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Abstract—An integrated multibias extraction technique for
MESFET and high electron-mobility transistor (HEMT) models
is presented in this paper. The technique uses -parameters
measured at various bias points in the active region to construct
one optimization problem, of which the vector of unknowns
contains a set of bias-dependent elements for each bias point
and one set of bias-independent elements. This problem is solved
by an extremely robust decomposition-based optimizer, which
splits the problem into subproblems, being the number of
unknowns. The optimizer consistently converges to the same
solution from a wide range of randomly chosen starting values.
No assumptions are made concerning the layout of the device or
the bias dependencies of the intrinsic model elements. It is shown
that there is a convergence in the values of the model elements
and a decrease in the extraction uncertainty as the number of bias
points in the extraction is increased. Robustness tests using 100
extractions, each using a different set of random starting values,
are performed on measured -parameters of a MESFET and
pseudomorphic HEMT device. Results indicate that the extracted
parameters typically vary by less than 1%. Extractions with
up to 48 bias points were performed successfully, leading to the
simultaneous determination of 342 model elements.

Index Terms—Decomposition, HEMT, linear, MESFET, mod-
eling, multibias, optimization, parameter extraction.

I. INTRODUCTION

T HE extraction of MESFET and high electron-mobility
transistor (HEMT) small-signal equivalent circuits from

measured -parameters at various bias points is a crucial
step in the construction of nonlinear models. Unfortunately,
extracting a physically sound small-signal model that provides
an accurate description of both the device packaging and the
intrinsic model elements becomes virtually impossible when
the -parameters measured at different bias points are used
independently to extract a small-signal model for each bias
point. The extraction problem is especially problematic for
larger devices with more complex parasitic networks or devices
operating at higher frequencies where the effects of the parasitic
elements surrounding the device become more pronounced [1].

Manuscript received December 10, 1998.
C. van Neikerk and P. Meyer are with the Department of Electrical and Elec-

tronic Engineering, University of Stellenbosch, Stellenbosch 7600, South Africa
(e-mail: cvniekrk@firga.sun.ac.za).

D. M. M.-P. Schreurs is with the Division of ESAT-TELEMIC, Catholic Uni-
versity of Leuven, Heverlee 3001, Belgium.

P. B. Winson is with the Raytheon Systems Company, MS 400, Dallas, TX
75266 USA.

Publisher Item Identifier S 0018-9480(00)03769-8.

Fig. 1. Small-signal model of an MESFET/HEMT transistor.

A. Single Bias Extractions

The two main techniques used for determining small-signal
models from measurements are direct extraction and opti-
mizer-based extraction. Direct-extraction techniques rely on
two sets of cold -parameter measurements made
with the gate at both pinchoff and at a suitable forward bias.
This data, together with simplifications in the model, are
used to calculate the extrinsic bias-independent elements of
the FET model shown in Fig. 1. The intrinsic elements are
calculated after deembedding the extrinsic elements using the
equations in [2]. The direct extraction method provides good
approximate values for the more dominant model elements
such as the intrinsic capacitors , , and , and it
has the advantages of being fast and simple to implement.
However, the technique cannot determine all the extrinsic
elements uniquely. The parasitic capacitance is normally
determined by either assuming that the device is symmetrical
in terms of its gate and drain networks, and that , therefore,
equals , or by using additional device structures [3]. Not
all devices are symmetrical in layout, and when working with
packaged commercial devices, this information will, in general,
not be available to the user. The use of additional device
structures increases the cost of obtaining a model, and it is not
a viable alternative when a standard commercial device has to
be modeled. A certain amount of experience is also needed
for choosing suitable cold biases and the frequency range over
which the extrinsic elements are to be calculated. Errors made
in determining the extrinsic elements influences the calculation
of the intrinsic element values and can result in nonphysical
values for the less dominant intrinsic elements, such asand

[4]. In the case of very noisy measurements, the extracted
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values of these elements form a very erratic function of the
bias, making the bias-dependent model meaningless.

