2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Microwave Theory and Techniques
Volume 48 Number 6, June 2000

Table of Contents for this issue

Complete paper in PDF format

Monolithic Tunable Active Inductor with Independent Q Control

Curtis Leifso, Student Member, IEEE James W. Haslett, Senior Member, IEEE and John G. McRory Member, IEEE

Page 1024.

Abstract:

A 1.1-GHz fully integrated GaAs MESFET active inductor is presented in this paper. Both the inductance and loss resistance are tunable with the inductance independent of series loss tuning. The measured loss resistance is tunable over a -10-to +15- range with a corresponding change in inductance of less than 10% at 100 MHz and less than 4% for frequencies above 500 MHz. The inductance is tunable from 65 to 90 nH. Considerably larger bandwidths can be achieved depending on the fabrication technology employed and the intended application of the circuit.

References

  1. S. Hara, T. Tokumitsu, T. Tanaka and M. Aikawa, "Broadband monolithic microwave active inductor and its application to miniaturized wide-band amplifiers", IEEE Trans. Microwave Theory Tech., vol. 36, pp.  1920-1924, Dec.  1988 .
  2. S. Hara, T. Tokumitsu and M. Aikawa, "Lossless, broadband monolithic microwave active inductors", in IEEE MTT-S Int. Microwave Symp. Dig., 1989, pp.  955-958. 
  3. R. Kaunisto, P. Alinikula and K. Stadius, "Q -enhancing technique for high speed active inductors", in IEEE Int. Circuits Syst. Symp. Dig., 1994, pp.  735-738. 
  4. P. Alinikula, R. Kaunisto and K. Stadius, "Monolithic active resonators for wireless applications", in IEEE MTT-S Int. Microwave Symp. Dig., 1994, pp.  1151-1154. 
  5. D. G. Haigh, "GaAs MESFET active resonant circuit for microwave filter applications", IEEE Trans. Microwave Theory Tech., vol. 42, pp.  1419-1422, July  1994.
  6. S. Lucyszyn and I. D. Robertson, "Monolithic narrow-band filter using ultrahigh-Q tunable active inductors", IEEE Trans. Microwave Theory Tech., vol. 42, pp.  2617-2622, Dec.  1994.
  7. C. Yong-Ho, H. Song-Cheol and K. Young-Se, "A novel active inductor and its application to inductance-controlled oscillator", IEEE Trans. Microwave Theory Tech., vol. 45, pp.  1208-1213, Aug.  1997.
  8. S. