliptical waveguide and
the cutoff wavenumbers of TE waves in a rectangular waveguide are
calculated and compared with the exact analytical results, as shown in
Tables I–III. The constraint function in [5] is the same as in (17) and
can be considered as a special case of superquadric representations.

As for the convergence and accuracy, detailed discussions for the
analysis have been provided in [5] for an elliptical waveguide. Even
so, we have carefully checked them again in the present studies. It is
realized that the convergence is quite fast and only a polynomial of
degree 9 is required to achieve the accuracy of a maximum relative
error of 0.9%.

TABLE II
CUTOFF WAVELEGNTH OF EVEN TE WAVES IN AN ELLIPTICAL

WAVEGUIDE FOR (DEG= 8)

TABLE III
CUTOFF WAVENUMBERS OFTE WAVES IN A RECTANGULAR WAVEGUIDE FOR

(a = b AND DEG= 9)

TABLE IV
CUTOFF WAVENUMBERS (k ) OF DOMINANT TE AND TM MODES IN OTHER

SUPERQUADRICWAVEGUIDES FOR(DEG= 5)

Using the superquadric representation as the constraint function,
we can also calculate the cutoff wavenumbers in waveguides of other
shaped cross sections whose analytical results are difficult to obtain.
This can be achieved simply by varying the superquadric function
shape parameter
. The cutoff wavenumbers of the dominant TE and
TM modes for some other geometries are shown in Table IV.

B. Cutoff Wavenumbers in Coaxial and Triangular Waveguides

Instead of using superquadric representation directly, we can also
combine superquadric function and simple polynomials to describe
the waveguide geometries. In this section, the triangular and coaxial
waveguides are analyzed in the similar manner as an example.

For coaxial waveguide, the constraint function takes the following
form:

 =
x

a1




+
y

b1




� 1
x

a2




+
y

b2




� 1 (19)

where, when
 = 2, a1 = b1 = a denotes the radius of the inner
circle, anda2 = b2 = b represents the radius of the outer circle of
a coaxial waveguide. From (19), we can see that can satisfy the
boundary condition given by (3) at both the inner and outer circular
boundaries. The coaxial waveguide can be analyzed in the very similar
procedure given previously. The cutoff wavelengths of the dominant TE
mode (i.e.,TE11 mode) in the coaxial waveguides for different ratios
of c (defined asb=a) are calculated and shown in Table V. In Table VI,
the first ten cutoff wavelengths of TM modes in a coaxial waveguide
for a ratio ofc = b=a = 2 are shown and compared with the exact and
analytical results. The two sets of results obtained agree well, as can be
seen from the comparison.

For a triangular waveguide, the procedure used is the same as before
and the only difference in the calculation is the change of the constraint
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TABLE V
CUTOFFWAVELEGNTHS OFTE WAVES IN A COAXIL WAVEGUIDE (DEG= 8)

TABLE VI
CUTOFF WAVELEGNTHS OF TM IN A COAXIL WAVEGUIDE FOR

(c = b=a = 2, and DEG= 7)

TABLE VII
CUTOFFWAVENUMBERS OFTM MODES IN A RIGHT-TRIANGULAR WAVEGUIDE

OF THE DIMENSIONS (a �
p
2:5a�

p
2:5a) for (DEG= 7)

Fig. 2. E -field contour of theTM mode in a coaxial waveguide for (b=a =
2).

Fig. 3. E -field contour of theTM mode in a coaxial waveguide for (b=a =
2).

Fig. 4. H -field contour of theTE mode in an elliptical waveguide with
eccentricity of 0.75.

function. The constraint function can be now constructed by the su-
perquadric representation and a straight line, given as follows:

 = x
x

a




+
y

b




� 1 (20)

where
 = 1. The cutoff wavenumbers of the right-triangular (a �p
2:5 a�

p
2:5 a) waveguide of a TM mode are calculated and shown

in Table VII.
Using (6) and (7), we have obtained the field distribution patterns

of both TM and TE modes in various kinds of waveguides. Two field
contours of TM modes in a coaxial waveguide and one field contour
of a TE mode in an elliptical waveguide are shown, as an example, in
Figs. 2–4, respectively.

IV. CONCLUSION

In this paper, a unified representation of the wave modes inside a
hollow conducting waveguide of a series of cross sections is made by
the use of the Rayleigh–Ritz method and the electromagnetic wave
propagation characteristics in the waveguides are analyzed. Being of
practical applications, these waveguide cross sections can be expressed
in a unified manner by using the superquadric functional represen-
tation. As examples of application of the developed theory, various
practically useful geometries including rectangular, circular, elliptical,
coaxial, triangular, and general superquadric cross sections have been
studied in a unified way. In the analysis, both TE and TM waves have
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been considered and characterized. The calculated results in this paper
have been compared with those analytical results available in the liter-
ature and an excellent agreement has been found. Certainly, some new
results have also been produced so as to gain more physical insight into
the wave modes. This method presented in the paper has been shown to
be stable, efficient, and especially useful to analyze the wave modes or
fields in waveguides of complicated cross-sectional geometries where
the exact results are impossible and/or analytical/numerical methods
are difficult to use or very time consuming.
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A Mode-Matching Technique for the Study of Circular and
Coaxial Waveguide Discontinuities Based on Closed-Form

Coupling Integrals

Anastasios P. Orfanidis, George A. Kyriacou, and John N. Sahalos

Abstract—A mode-matching scheme for the analysis of concentric
circular and/or coaxial waveguide step discontinuities is proposed in this
paper. An analytical evaluation of the involved coupling integrals for all
possible discontinuities formed by any combination of a circular and a
coaxial waveguide is performed. The originality mainly concerns the mul-
timode excitation and scattering at a circular-to-coaxial waveguide step
junction. Numerical results for a number of applications are compared
against those of other techniques and/or measurements and are found to
be in good agreement.

Index Terms—Analytical evaluation of coupling integrals, cir-
cular–coaxial waveguide discontinuities, coaxial iris, mode-matching
technique.

I. INTRODUCTION

Circular or coaxial waveguide discontinuities have received sig-
nificant attention (e.g., [1]) and approximate equivalent circuits have
been given. Recent literature have put a new effort toward the study of
coaxial discontinuities and irises in waveguides [2], [3], mostly using
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(a)

(b)

Fig. 1. Circular and coaxial waveguide step discontinuities. (a) A circular to a
smaller coaxial waveguide step discontinuity (aperture areaS : b � � � a ).
(b) A coaxial waveguide step discontinuity (aperture areaS : b � � � a ).

a classical mode-matching approach. It is also important to point out
that there is lack of published data for irises in circular and coaxial
waveguides [3], which are important in a variety of applications, and
especially in the waveguide filters. A disadvantage of the analyses
given in the past (e.g., [1]) is their approximate nature and the fact
that they treat only isolated discontinuities. Both of them can be over-
come when the whole structure is analyzed using a mode-matching
technique provided that this is made fast enough as required by
synthesis algorithms. The present effort is exactly directed toward this
aim. For this purpose, the circular-to-coaxial and coaxial-to-coaxial
junctions excited by single or multiple modes are analytically studied.
The coupling integrals involved in the mode matching are given
in closed-form expressions in a manner similar to that of [4]. The
scattering from the junction of two offset circular waveguides was first
studied analytically by Knetsch [5], [6] and reconsidered again in [2],
[7], and [8]. The corresponding expressions of the present method,
except for concentric waveguides, are identical to those of [2], [5],
and [7]. The junction of two coaxial waveguides, but only for aTE11

excitation, was studied analytically by James [3]. This paper is an
extension of [2]–[4], as far as concentric discontinuities are concerned,
since it includes the previous cases, but for multimode excitation, and
it additionally covers the circular-to-coaxial junction. To the authors’
knowledge, mode-matching analytical results for the latter case are
presented for the first time. Moreover, this case enables the analysis of
coaxial irises in circular waveguides.

