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Abstract—An integrated multibias extraction technique for
MESFET and high electron-mobility transistor (HEMT) models

is presented in this paper. The technique uses-parameters G Lg Rg  Cgd Rd Ld
measured at various bias points in the active region to construct & — AT T
one optimization problem, of which the vector of unknowns @,

contains a set of bias-dependent elements for each bias point Ces | - 0 =

and one set of bias-independent elements. This problem is solved Cpg Ri Rds | Cds Cpd

by an extremely robust decomposition-based optimizer, which I
splits the problem into n subproblems, n being the number of |

Rs
unknowns. The optimizer consistently converges to the same Ids = gmeexp( - jo 1)
solution from a wide range of randomly chosen starting values. Ls
No assumptions are made concerning the layout of the device or
the bias dependencies of the intrinsic model elements. It is shown Source L
that there is a convergence in the values of the model elements ’
and a decrease in the extraction uncertainty as the number of bias
points in the extraction is increased. Robustness tests using 100jg 1. Small-signal model of an MESFET/HEMT transistor.
extractions, each using a different set of random starting values,
are performed on measured s-parameters of a MESFET and
pseudomorphic HEMT device. Results indicate that the extracted A, Single Bias Extractions
parameters typically vary by less than 1%. Extractions with . . . .
up to 48 bias points were performed successfully, leading to the ~ The two main techniques used for determining small-signal

simultaneous determination of 342 model elements. models from measurements are direct extraction and opti-
Index Terms—becomposition, HEMT, linear, MESFET, mod- mizer-based extraction. Direct-extraction techniques rely on
eling, multibias, optimization, parameter extraction. two sets of colds-parameter measuremerigs; = 0) made

with the gate at both pinchoff and at a suitable forward bias.
This data, together with simplifications in the model, are
used to calculate the extrinsic bias-independent elements of
HE extraction of MESFET and high electron-mobilitythe FET model shown in Fig. 1. The intrinsic elements are
transistor (HEMT) small-signal equivalent circuits froncalculated after deembedding the extrinsic elements using the
measureds-parameters at various bias points is a crucigquations in [2]. The direct extraction method provides good
step in the construction of nonlinear models. Unfortunatelgpproximate values for the more dominant model elements
extracting a physically sound small-signal model that providésich as the intrinsic capacitolS,;, Cgq, and Cqs, and it
an accurate description of both the device packaging and tt&s the advantages of being fast and simple to implement.
intrinsic model elements becomes virtually impossible whdnowever, the technique cannot determine all the extrinsic
the s-parameters measured at different bias points are usdements uniquely. The parasitic capacitafgg is normally
independently to extract a small-signal model for each bidetermined by either assuming that the device is symmetrical
point. The extraction problem is especially problematic fdn terms of its gate and drain networks, and #g4, therefore,
larger devices with more complex parasitic networks or devicegualsCi,, or by using additional device structures [3]. Not
operating at higher frequencies where the effects of the parasiticdevices are symmetrical in layout, and when working with
elements surrounding the device become more pronounced pickaged commercial devices, this information will, in general,
not be available to the user. The use of additional device
structures increases the cost of obtaining a model, and it is not
a viable alternative when a standard commercial device has to
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values of these elements form a very erratic function of tiweere linked to each other by the ratio of their currents. Cai
bias, making the bias-dependent model meaningless. et al. [11] also implemented a multibias extraction technique

Optimization-based parameter extraction is computationafigr HBT's and made use of direct extraction techniques and
more intensive and has traditionally been sensitive to the choied-evenberg—Marquardt optimizer. Pattersenal. [13] pro-
of optimization starting values. While several promising optposed a multibias algorithm that relies on the physics-based
mizer-based extraction methods that are insensitive to start@guivalent-circuit model proposed by Ladbrooke [14]. This
values have recently been published [5]-[7], it still remains difnodel is better conditioned than the normal equivalent-circuit
ficult to determine all the model elements with a high degree efall-signal model, but it is not valid for bias points outside the
certainty whers-parameters measured at a single bias point eggturated region of th&ps—/pg curves. It also needs process
used [5], [7]. This is especially true for the parasitic resistancpgrameter values, which is normally difficult to obtain for
R,, Ry, andR,, and the channel charging resistafée The commercial devices. Patterson also made use of a principal
phenomenon is independent of the optimization method useemponents analysis and orthogonal transformations to further
and is due to the small influence that these elements have onithprove the conditioning of his optimization procedure. Lin
measured data. Their values are, therefore, easily influencedangl Kompa [5] proposed a technique in which the extrinsic
measurement uncertainties and small errors made in the degéements were optimized, and the intrinsic elements calculated
mination of the other model elements. These effects cause maing a new set of robust closed-form equations. By extending
ditional multidimensional optimizers to be numerically ill conthis approach to multibias data, they showed that the uncertainty
ditioned. in the extraction of problematic elements suchfgsand R;