Optimization-based parameter extraction is computationally
more intensive and has traditionally been sensitive to the choice
of optimization starting values. While several promising opti-
mizer-based extraction methods that are insensitive to starting
values have recently been published [5]–[7], it still remains dif-
ficult to determine all the model elements with a high degree of
certainty when -parameters measured at a single bias point are
used [5], [7]. This is especially true for the parasitic resistances

, , and , and the channel charging resistance. The
phenomenon is independent of the optimization method used
and is due to the small influence that these elements have on the
measured data. Their values are, therefore, easily influenced by
measurement uncertainties and small errors made in the deter-
mination of the other model elements. These effects cause tra-
ditional multidimensional optimizers to be numerically ill con-
ditioned.

One of the popular attempts to overcome this problem uses
cold -parameters measured with the gate held below the pin-
choff voltage and an optimizer to extract a cold FET model. This
model requires fewer intrinsic elements, but still represents an
ill-conditioned optimization problem. Although having fewer
model elements to extract, the cold FET measurements generate
less data for use in the extraction since it behaves as a passive
circuit. This form of extraction does not overcome the problem
of uncertainty in the extracted values of insensitive elements [8]
since the extrinsic elements are only determined from one set
of data. The element values will, therefore, reflect the measure-
ment errors for the specific bias point. If dominant extrinsic el-
ements are held constant in subsequent optimizations, there can
be a propagation of errors.

B. Multibias Extraction Techniques

Due to the ill-conditioned nature of the FET model extrac-
tion problem, single bias extractions cannot determine all the
model elements. To overcome this problem, several solutions
that make use of data measured at different bias points have
been suggested [5], [9]–[13]. Most of these procedures exploit
the fact that the extrinsic elements are bias independent, while
some also introduce relationships between the intrinsic model
elements that are derived from the device physics [10], [13].

Current multibias extraction algorithms normally make use
of multidimensional gradient optimizers [9]–[13] or random
optimizers [12]. Bandleret al. [9] described a multibias
extraction that uses the norm. No assumptions were made
concerning the bias dependencies of elements and any bias
independent behavior was reinforced with the aid of penalty
functions. The technique relies heavily on the theoretical
property of the norm to ignore large deviations. Lee [10]
implemented a multibias extractor for heterojunction bipolar
transistor (HBT) devices using a commercial frequency-domain
circuit simulator/optimizer. Two sets of-parameters measured
in the active mode of the device, and one set of-parameters
measured with the device biased in the cutoff mode, were
used. The extrinsic elements were taken to be bias independent
and the current dependent elements in the active bias circuits

were linked to each other by the ratio of their currents. Cai
et al. [11] also implemented a multibias extraction technique
for HBT’s and made use of direct extraction techniques and
a Levenberg–Marquardt optimizer. Pattersonet al. [13] pro-
posed a multibias algorithm that relies on the physics-based
equivalent-circuit model proposed by Ladbrooke [14]. This
model is better conditioned than the normal equivalent-circuit
small-signal model, but it is not valid for bias points outside the
saturated region of the – curves. It also needs process
parameter values, which is normally difficult to obtain for
commercial devices. Patterson also made use of a principal
components analysis and orthogonal transformations to further
improve the conditioning of his optimization procedure. Lin
and Kompa [5] proposed a technique in which the extrinsic
elements were optimized, and the intrinsic elements calculated
using a new set of robust closed-form equations. By extending
this approach to multibias data, they showed that the uncertainty
in the extraction of problematic elements such asand
can be reduced greatly. Ghazinour [12] described a multibias
extraction algorithm for MESFET’s and HEMT’s that makes
use of a hybrid evolutionary/conjugate gradient optimization
approach. As random-based searches become very inefficient
for large problems, Ghazinour reduced the number of variables
in the problem by taking elements such as, , and , which
have a weak bias dependency in the active region, to be bias
independent. The values of the remaining intrinsic elements
were calculated as a function of the extrinsic elements.

All of these approaches optimize one global error function.
This is inherently a difficult problem, as the number of local
minima rises as the number of unknowns increase. To over-
come problems related to the number of variables, current algo-
rithms for solving the multibias extraction problem follow two
distinct paths, namely: 1) reducing the number of variables in
the optimization problem by representing the intrinsic elements
as functions of the extrinsic elements with the aid of analytic ex-
pressions [5], [6], [12] or developing more robust optimization
methods that are suited to high-dimensional problems [7], [9],
[15], [16].

