2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Microwave Theory and Techniques
Volume 48 Number 6, June 2000

Table of Contents for this issue

Complete paper in PDF format

A Four-Port Scattering Matrix Formalism for p-i-n Traveling-Wave Photodetectors

Isabelle Huynen, Member, IEEE and André Vander Vorst Fellow, IEEE

Page 1007.

Abstract:

This paper presents a full four-port characterization for traveling-wave optoelectronic devices, in particular, traveling-wave photodetectors (TWPD's),resulting in a scattering matrix formalism, which can be used for passive as well as active devices. A set of coupled distributed equivalent circuits is proposed for modeling the device, taking into account the wanted detection and spurious emission of light. A scattering matrix formalism is established,predicting the performances of the device at microwaves, when a microwave signal is used either for modulating the intensity of the optical power (forward detection mode) or for biasing the p-i-n junction (reverse emission mode). Hence, the obtained four-port device is nonreciprocal. Some symmetry properties are induced by the physical symmetry of the device. It has matched inputs,when symmetric electrical and optical reference loads are used. The scattering matrix satisfies power conservation laws. The formalism may be used to optimize the designs of TWPD's by varying the loads at each of the four ports.

References

  1. K. Giboney, J. Bowers and M. Rodwell, "Travelling-wave photodetectors", in IEEE MTT-S Int. Microwave Symp. Dig., 1995, pp.  159-162. 
  2. D. Jäger, R. Kremer and A. Stohr, "Travelling-wave optoelectronic devices for microwave applications", in IEEE MTT-S Int. Microwave Symp. Dig., 1995, pp.  163-166. 
  3. K. Giboney, R. Nagarajan, T. Reynolds, S. Allen, R. Mirin and M. Rodwell, "Travelling-wave photodetectors with 172-GHz bandwidth and 76-GHz bandwidth-efficiency product", IEEE Photon. Technol. Lett., vol. 7, pp.  412-414, Apr.  1995.
  4. K. S. Giboney, M. J. W. Rodwell and J. E. Bowers, "Traveling-wave photodetector theory", IEEE Trans. Microwave Theory Tech., vol. 45, pp.  1310-1319, Aug.  1997.
  5. B. S. Verma, R. Bhattacharyya and V. V. Shah, "Optical admittance of an all-dielectric unsymmetrical multilayer near the monitoring wavelength", Appl. Opt. , vol. 25, no. 2, p.  315, Jan.  1986.
  6. R. T. Hawkins, II, M. D. Jones, S. H. Pepper, J. H. Goll and M. K. Ravel, "Vector characterization of photodetectors, photoreceivers and optical pulse sources by time-domain pulse response measurements", IEEE Trans. Instrum. Meas., vol. 41, p.  467, Aug.  1992.
  7. H. Vifian, "Optical measurements based on RF modulation techniques", IEEE Trans. Instrum. Meas., vol. 39, p.  982, Dec.  1990.
  8. D. D. Curtis and E. E. Ames, "Optical test set for microwave fiber-optic network analysis", IEEE Trans. Microwave Theory Tech., vol. 38, p.  552, May  1990.
  9. B. Stockbroeckx, P. Dellisse and A. Vander Vorst, "S -matrix definition for microwave optical transducers", Microwave Opt. Technol. Lett., vol. 7, no. 17, pp.  2099-2106, Dec.  1994.
  10. A. Vander Vorst and D. Vanhoenacker, Bases de l'Ingénierie Micro-onde, Brussels: Belgium: De Boeck-Université, 1996.
  11. V. M. Hielata, G. A. Vawter, T. M. Brennan and B. E. Hammons, "Traveling-wave photodetectors for high-power, large-bandwidth applications", IEEE Trans. Microwave Theory Tech., vol. 43, pp.  2291-2298, Sept.  1995.
  12. Z. Zhu, R. Gillon and A. Vander Vorst, "A new approach to broadband matching for pin photodiodes", Microwave Opt. Technol. Lett., vol. 8, no. 1, pp.  8-13, Jan.  1995.
  13. I. Huynen, A. Salamone and M. Serres, "A traveling wave model for optimizing the bandwidth of p -i -n photodetectors in silicon-on-insulator technology", IEEE J. Select. Topics Quantum Electron., vol. 4, pp.  953-963,  Nov.-Dec.  1998.
  14. Z. Zhu, I. Huynen and A. Vander Vorst, "An efficient microwave characterization of PIN photodiodes", in Proc. 26th European Microwave Conf., vol. 2, Prague, Czech Republic,Sept. 1996, pp.  1010 -1014. 
  15. J. Katz, S. Margalit, C. Harder, D. Wilt and A. Yariv, "The intrinsic electrical equivalent circuit of a laser diode", IEEE J. Quantum Electron., vol. QE-17, pp.  4-7,  Jan.  1981.