One of the popular attempts to overcome this problem usgan be reduced greatly. Ghazinour [12] described a multibias
cold s-parameters measured with the gate held below the pixtraction algorithm for MESFET's and HEMT'’s that makes
choff voltage and an optimizer to extract a cold FET model. Thisse of a hybrid evolutionary/conjugate gradient optimization
model requires fewer intrinsic elements, but still represents approach. As random-based searches become very inefficient
ill-conditioned optimization problem. Although having feweffor large problems, Ghazinour reduced the number of variables
model elements to extract, the cold FET measurements generatie problem by taking elements suchigs~, andC,, which
less data for use in the extraction since it behaves as a pasbiee a weak bias dependency in the active region, to be bias
circuit. This form of extraction does not overcome the probleindependent. The values of the remaining intrinsic elements
of uncertainty in the extracted values of insensitive elements [8gre calculated as a function of the extrinsic elements.
since the extrinsic elements are only determined from one sefll of these approaches optimize one global error function.
of data. The element values will, therefore, reflect the measuigiis is inherently a difficult problem, as the number of local
ment errors for the specific bias point. If dominant extrinsic eminima rises as the number of unknowns increase. To over-
ements are held constant in subsequent optimizations, there came problems related to the number of variables, current algo-
be a propagation of errors. rithms for solving the multibias extraction problem follow two
distinct paths, namely: 1) reducing the number of variables in
the optimization problem by representing the intrinsic elements
as functions of the extrinsic elements with the aid of analytic ex-

Due to the ill-conditioned nature of the FET model extragressions [5], [6], [12] or developing more robust optimization
tion problem, single bias extractions cannot determine all theethods that are suited to high-dimensional problems [7], [9],
model elements. To overcome this problem, several solutidd$], [16].
that make use of data measured at different bias points havdhis paper proposes a new multibias extraction algorithm,
been suggested [5], [9]-[13]. Most of these procedures explaibich combines-parameter measurements from different bias
the fact that the extrinsic elements are bias independent, wHilgints into an integrated extraction procedure. The performance
some also introduce relationships between the intrinsic mod@ékhe proposed technique is evaluated using measured multibias
elements that are derived from the device physics [10], [13]. s-parameter data for an MESFET and a pseudomorphic high

Current multibias extraction algorithms normally make us@lectron-mobility transistor (bHEMT) device. The new extrac-
of multidimensional gradient optimizers [9]-[13] or randontion algorithm is built around a robust decomposition-based op-
optimizers [12]. Bandleret al. [9] described a multibias timizer [7], [17]. The sensitivity of the optimizer with respect to
extraction that uses the norm. No assumptions were madéhe optimization starting values is tested by performing a large
concerning the bias dependencies of elements and any Biggber of extractions, using random starting values chosen over
independent behavior was reinforced with the aid of penaf@/Vvery wide range. Results indicate that the extracted parame-
functions. The technique relies heavily on the theoretictrs typically vary by less than 1%. Extractions with up to 48
property of thel; norm to ignore large deviations. Lee [1o]bias points were performed successfully, leading to the simul-
implemented a multibias extractor for heterojunction bipold&neous determination of 342 model elements. The results pre-
transistor (HBT) devices using a commercial frequency-domaifnted here also graphically illustrate, for the first time, how the
circuit simulator/optimizer. Two sets afparameters measuredextraction accuracy increases with the use of more bias points
in the active mode of the device, and one ses-arameters in the multibias extraction.
measured with the device biased in the cutoff mode, wereThe technique has the following advantages.
used. The extrinsic elements were taken to be bias independent The decomposition-based optimizer does not make use of
and the current dependent elements in the active bias circuits one global error function, making it more immune to local