This paper proposes a new multibias extraction algorithm,
which combines -parameter measurements from different bias
points into an integrated extraction procedure. The performance
of the proposed technique is evaluated using measured multibias
-parameter data for an MESFET and a pseudomorphic high

electron-mobility transistor (pHEMT) device. The new extrac-
tion algorithm is built around a robust decomposition-based op-
timizer [7], [17]. The sensitivity of the optimizer with respect to
the optimization starting values is tested by performing a large
number of extractions, using random starting values chosen over
a very wide range. Results indicate that the extracted parame-
ters typically vary by less than 1%. Extractions with up to 48
bias points were performed successfully, leading to the simul-
taneous determination of 342 model elements. The results pre-
sented here also graphically illustrate, for the first time, how the
extraction accuracy increases with the use of more bias points
in the multibias extraction.

The technique has the following advantages.

• The decomposition-based optimizer does not make use of
one global error function, making it more immune to local
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minima and the ill-conditioned nature of the problem than
other methods.

• Procedures that calculate certain elements with analytical
equations [5], [6], [12] place a limit on the modeling fit
that can be achieved since these element values cannot be
varied individually. The danger also exist of the analytical
equations failing due to a few bad measurement points.
The proposed procedure determines all the elements with
optimization and has proven itself to be resistant to the
effect of measurement errors [18].

• Unlike [12], no assumptions are made concerning the
bias dependencies of the intrinsic elements, and there is
nothing in the algorithm that will suppress weak bias-de-
pendent behavior in intrinsic elements [9].

• Since no assumptions are made concerning the device
layout, the algorithm is suitable for modeling commercial
devices about which very little additional information is
known.

The method has the same starting value independence as
random searches, but it is far more efficient than a random-based
search. It only requires the user to provide optimization bound-
aries, and as will be shown, the allowed optimization search
space can be made very large.

II. M ETHOD DESCRIPTION

The new integrated multibias parameter-extraction method
uses a decomposition-based optimization algorithm, summa-
rized as follows [7]:

“Decomposition is defined as a process by which a function
that is to be optimized is broken up into several subfunctions.
The independent variables of the function is partitioned into
groups according to their influence on a particular subfunction.
Should theth variable have its largest influence on theth sub-
function, it is assigned to that function. The subfunctions are
optimized in a specific order, and only with respect to the vari-
ables assigned to them. This order is repeated until the whole
problem has converged to its final value.”

Kondoh [15] first applied decomposition-based optimization
to the MESFET model extraction problem and he determined
his subfunction/variable associations and the order in which
they are optimized by experimentation. Bandler [16] presented
a more adaptive system in which the order of optimization was
calculated using a voting system based on the size of the error
made by the subfunction and the number of variables associated
with it. Van Niekerk and Meyer [17] showed that a sequence of
optimization can be calculated using the principal components
sensitivity analysis. The sensitivity analysis is used to arrange
the model elements from those having the largest effect on the
function to be minimized to those having the least effect, and
the subfunctions are optimized using this sequence. Van Niekerk
and Meyer applied the maximum amount of decomposition pos-
sible to the extraction problem by dividing the problem into one
dimensional suboptimization problems. For a more detailed de-
scription of the optimization method, the reader is referred to
[7] and [17].

The multibias extraction algorithm combines all the mea-
sured data into one optimization problem. A new global error

function, which includes all the bias points that are considered
in the extraction, is defined. This error function is then broken
up into suitable subfunctions for use in the decomposition-based
optimizer. The extrinsic elements of the model are bias inde-
pendent and their effect will be common to all the measurement
points. The multibias data, therefore, contains redundant infor-
mation that can be used to define the extraction problem more
uniquely. Special subfunctions are created for the bias-indepen-
dent elements that make use of this information redundancy.