II. FORMULATION

A junction of two circular or two coaxial waveguides with different
cross section, as well as a junction between a circular and coaxial wave-

0018–9480/00$10.00 © 2000 IEEE
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guide, are considered. For each junction (see Fig. 1), a common axis of
symmetry (axis-z) for the two waveguides with perfectly conducting
walls is assumed. The electromagnetic field inside each waveguide
is expanded into a modal series, e.g., Marcuvitz [1, p. 72]. Modes
are numbered in an increasing sequence as they occur. Namelyp =
0; 1; 2; 3; � � � denotes TEM,TE11, TM01, TE21, etc. To have the
field expressions independent of the magnitude of the excitation, a
normalization of the mode functions to the mode propagating power
(Pp) at the junction (z = 0) is made. The normalization coefficient
Np is defined asNp = 1= Pp and it can be calculated from [1, pp.
67, 73, and 75] for the circular and coaxial waveguides. For the cir-
cular and the coaxial waveguides, the mode eigenvalues (�mn, �0

mn)
and (kmn; k

0

mn) are correspondingly given in [1, pp. 66–72]. A clas-
sical mode-matching technique has been employed, as described in
[9], which finally gives the generalized scattering parameters that fully
characterize the junction. Their expressions are [9, p. 16] as follows:

[SSS11]pq = [QQQ]pq[QQQ]
T
pq + [III]

�1

[QQQ]pq[QQQ]
T
pq � [I]

and

[SSS12]pq =2 [QQQ]pq[QQQ]
T
pq + [III]

�1

[QQQ]pq

[SSS21]pq = [QQQ]Tpq [III]� [SSS11]pq

and

[SSS22]pq = [III]� [QQQ]Tpq[SSS12]pq (1)

The elements of the[QQQ] matrix are known as coupling integrals and
result from the application of the boundary conditions at the junction.
These can be alternatively expressed from the electrice(�; ') or the
magnetich(�; ') modal functions

[Qpq] = [Qe
pq] = [Qm

pq]
T (2a)

with

QQQe
qj =

1

2
(YYY p)

1=2(YYY q)
�1=2

S

eee IIq � eee Ij ds2: (2b)

YYY p is thepth-mode wave admittance andSSSa is the common area of
the two waveguides at the junction. Since modes can be either TEM,
TE, or TM, the combinations (p; q) in (2) denote coupling between
these modes. Integrals of (2) include Bessel functions with different or-
ders and arguments and they require an increased computational effort,
especially for microwave network synthesis applications. The trans-
formation of cylindrical-to-rectangular coordinates (x̂ = �̂ cos � �
�̂ sin � and ŷ = �̂ sin � + �̂ cos �) reduces the coupling integrals
into an expression known as the Lommel integral [4]. This integral can
be evaluated analytically, e.g., Abramowitz and Stegun [10, p. 484].
For an integrand involving a product of Bessel functionsZm and m

with the same order, we obtain

m(Zm; Bm; a) =
a

0

Zm(x1�) m(x2�)� d�

=
a

x21 � x22
x1Zm+1(x1a) m(x2a)

� x2Zm(x1a) m+1(x2a) (3)

whereZm and m denote any of theJm andYm Bessel functions.
For the case of a nonzero lower limit in the integral, e.g., integrating

from b to a, (3) is used twice and another function is introduced as

m(Zm; m) = m(Zm; m; a)� m(Zm; m; b): (4)

The transformation of the modal functions from cylindrical-to-rect-
angular coordinates and their substitution in (2) is carried out. Em-
ploying the formulas of (3) and (4), we have the following.