B. Multibias Extraction Techniques



VAN NIEKERK et al. ROBUST INTEGRATED MULTIBIAS PARAMETER-EXTRACTION METHOD 779

minima and the ill-conditioned nature of the problem thafunction, which includes all the bias points that are considered
other methods. in the extraction, is defined. This error function is then broken
» Procedures that calculate certain elements with analytiegd into suitable subfunctions for use in the decomposition-based
equations [5], [6], [12] place a limit on the modeling fitoptimizer. The extrinsic elements of the model are bias inde-
that can be achieved since these element values cannopbedent and their effect will be common to all the measurement
varied individually. The danger also exist of the analyticgloints. The multibias data, therefore, contains redundant infor-
equations failing due to a few bad measurement pointsation that can be used to define the extraction problem more
The proposed procedure determines all the elements withiquely. Special subfunctions are created for the bias-indepen-
optimization and has proven itself to be resistant to thdent elements that make use of this information redundancy.
effect of measurement errors [18]. The new global error function for the multibias extractor is
» Unlike [12], no assumptions are made concerning tlaefined as
bias dependencies of the intrinsic elements, and there is N
nothing in the algorithm that will suppress weak bias-de- -\ _ (=)2
pendent behavior in intrinsic elements [9]. F@ = Z () @)
» Since no assumptions are made concerning the device
layout, the algorithm is suitable for modeling commerciahere
devices about which very little additional information is 2 1
known. Oéz(.i’) = Z Z o (t) |Rjk(£ind7£t7 wi) — Sjk(t, wz)|
The method has the same starting value independence as t=1 j=L k=1 "I*
random searches, butitis far more efficient than a random-based (2)
search. It only requires the user to provide optimization bound-
aries, and as will be shown, the allowed optimization searffl
space can be made very large. oi(t) = |Sjk(t, w;)

=

MAX” (3)

Equation (1) is the sum of errors made at the different frequen-
cies and (2) is the modeling error made at all the bias points for
The new integrated multibias parameter-extraction metheg four s-parameters at a specific frequenyy, are the model
uses a decomposition-based optimization algorithm, sumniredicteds-parameters ansl;;, are the measuredparameters at
rized as follows [7]: bias point and frequency;, M is the total number of bias points
“Decomposition is defined as a process by which a functiafbnsidered in the extractiofy is the number of frequencies at
that is to be optimized is broken up into several subfunctionghich s-parameters are measurg@ndk are the indexes of the
The independent variables of the function is partitioned in‘l@urs-parametersrjk(t) is a normalization constant,, is the
groups according to their influence on a particular subfunctionvector containing the bias-independent model elementszand
Should theth variable have its largest influence on tfl sub- s the vector containing the bias-dependent model elements de-
function, it is assigned to that function. The subfunctions aggribing bias point number The vectorz contains all the model
optimized in a specific order, and only with respect to the varélements for the multibias problem and is defined as
ables assigned to them. This order is repeated until the whole
problem has converged to its final value.” T=[Tiwa 1 Z2--Tm-1 Tml 4)

Kondoh [15] first applied decomposition-based optimizatioE

to the MESFET model extraction problem and he determinei?r the.b|as-dependent m.odel elements, eac.h. element s associ-
: . . L : .afed with the error made in modeling a specifiparameter at
his subfunction/variable associations and the order in whic

they are optimized by experimentation. Bandler [16] presentggﬁ giﬁﬁg ?:rrzsai:]hslgrrigﬁgzy band, and an error subfunc-

a more adaptive system in which the order of optimization was

II. METHOD DESCRIPTION

calculated using a voting system based on the size of the error N - )
made by the subfunction and the number of variables associated flx)) = |Rjn(ar, Trywi) — Sjn(wi)| (5)
with it. Van Niekerk and Meyer [17] showed that a sequence of i=1

optimization can be calculated using the principal componeRigerer; is the model element being optimized afgl contains
sensitivity analysis. The sensitivity analysis is used to arrangf other model elements.

the model elements from those having the largest effect on therhe bias-independent model elements do not only influence
function to be minimized to those having the least effect, anfcertains-parameter at a specific bias point, but have an effect
the subfunctions are optimized using this sequence. Van Niekgj thats-parameter at all the bias points. The definition of the

and Meyer applied the maximum amount of decomposition pasrror subfunction for a bias independent element is, therefore,
sible to the extraction problem by dividing the problem into one

dimensional suboptimization problems. For a more detailed d&¢x;)

scription of the optimization method, the reader is referred to No/Mo 2
[7] and [17]. - _ _ _ => <Z e |Rjk($la$ﬁld7$t,wi)—Sjk(t7w1)|> :
The multibias extraction algorithm combines all the mea- i1 \i=1 ojk(t)

sured data into one optimization problem. A new global error (6)
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TABLE |
MODEL ELEMENT/SUBFUNCTION ASSOCIATIONSUSED FOR THE15-B EMENT MESFETAND HEMT MODEL IN THE MULTIBIAS EXTRACTION