The new global error function for the multibias extractor is
defined as

(1)

where

(2)

and

(3)

Equation (1) is the sum of errors made at the different frequen-
cies and (2) is the modeling error made at all the bias points for
all four -parameters at a specific frequency. are the model
predicted -parameters and are the measured-parameters at
biaspoint and frequency , is the total number ofbias points
considered in the extraction, is the number of frequencies at
which -parameters are measured,and are the indexes of the
four -parameters, is a normalization constant, is the
vector containing the bias-independent model elements, and
is the vector containing the bias-dependent model elements de-
scribing bias point number. The vector contains all the model
elements for the multibias problem and is defined as

(4)

For the bias-dependent model elements, each element is associ-
ated with the error made in modeling a specific-parameter at
one bias point across the frequency band, and an error subfunc-
tion is defined for each element as

(5)

where is the model element being optimized andcontains
the other model elements.

The bias-independent model elements do not only influence
a certain -parameter at a specific bias point, but have an effect
on that -parameter at all the bias points. The definition of the
error subfunction for a bias independent element is, therefore,

(6)
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TABLE I
MODEL ELEMENT/SUBFUNCTION ASSOCIATIONSUSED FOR THE15-ELEMENT MESFETAND HEMT MODEL IN THE MULTIBIAS EXTRACTION

The vector contains the extrinsic model elements, with the
exception of element . Equation (6) represents the modeling
error made in -parameter over all the bias points and fre-
quencies considered in the extraction. The use of (6) for op-
timizing the bias-independent elements creates four additional
subfunctions that can be used in the decomposition process, one
for each -parameter. Table I provides a summary of the multi-
bias error function/model element associations that were used.
The validity of these associations have been confirmed using the
sensitivity analysis proposed in [16].

The biggest advantage of the decomposition-based optimizer
is that it is not adversely affected by the increase in the problem
dimensions when using more bias points. Since the extraction
procedure does not depend on the minimization of one global
error function, it is not as sensitive to the increase in the number
of local minima, as would be the case with a more conventional
optimizer. The extraction algorithm is applied to-parameters
measured in the active region of the device’sI–V curves. This
ensures that the device acts as a nonreciprocal two port, thus
providing the maximum amount of information possible for de-
termining the model elements.

Once a multibias extraction using a suitably large number of
bias points have been performed, the extrinsic model elements
can be deembedded from the-parameters measured at bias
points over the completeI–V curve of the device, and the equa-
tions found in [5] can be used to calculated the intrinsic model
elements at other bias points not considered in the initial extrac-
tion. The equations in [5] are preferred to those in [2] since they
have been found to be more resistant to the propagation of cal-
culation errors. The calculated element values are then used as
the starting values for an expanded multibias extraction using an
optimizer that employs a reduced level of decomposition. This
second phase of optimization allows very large problems to be
handled more efficiently.

III. RESULTS

Tests were performed using-parameter data from an un-
packaged Texas Instruments Incorporated 0.25m 300 m
low-noise MESFET and a 0.2m 100 m GaAs pHEMT

[19]. Small-signal -parameters were measured over the whole
of the deviceI–V curves from a frequency of 1–26.5 GHz for
the MESFET and 25 GHz for the pHEMT.

Both devices were modeled with 13 element models. The par-
asitic elements and were not included in the model
because, due to the small values of the series inductances
and , the highest measurement frequency was still too low to
reliably separate the effect of these elements from the intrinsic
capacitors and . In the case of the MESFET, no model
containing parasitic capacitances could be found that resulted
in smaller modeling errors than those given by the 13-element
model. The 13- and 15-element pHEMT models provided com-
parable modeling errors, but the inclusion of and in the
model destroyed the physically sound bias-dependent behavior
of and and made it impossible to consistently converge
to a unique solution. The pHEMT model can also be expanded
with the addition of a resistor in series with [3], [20]. Ex-
periments were performed with such a model, but it was once
again not possible to converge to a unique solution for all the
model elements. This is not unexpected sincewill only have
a pronounced effect at very high frequencies. While the larger
FET models are physically more correct, they are of little use
if they cannot be consistently extracted from the available mea-
sured data. Experiments performed using simulated-parameter
data did confirm that the decomposition-based optimizer can ex-
tract more complex models from wide-band data [18].