• Coupling between two circular waveguides

Qpq = Qmn; il

=

NTE
c; pN

TE
c; q


p

q

�0mn�
0

il

R1R2

f�m + 1 + �m�1g;
TE - TE

�NTE
c; pN

TM
c; q

p

p
q

k0

�0mn�il
R1R2

f�m+1 + �m�1g;
TE - TM

0; TM - TM

NTM
c; p N

TM
c; q


q

p

�mn�il
R1R2

f�m+1 + �m�1g;
TM - TM

(5)

where

�k =
R

0

Jk
�mn

R1

� �Jk �il
R2

� � d� = k(Jk; Jk; R2):

• Coupling between a circular and smaller coaxial waveguide [see
Fig. 1(a)]

Qpq = Qmn; il

=

NTE
c; pN

TE
x; q


p

q

�0mn�
0

il�

4R1

� Y 0

m(�
0

ilb)[Xm+1 +Xm�1]

+J 0m(�
0

ilb)[	m+1 +	m�1] ; for TE - TE

�NTE
c; pN

TM
x; q

p

p
q

k0

�0mn�il�

4R1

� Ym(�ilb)[Xm�1 �Xm+1]

�Jm(�ilb)[	m+1 �	m�1] ; for TE - TM

0; for TM - TE

�NTM
c; p N

TM
x; q


q

p

�mn�il�

4R1

� Ym(�ilb)[Xm�1 +Xm+1]

�Jm(�ilb)[	m+1 +	m�1] ; for TM - TM

�NTM
c; p N

TEM
x; q


q

p

�0n�

R1

J0(�ila)� J0(�ilb) �il;

for TM - TEM
(6)

where

Xk =
a

b

Jk
�mn

R1

� Jk(�il�)� d� = k(Jk; Jk; a; b);

	k =
a

b

Jk
�mn

R1

� Yk(�il�)� d� = k(Jk; Yk; a; b):

• Coupling between a coaxial and a smaller circular waveguide:
matricesQpq are the same as for the previous case interchanging
p andq as well as�mn and�il.



882 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 48, NO. 5, MAY 2000

(a)

(b)

Fig. 2. Small coaxial iris introduced in a circular waveguide. (a) Normalized
shunt inductance for aTE excitation. (b) Normalized shunt susceptance for
aTM excitation.

• Coupling between two coaxial waveguides [see Fig. 1(b)]

Qpq =Qmn; il

=

PTE
p PTEq 
p=
q �

0

mn�
0

il f�+��+g=4;
for TE - TE

NTE
x; pN

TM
x; q

p

p
q �

0

mn�il �f��+��g=(4k0);
for TE - TM

0; for TM - TE

NTM
x; pN

TM
x; q 
q=
p �mn�il �f�+ ��+g=R1;

for TM - TM

NTM
x; pN

TEM
x; q 
p=k0 �0n�Y0(�mnb1)

� J0(�mnb1)�J0(�mnb1) �mn; for TM - TEM

NTEM
x; p NTM

x; q k0=
q �0l�Y0(�ilb2)

� J0(�ilb2)�J0(�ilb2) �il; for TEM - TM

ln(a=b)= ln(a1=b1) ln(a2=b2); for TEM - TEM
(7)

(a)

(b)

Fig. 3. TE -mode bandpass filter. (a) Geometry. (b) Frequency response (for
A = 90 mm andt = 1 mm).

where


m(Zm; m)

= Zm(kmnb1) m(kilb2)

�k� =
k(Y
0

k; Y
0

k) Jk�1(�mn�); Jk�1(�il�)

+ 
k(J
0

k; J
0

k) Yk+1(�mn�); Yk+1(�il�)

�k� = � 
k(Y
0

k; J
0

k) Jk�1(�mn�); Yk�1(�il�)

� 
k(J
0

k; Y
0

k) Yk�1(�mn�); Jk�1(�il�) :

In the above expressions, each waveguide section can be assumed
to be homogeneously filled with an isotropic dielectric or mag-
netic material, where the characteristics of the material are intro-
duced through the wave admittance and propagation factor. For
theTE11 excitation, (5) and (7) are exactly reduced to those of
Wu [7, p. 277] and James [3], respectively. Equation (5) is also
identical to that of Knetsch [5] for the concentric case.