Model Element Bias Dependent Subfunction to be Minimized
1. Cgs, Ri Yes S11 at specific bias point
2. Cgd Yes S12 at specific bias point
3. gm, T Yes S21 at specific bias point
4. Cds, Rds Yes S22 at specific bias point
5. Cpg,Rg,Lg No S11 at all the bias points considered
6. Cpd, Rd, Ld No S22 at all the bias points considered
7. Rs, Ls No S12 at all the bias points considered

The vectorz!, , contains the extrinsic model elements, with thEl9]. Small-signals-parameters were measured over the whole
exception of element;. Equation (6) represents the modelingf the devicel-V curves from a frequency of 1-26.5 GHz for
error made ins-parameterS;;, over all the bias points and fre-the MESFET and 25 GHz for the pHEMT.
guencies considered in the extraction. The use of (6) for op-Both devices were modeled with 13 element models. The par-
timizing the bias-independent elements creates four additiosaitic elements”;,, and C,,q were not included in the model
subfunctions that can be used in the decomposition process, beeause, due to the small values of the series inductaices
for eachs-parameter. Table | provides a summary of the multandL,, the highest measurement frequency was still too low to
bias error function/model element associations that were usesliably separate the effect of these elements from the intrinsic
The validity of these associations have been confirmed using ¢#pacitors’,y; andCys. In the case of the MESFET, no model
sensitivity analysis proposed in [16]. containing parasitic capacitances could be found that resulted
The biggest advantage of the decomposition-based optimizesmaller modeling errors than those given by the 13-element
is that it is not adversely affected by the increase in the problenbdel. The 13- and 15-element pHEMT models provided com-
dimensions when using more bias points. Since the extractigarable modeling errors, but the inclusion®f, andC,q in the
procedure does not depend on the minimization of one glokabdel destroyed the physically sound bias-dependent behavior
error function, it is not as sensitive to the increase in the numbﬁrcgs andCy, and made it impossible to consistently converge
of local minima, as would be the case with a more conventiongl a unique solution. The pHEMT model can also be expanded
optimizer. The extraction algorithm is applied 4gparameters  jth the addition of a resistaR; in series withCyq [3], [20]. Ex-
measured in the active region of the devicke¥ curves. This periments were performed with such a model, but it was once
ensures that the device acts as a nonreciprocal two port, thg&in not possible to converge to a unique solution for all the
providing the maximum amount of information possible for demodel elements. This is not unexpected sifigaill only have
termining the model elements. _ a pronounced effect at very high frequencies. While the larger
~Once a multibias extraction using a suitably large number pET models are physically more correct, they are of little use
bias points have been performed, the extrinsic model elemefiigey cannot be consistently extracted from the available mea-
can be deembedded from theparameters measured at biagred data. Experiments performed using simulatparameter

points over the complete-V curve of the device, and the equayat did confirm that the decomposition-based optimizer can ex-
tions found in [5] can be used to calculated the intrinsic modgl ~t more complex models from wide-band data [18].

elements at other bias points not considered in the initial extracry, jjjystrate the advantages of the multibias approach, a
tion. The equations in [5] are preferred to those in [2] since theyymper of single bias extractions were first performed for
have been found to be more resistant to the propagation of Galsioys bias points. Each extraction was repeated 100 times
culation errors. The calculated element values are then useq,g@8,q random starting values picked from a search space
the starting values for an expanded multibias extraction using @¥ined in Table IIl. A uniform distribution was used. Fig. 2
optimizer that employs a reduced level of decomposition. Thig\ys a plot of the extracted values of the extrinsic elenfgnt
second phase of optimization allows very large problems to Be 5 fynction ofi/,. for the MESFET. The one curve depicts

handled more efficiently. the element value that corresponds with the lowest modeling
error made, while the other curve shows the averdg®alue.
It is clear that there is a variation in the element value that is
IIl. RESULTS physically inconsistent. The differences between the two curves
show that the parameter is sensitive to the optimization starting
Tests were performed usingparameter data from an un-values used in the extraction. The values and sensitivity toward
packaged Texas Instruments Incorporated Q.@bx 300 m optimization starting values of the less sensitive elements, such
low-noise MESFET and a 0.2m x 100 um GaAs pHEMT as the parasitic resistances, are very much dependent on the
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TABLE I
EXTRACTION RESULTS FOR THEMULTIBIAS ROBUSTNESSTEST FOR THETWO DIFFERENT DEVICES CONSIDERED