To illustrate the advantages of the multibias approach, a
number of single bias extractions were first performed for
various bias points. Each extraction was repeated 100 times
using random starting values picked from a search space
defined in Table II. A uniform distribution was used. Fig. 2
shows a plot of the extracted values of the extrinsic element
as a function of for the MESFET. The one curve depicts
the element value that corresponds with the lowest modeling
error made, while the other curve shows the averagevalue.
It is clear that there is a variation in the element value that is
physically inconsistent. The differences between the two curves
show that the parameter is sensitive to the optimization starting
values used in the extraction. The values and sensitivity toward
optimization starting values of the less sensitive elements, such
as the parasitic resistances, are very much dependent on the
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TABLE II
EXTRACTION RESULTS FOR THEMULTIBIAS ROBUSTNESSTEST FOR THETWO DIFFERENTDEVICES CONSIDERED

bias point used in the extraction. This leads to high uncertainty
in the extracted values of these elements.

In contrast, the new multibias technique is independent of
starting values and produce more consistent results for the non-
dominant model elements. This is shown by performing a ro-
bustness test consisting of a multibias search using five bias
points, and repeated 100 times using randomly chosen starting
values. The random starting values were chosen inside the large
search space defined in Table II using a uniform distribution.
Table II summarizes the results of these tests for the MESFET
and GaAs pHEMT. The table shows the mean extracted value
of each element. An uncertainty factoris defined as the dif-
ference between the maximum and minimum extracted element
value. Due to space constraints, only the intrinsic elements for
the bias point that had the largest modeling error are listed in
Table II. It is clear from Table II that most of the model el-
ements consistently converge to a very small range of values.
This is also true for the traditionally insensitive elements such
as , , and . The extracted value for the MESFET, and
the value for the pHEMT, always tended to the lowest op-
timization boundary, regardless of the starting values used. In
the MESFET, it was found that exhibited a large bias depen-
dence, with wanting to assume negative values at high
values. While physical reasons for the existence of a negative
resistance in the high field region between the gate and drain

Fig. 2. Variation of the bias-independent parasitic resistanceR with V

when single bias parameter extractions are used. Each of the single bias
extractions were repeated 100 times using random starting values. The two
curves show the mean value ofR and the value ofR that corresponds with
the extraction that had the smallest error. The difference between the two
curves illustrates the sensitivity of some of the parameters to optimization
starting values.

has been advanced [14], [22], much debate concerning such
an element still exist [23]. From an extraction point-of-view, a
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Fig. 3. Extracted values of two extrinsic bias-independent and two intrinsic
bias-dependent elements for the HEMT are plotted as a function of the number
of bias points used in the multibias extraction. The bias-dependent elements are
shown for the bias pointV = 0:0 V andV = 1:5 V.

negative resistance is undesirable since it acts as a new source of
energy. This causes the other model elements to assume phys-
ically unrealistic values. The pHEMT source resistancedid
not exhibit a dependence on bias, but its value is probably influ-
enced by measurement imperfections (resonances) in the data.
The pHEMT source inductance exhibited similar behavior,
with the variation in being much larger than normally found
in a dominant model element. The value ofis, however, very
small, decreasing the influence that it has on the measured data,
and making it more susceptible to measurement imperfections.
Ultimately, the extraction results will depend on the quality of
the measured data.

With the multibias approach, the use of more sets of data
causes convergence in the extracted values of the model ele-
ments and a reduction of extraction uncertainty. It is, however,
to be expected that there will be a point at which no more ac-
curacy is gained from the inclusion of more bias points in the
multibias extraction. Fig. 3 shows the values of four different
elements (two extrinsic and two intrinsic) as a function of the
number of bias points used when extracting the GaAs pHEMT
model. Fig. 4 contains a similar plot showing the uncertainty in
the model elements as a function of the number of bias points
used. Due to the long executions times needed to perform a full
robustness test with a large number of bias points, only results
with up to ten bias points are shown in Fig. 4. A convergence
in the values of the elements and the extraction uncertainty is
discernable as the number of bias points used are increased.
Similar results were obtained for the MESFET. From the dif-
ferent devices that were studied, it would appear that five or
more well-distributed bias points are needed to perform a re-
liable multibias extraction.