III. N UMERICAL RESULTS AND DISCUSSIONS

Our formulation is first verified numerically for circular waveguide
discontinuities. The analysis of a thick circular iris gave identical re-
sults to a moment-method solution [11] with a maximum deviation
from measurements less than 1%. Nondominant mode excitations were
also checked. For example, the analysis of aTE01 excited filter has
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Fig. 4. Transmission coefficient for a thin coaxial iris introduced in a circular
waveguide (R = 12:7 mm,� = 33 mm) with aTE excitation.

shown an excellent agreement with [12]. Our first example presents a
relatively thin coaxial iris (t = 1 mm thickness) introduced in a cir-
cular waveguide with a radiusa = 12:7 mm and aTE01 excitation.
The reflection coefficient (S11) is evaluated as a function of the iris
normalized apertured=R and its normalized position (r=R). This iris
can be described by an equivalent shunt inductance (jX) according to
Marcuvitz [1, p. 247]. The corresponding results forjX are calculated
from S11 and are shown in Fig. 2(a). A relatively good agreement be-
tween the present method and the data given by Marcuvitz [1, p. 249]
is observed. This is justified by the fact that the iris analyzed here is
an isolated as well as a thin one, just as considered in [1]. A similar
investigation has been carried out forTM01 excitation. In this case,
the iris can be described by an equivalent shunt susceptance shown in
Fig. 2(b). The corresponding results forjB are calculated fromS11.
Finally, a thick iris (t = 5 mm) excited by aTE01 mode has been
analyzed and compared with the Hewlett-Packard Company software
HFSS.1 The results are found to be almost identical.

To show the improvement resulting from the employment of the
present method in microwave circuit design, the bandpass filter ex-
ample given in [13, p. 457] has been adapted to circular waveguides
with coaxial irises [see Fig. 3(a)], which is either empty or filled with
a dielectric material (RT/duroid"r = 2:94). Similar structures are also
analyzed in [14], but using a different mode-matching approach, which
is not based on closed-form expressions for the coupling integrals. The
topology of this filter involves shunt inductances alternated with trans-
mission-line sections (acting as impedance inverters). The specifica-
tions of the filter are shown in Fig. 3(b) with cross marks. For the first
filter, the irises are estimated from the data given by Marcuvitz [1, p.
247], while for the second one, data taken by the present method [see
Fig. 2(a)] are used. The response of these filters (#1 and #2) is shown
in Fig. 3(b). A lower central frequency (fce) and a wider bandwidth
(BW) are obtained from Marcuvitz data. This is mainly due to inac-
curacy of thejX data [see Fig. 2(a)], which means that the desired
jX value leads to a lowerr=R in Fig. 2. In turn, the estimatedr=R is
introduced in the mode-matching method (for a more accurate simula-
tion), which accounts for a lowerjX value than the desired one. Thus,
since the filter quality factor is proportional toQ = fce=BW / X=R,

1High-Frequency Structure Simulator (HFSS), Hewlett-Packard Company,
Santa Rosa, CA, 1990.

whereR represents the ohmic losses, then the lowerjX value will
cause lowerfce and wider BW. Furthermore, both designs present a
significant passband VSWR ripple. A quasi-Newton optimization tech-
nique has been employed, allowing only for the transmission lines to
be varied. An almost flat response in the passband is then obtained
[Fig. 3(b), filter #3]. This procedure is then repeated for the dielectric
filled waveguide (so that the irises are supported by the dielectric) to
give filter #4, as shown in Fig. 3. A thin coaxial iris has also been ana-
lyzed for aTE11 excitation. This case presents resonance phenomena
as shown in Fig. 4, where the magnitude of the transmission coefficient
jS21j is plotted against the iris mid position (r=R) with its width (d=R)
as a parameter. The resonance occurs around the mid-radius of the cir-
cular waveguide (r=R from 0.44 to 0.52) depending on the iris width.

IV. CONCLUSIONS

The step junction of concentric circular and/or coaxial waveguide
is analytically studied using a mode-matching technique. The origi-
nality of the method mainly concerns themultimode excitation and the
scattering at the circular-to-coaxial step discontinuity. The coupling in-
tegrals involved are first expressed as Lommel integrals and are then
given in closed form. The resulted expressions can be included in mi-
crowave computer-aided design (CAD) software to improve its speed.
Moreover, the present method could be extended to include the corre-
sponding offset junction.
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