MESFET GaAs pHEMT

Search Space Results Search Space Results

Min, Max. | Mean A Min. Max. Mean A

Value | Value | Value Value Value Value
Cgs (fF) 3.5E-2 | 1750 | 558.311 8.248 1.9E-2 950 66.132 0.0481
Cgd (fF) 4.4E-2 220 15.55 0.261 3.09E-3 154.5 36.698 0.0i58
Cds (fF) 9.0E-3 450 71.306 0.327 1.28E-2 640.5 29.789 0.0628
gm (mS) 5.4E-3 270 66.185 1.074 5.0E-3 250 4.095 0.0027
T (psec) 6.0E-4 30 3.852 0.0013 1.0E-4 5 0.864 0.0156
Ri (Q) 1.5E-4 7.5 2.262 0.746 5.0E-4 25 1.37 0.246
Rds (kQ2) 2.56E-5 | 1.28 0.496 0.0081 1.0E-4 5 2.223 0.0317
Lg (pH) 9.0E-3 450 31.171 0.048 5.1E-3 255 43.546 0.156
Ld (pH) 9.0E-3 450 40.679 1.007 4.0E-3 200 17.326 0.677
Ls (pH) 2.0E-3 100 4.785 0.112 1.5E-4 7.5 0.1882 0322@
Rg (@)™ 1.5E-4 7.5 1.702 0.59 1.5E-4 7.5 5.743 0.123
Rd (Q) 4.4E-4 22 4.4E-4 0 3.0E-4 15 4.483 0.252
Rs (Q) 2.9E-4 14.5 1.179 0.239 2.0E-4 10 2.0E-4 0@

1) If one of the random extractions for the MESFET is discarded, then the A value for Rg changes to
0.1605 Q

2) See text

bias point used in the extraction. This leads to high uncertair

in the extracted values of these elements. 43
In_contrast, the new multibias techn_ique is independent 4 i o R o e exdsntion Wit the lowest artor

starting values and produce more consistent results for the n g

) .. . 35
dominant model elements. This is shown by performing a r - \ /
bustness test consisting of a multibias search using five b 3 \ /
points, and repeated 100 times using randomly chosen start S 25
values. The random starting values were chosen inside the Iz o, S— \ /
search space defined in Table Il using a uniform distributio - Average value of Rg
Table Il summarizes the results of these tests for the MESFI I3 \ /
and GaAs pHEMT. The table shows the mean extracted val 1 /
of each element. An uncertainty factaris defined as the dif- 05
ference between the maximum and minimum extracted elem: o
value. Due to space constraints, only the intrinsic elements - 112 2 3 4 5 6
the bias point that had the largest modeling error are listed Vds (Volt)

Table Il. It is clear from Table Il that most of the model el-

ements consistently converge to a very small range of valugs. 2. Variation of the bias-independent parasitic resistaRgewith V.

This is also true for the traditionally insensitive elements su¢fien single bias parameter extractions are U(S‘ed- Each of ”l‘e Si”QLe bias
extractions were repeated 100 times using random starting values. The two

asR,, R;, andr. The extractedt, value for the MESFET, and ;s show the mean value Bt and the value oR, that corresponds with

the R, value for the pHEMT, always tended to the lowest ophe extraction that had the smallest error. The difference between the two

timization boundary regardless of the starting values used.Clives illustrates the sensitivity of some of the parameters to optimization

. ’ L . “starting values.

the MESFET, it was found thdt,; exhibited a large bias depen- 9

dence, withR?, wanting to assume negative values at high

values. While physical reasons for the existence of a negathva@s been advanced [14], [22], much debate concerning such

resistance in the high field region between the gate and drain element still exist [23]. From an extraction point-of-view, a
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. 4. Uncertainty in two of the extrinsic bias-independent elements and two