Figs. 3 and 4 indicate that the model elements are becoming
less dependent on the measurement uncertainties associated
with the different bias points. The use of more bias points
allows the extrinsic elements to be determined more accurately,
which, in turn, decreases the correlation that exist between
some intrinsic and extrinsic elements. For instance,and

Fig. 4. Uncertainty in two of the extrinsic bias-independent elements and two
of the intrinsic elements is plotted as a function of the number of bias points
used in the multibias extraction. The uncertainty factor� shown in the figure
is expressed as a percentage of the mean element value.

have a high correlation due to their positions in the model and
because they look electrically the same [13]. The multibias
algorithm can separate their values because they behave differ-
ently with changes in the bias, something which is not possible
with a single bias algorithm.

Figs. 5 and 6 show a comparison of the measured and mod-
eled -parameters for the MESFET and pHEMT device that
were obtained during the robustness test. The data represents
the random extraction and bias point that resulted in the largest
modeling error. Table III contains the average and maximum
amplitude and phase errors across the full frequency range for
each of the -parameters shown in Figs. 5 and 6. A very good
fit of measured and modeled data is obtained with the new ex-
traction algorithm for each of the-parameters at all of the bias
points that were used.

IV. COMPARING THE DECOMPOSITION-BASED OPTIMIZER

TO OTHER METHODS

The new multibias algorithm was compared to other methods
in terms of its robustness, speed, and accuracy by using pub-
lished and experimental results.

Various robust extraction methods have been proposed that
rely on guided random searches such as tree annealing [23]
or evolutionary strategies [12]. When the results presented in
Table II are compared to those published in [12] and [23], it be-
comes clear that the new algorithm has a starting value indepen-
dence comparable to the random searches. The allowed search
space defined in Table II is larger than the search space that was
used in [23], and it is comparable in size to the search space that
was defined in [12].

While being robust, the random-based searches are ineffi-
cient, especially when a large number of unknowns have to be
determined [23]. This either places a restriction on the size of
the extraction problem that can be handled or make it neces-
sary to make assumptions concerning the bias-dependent be-
havior of some model elements in order to reduce the number of
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Fig. 5. Modeled and measureds-parameters for the GaAs MESFET are compared. The model elements used in the model describe the bias point and random
extraction that resulted in the largest modeling error. The average and maximum errors made in modeling the amplitude and phase of thes-parameters are listed
in Table III.S andS are scaled with the factors shown next to them in order to allow them to be clearly shown on the same polar plots asS andS .

Fig. 6. Modeled and measureds-parameters for the GaAs pHEMT are compared. The model elements used in the model describe the bias point and random
extraction that resulted in the largest modeling error. The average and maximum errors made in modeling the amplitude and phase of thes-parameters are listed
in Table III.S is scaled by a factor of two in order to clearly show it on the same polar plot asS . It should be noted thatS is not scaled, but that the bias
point used is close to the cutoff region of the device.

unknowns [12]. The new multibias algorithm uses a decompo-
sition-based optimizer that is suited to high-dimensional prob-
lems, and it is, therefore, not bound by the same restrictions as
the random-based searches. A typical extraction, using ten bias
points, took on average of 18.5 min of system time on a Sil-
icon Graphics Workstation using an R10000 processor running
at 180 MHz. This represents about 370 iterations of the opti-
mizer. The termination condition of the optimizer were taken to

be a change of less than 0.01% in the value of all the model el-
ements for more than two consecutive iterations. If a less strict
condition, i.e., the percentage change in the global error func-
tion was used, the optimization procedure typically only needed
50–100 iterations, but larger inaccuracies were encountered in
the values of the nondominant model elements. These elements
are poorly represented by the changes in the value of the global
error function, and the decomposition-based search spends most
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TABLE III
COMPARISON OFMEASURED AND MODELED s-PARAMETERS (SEE FIGS. 5 AND 6)

TABLE IV
COMPARISON OF THEEXTRACTION RESULTS OBTAINED WITH A DIRECT EXTRACTION METHOD [24] AND THE NEW MULTIBIAS

DECOMPOSITION-BASED OPTIMIZER USING THE MESFETAND pHEMT MEASUREDDATA

of its time moving these elements through the shallow region of
the global objective function landscape that surrounds the solu-
tion.

The decomposition-based search was also compared to a
multibias algorithm based on the systematic multidimensional
optimizers described by Patterson [13], as well as one using a
conventional damped Gauss–Newton optimizer. These proce-

dures optimized all the extrinsic elements together, using one
error function based on the , , and data for all the
bias points considered in the extraction. The different sets of
intrinsic elements were optimized with respect to all the-pa-
rameters describing their particular bias point. The optimizers
based on the work in [13] were found to be far superior to
the conventional damped Gauss–Newton algorithm, and could
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reduce the global error function to a low value from a wide
range of starting values. It was, however, unable to produce the
same consistently small distributions in the extracted values
of the model elements as the full decomposition-based search.
The multidimensional optimizers, when started from accurate
initial element values, produced distributions that were a factor
of 3–10 larger for dominant elements such as and . The
values of nondominant elements such as varied over an
even larger range of values, with the extraction uncertainty in

being far larger than its average value.
Direct parameter-extraction methods use data from different

cold and hot bias points to determine the extrinsic and intrinsic
model elements of the small-signal model. They can, therefore,
be viewed as multibias algorithms. The procedure described
by Tayrani [24] for extracting MESFET or HEMT extrinsic
elements was implemented, and the equations of Berroth and
Bosch [2] were used to calculate the intrinsic model elements.
For the calculation of the parasitic inductors, resistors, and
intrinsic elements, only measurements above 15 GHz were
used, while for the parasitic capacitors, only frequencies below
10 GHz were used. These frequency ranges were chosen
after plotting the calculated element values as a function of
frequency, and resulted in a considerable reduction of the
variation in their values. An extraction uncertaintyis defined
as the difference between the largest and smallest calculated
element values.

Table IV compares the average element values and their
extraction uncertainty obtained with the direct extraction
procedure and the new multibias algorithm. The multibias
extraction results were obtained from the five bias point ro-
bustness test described in the previous section and consistently
produced more unique solutions than the direct extraction.
The direct extraction procedure suffers from large extraction
uncertainty when it comes to the determination of nondominant
model elements such as the parasitic resistors and even more
dominant elements such as the drain–source resistance.
In the case of the MESFET, also assumed nonphysical
negative element values at a large number of frequency points.

While the direct extraction algorithm can calculate values
for the parasitic capacitors and , only a 13-element
model was used in the optimizer due to the reasons discussed
before. The direct extraction procedure can only determine
uniquely since the values of and cannot be separated.
In the case of the MESFET, the calculations returned nega-
tive values, providing a further indication that these parasitic el-
ements are negligible for the MESFET. Extractions performed
with the approach described in [25] yielded a value of
3.98 fF, which is still very small when compared to the value
of . For the pHEMT, the value of was found to be 15.27
fF, which is not negligible when compared to the value of.
As was previously explained, the maximum measurement fre-
quency is too low for the decomposition-based optimizer to ac-
curately separate the values of these two capacitors.

It is clear that the multibias algorithm presented here is accu-
rate, and has a robustness equal to that found in reported random
extraction algorithms, but achieved with the efficiency of a gra-
dient optimizer. The uniqueness of the extraction solutions that
were produced with the new algorithm exceeds that which was

obtained with direct extraction procedures or the other multidi-
mensional optimizers that were evaluated.

V. CONCLUSION

The formulation and extraction results of a robust multibias
parameter extractor for MESFET and HEMT small-signal
models have been presented. The extraction technique uses a
decomposition-based optimizer that is insensitive to the choice
of the optimization starting values used. It is shown that the
inclusion of more bias points in the extraction increases the
uniqueness of the extracted model elements. The new procedure
was compared to other methods and published results. Its is
shown to have a starting value independence equal to that of
random optimizers.

The algorithms discussed in this paper are implemented in a
FORTRAN 77 program that has been successfully compiled on a
variety of platforms. The program is robust and requires no user
intervention during extractions.
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