Fig. 3. Extracted values of two extrinsic bias-independent and two intrinéi: g. 4. Lnce ) ; ) h
bias-dependent elements for the HEMT are plotted as a function of the numBE[€ intrinsic elements is plotted as a function of the number of bias points
d in the multibias extraction. The uncertainty fackoshown in the figure

of bias points used in the multibias extraction. The bias-dependent elementsthi®
shown for the bias poirt,. = 0.0 V and Vi, = 1.5 V. IS expressed as a percentage of the mean element value.

negative resistance is undesirable since it acts as a new sourd®y¢ @ high correlation due to their positions in the model and
energy. This causes the other model elements to assume pR{gause they look electrically the same [13]. The multibias
ically unrealistic values. The pHEMT source resistafcedid @ gorithm can separate their values because they behave differ-

not exhibit a dependence on bias, but its value is probably infl§ty With changes in the bias, something which is not possible
enced by measurement imperfections (resonances) in the d4{{) @ Single bias algorithm.

The pHEMT source inductandg, exhibited similar behavior, ~F19s- 5 and 6 show a comparison of the measured and mod-
with the variation inZ, being much larger than normally found€!ed s-parameters for the MESFET and pHEMT device that

in a dominant model element. The valuelafis, however, very Were obtained during the robustness test. The data represents

small, decreasing the influence that it has on the measured dit§ random extraction and bias point that resulted in the largest
and making it more susceptible to measurement imperfectiof¥2deling error. Table 11l contains the average and maximum

Ultimately, the extraction results will depend on the quality gfMPlitude and phase errors across the full frequency range for
the measured data. each of thes-parameters shown in Figs. 5 and 6. A very good

With the multibias approach, the use of more sets of d f{gof measured and modeled data is obtained with the new ex-

causes convergence in the extracted values of the model rlg_gtmn algorithm for each of theparameters at all of the bias

ments and a reduction of extraction uncertainty. It is, howevcgr(,)IntS that were used.

to be expected that there will be a point at which no more ac-
curacy is gained from the inclusion of more bias points in the
multibias extraction. Fig. 3 shows the values of four different
elements (two extrinsic and two intrinsic) as a function of the
number of bias points used when extracting the GaAs pHEMT The new multibias algorithm was compared to other methods
model. Fig. 4 contains a similar plot showing the uncertainty in terms of its robustness, speed, and accuracy by using pub-
the model elements as a function of the number of bias poifitthed and experimental results.

used. Due to the long executions times needed to perform a fullarious robust extraction methods have been proposed that
robustness test with a large number of bias points, only resulé$y on guided random searches such as tree annealing [23]
with up to ten bias points are shown in Fig. 4. A convergeneg evolutionary strategies [12]. When the results presented in
in the values of the elements and the extraction uncertaintyTigble Il are compared to those published in [12] and [23], it be-
discernable as the number of bias points used are increasgfines clear that the new algorithm has a starting value indepen-
Similar results were obtained for the MESFET. From the ditience comparable to the random searches. The allowed search
ferent devices that were studied, it would appear that five gpace defined in Table Il is larger than the search space that was
more well-distributed bias points are needed to perform a rigsed in [23], and it is comparable in size to the search space that
liable multibias extraction. was defined in [12].

Figs. 3 and 4 indicate that the model elements are becomingVhile being robust, the random-based searches are ineffi-
less dependent on the measurement uncertainties associaigat, especially when a large number of unknowns have to be
with the different bias points. The use of more bias pointetermined [23]. This either places a restriction on the size of
allows the extrinsic elements to be determined more accuratehg extraction problem that can be handled or make it neces-
which, in turn, decreases the correlation that exist betwesary to make assumptions concerning the bias-dependent be-
some intrinsic and extrinsic elements. For instai¢eand 2, havior of some model elements in order to reduce the number of

IV. COMPARING THE DECOMPOSITIONBASED OPTIMIZER
TO OTHER METHODS
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GaAs MESFET

180 . >< 0 180 0
S
210 N ST1 330 210 330
”» 300 Vgs = 0.0 Volt
270 Vds =6.0 Volt 270

Frequency = 1 to 26.5 GHz

Fig. 5. Modeled and measureepbarameters for the GaAs MESFET are compared. The model elements used in the model describe the bias point and random
extraction that resulted in the largest modeling error. The average and maximum errors made in modeling the amplitude and phaseahtters are listed
in Table Ill. S21 andS1» are scaled with the factors shown next to them in order to allow them to be clearly shown on the same polaSplotsds- .

1 GaAs pHEMT
Model

Vgs=-0.1 Volt
Vds = 0.5 Volt
Frequency = 1 to 25 GHz

Fig. 6. Modeled and measuraegparameters for the GaAs pHEMT are compared. The model elements used in the model describe the bias point and random
extraction that resulted in the largest modeling error. The average and maximum errors made in modeling the amplitude and phaseahtters are listed

in Table Ill. S1- is scaled by a factor of two in order to clearly show it on the same polar pl6tadt should be noted thafi»; is not scaled, but that the bias

point used is close to the cutoff region of the device.

unknowns [12]. The new multibias algorithm uses a decompbe a change of less than 0.01% in the value of all the model el-
sition-based optimizer that is suited to high-dimensional probments for more than two consecutive iterations. If a less strict
lems, and it is, therefore, not bound by the same restrictionsamdition, i.e., the percentage change in the global error func-
the random-based searches. A typical extraction, using ten bias was used, the optimization procedure typically only needed
points, took on average of 18.5 min of system time on a SBO-100 iterations, but larger inaccuracies were encountered in
icon Graphics Workstation using an R10000 processor runnitige values of the nondominant model elements. These elements
at 180 MHz. This represents about 370 iterations of the opéire poorly represented by the changes in the value of the global
mizer. The termination condition of the optimizer were taken terror function, and the decomposition-based search spends most
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TABLE 1lI
COMPARISON OFMEASURED AND MODELED s-PARAMETERS (SEE FIGS. 5 AND 6)

GaAs MESFET GaAs pHEMT

Average | Average | Maximum | Maximum || Average | Average | Average | Average
Amplitude | Phase | Amplitude Phase Amplitude | Phase | Amplitude | Phase

Error Error Error Error Error Error Error Error

n 0.0100 0.3482° 0.0198 0.9823° 0.0070 0.3832° 0.0193 1.7089°

" 0.0221 0.5089° 0.0438 1.2349° 0.0174 1.2383° 0.0397 3.468°

S
S
Si 0.0009 1.0996° 0.0036 2.6479° 0.0041 1.7250° 0.0155 3.1465°
S, 0.0215 0.4087° 0.0385 1.5355° 0.0080 0.4916° 0.0288 1.478°

TABLE IV
COMPARISON OF THEEXTRACTION RESULTS OBTAINED WITH A DIRECT EXTRACTION METHOD [24] AND THE NEW MULTIBIAS
DECOMPOSITIONBASED OPTIMIZER USING THE MESFETAND pHEMT MEASURED DATA

MESFET pHEMT
Bias Point for Intrinsic Elements Bias Point for Intrinsic Elements
Vgs=-0.6 Volt Vds=3.0 Volt Vgs=0.0 Volt Vds=1.5 Volt

Direct Extraction Decomposition- Direct Extraction Decomposition-
Based Optimizer Based Optimizer

Avg A Avg a Avg a Avg a
Cgs (fF) 328.672 11.27 354.304 5.8 104.044 8.771 92.158 0.319
Cgd (fF) 32.904 1.607 31.21 0.329 31.698 3.205 33.004 0.028
Cds (fF) 67.997 3113 74.546 0.54 36.854 8.252 26.287 0.186
gm (mS) 60.52 1.538 65.439 0.001 40.55 1.564 35.214 0.026
T (psec) 1.965 0.132 2.236 0.01 0.303 0.371 0.850 0.015
Ri (Q) 4.002 0.888 2,183 0.883 3.876 3.489 1.296 0.333
Rds (Q) 293.868 | 53,008 | 220.793 3.017 410.1 13598 | 420.706 0.295
Lg (pH) 30.272 7.242 31.171 0.048 43.274 44.119 43.564 0.156
Ld (pH) 55.044 7.398 40.679 1.007 37919 11.07 17.326 0.677
Ls (pH) 5.101 0.836 4.785 0.112 6.814 5.537 0.188 0.322
Rg () 0.757 0.56 1.702 0.59 1.752 1.565 5.743 0.123
Rd (Q) 1.390 2.061 4.4E-4 0 5.996 3.046 4.484 0.252

Rs(Q) 0.0257 2.075 1.179 0.239 3.822 3.385 2.0E-4 0
Cpg (fF) -1.249 — o —_— 15.27 2.662 _ e
Cpd+Cds (fF) | 69.381 1.709 —_—  — 33.917 3.485 _ —_

of its time moving these elements through the shallow region dfires optimized all the extrinsic elements together, using one
the global objective function landscape that surrounds the sofuror function based on th&,;, S;», and S;» data for all the
tion. bias points considered in the extraction. The different sets of
The decomposition-based search was also compared tmtansic elements were optimized with respect to all thea-
multibias algorithm based on the systematic multidimensionameters describing their particular bias point. The optimizers
optimizers described by Patterson [13], as well as one usingpased on the work in [13] were found to be far superior to
conventional damped Gauss—Newton optimizer. These protiee conventional damped Gauss—Newton algorithm, and could
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reduce the global error function to a low value from a widebtained with direct extraction procedures or the other multidi-
range of starting values. It was, however, unable to produce thensional optimizers that were evaluated.
same consistently small distributions in the extracted values
of the model elements as the full decomposition-based search.
The multidimensional optimizers, when started from accurate
initial element values, produced distributions that were a factor-l-he formulation and extraction results of a robust multibias
of 3-10 larger for dominant elements such(as andLy. The oo ameter extractor for MESFET and HEMT small-signal
values of nondominant elements such&svaried over an p,,qe|s have been presented. The extraction technique uses a
even larger range of values, with the extraction uncertainty i, mnosition-based optimizer that is insensitive to the choice
R b_emg far larger than its average value. ... of the optimization starting values used. It is shown that the
Direct parameter-extraction methods use data from different, sion of more bias points in the extraction increases the
cold and hot bias points to determine the extrinsic and 'nt”nq'ﬁiqueness of the extracted model elements. The new procedure

modgl elements of Fh? small-s_ignal model. They can, theref,OWas compared to other methods and published results. Its is
be viewed as multibias algorithms. The procedure descrlbgﬁ

) ‘ - >~ “shiown to have a starting value independence equal to that of
by Tayrani [24] for extracting MESFET or HEMT extrinsic .o 4om optimizers.

elements was implemented, and the equations of Berroth angg 4150rithms discussed in this paper are implemented in a
Bosch [2] were used to calculate the intrinsic model elements, o o Ay 77 program that has been successfully compiled on a
For the calculation of the parasitic inductors, resistors, aif ety of platforms. The program is robust and requires no user

V. CONCLUSION

intrinsic elements, only measurements above 15 GHz were
used, while for the parasitic capacitors, only frequencies below
10 GHz were used. These frequency ranges were chosen
after plotting the calculated element values as a function of
frequency, and resulted in a considerable reduction of the[l]
variation in their values. An extraction uncertaiayis defined

as the difference between the largest and smallest calculated
element values. (2]

Table IV compares the average element values and their
extraction uncertaintyd obtained with the direct extraction [3]
procedure and the new multibias algorithm. The multibias
extraction results were obtained from the five bias point ro-
bustness test described in the previous section and consistent[y
produced more unique solutions than the direct extraction.
The direct extraction procedure suffers from large extraction[5
uncertainty when it comes to the determination of nondominant
model elements such as the parasitic resistors and even more
dominant elements such as the drain—source resistBgge [6]
In the case of the MESFETR, also assumed nonphysical
negative element values at a large number of frequency points.m

While the direct extraction algorithm can calculate values
for the parasitic capacitor§’,, and Cy,q, only a 13-element
model was used in the optimizer due to the reasons discusse[%]
before. The direct extraction procedure can only deter@ipe
uniquely since the values @y, andCq cannot be separated.
In the case of the MESFET, tlfg,, calculations returned nega-
tive values, providing a further indication that these parasitic el-
ements are negligible for the MESFET. Extractions performedtio]
with the approach described in [25] yielded(g, value of
3.98 fF, which is still very small when compared to the valuey;;
of Cys. For the pHEMT, the value af',, was found to be 15.27
fF, which is not negligible when compared to the value’pf.

As was previously explained, the maximum measurement fre[-lz]
quency is too low for the decomposition-based optimizer to ac-
curately separate the values of these two capacitors.

Itis clear that the multibias algorithm presented here is accu[-l?’]
rate, and has a robustness equal to that found in reported random
extraction algorithms, but achieved with the efficiency of a gra{14]
dient optimizer. The uniqueness of the extraction solutions thays,
were produced with the new algorithm exceeds that which was

(9]

ervention during extractions.
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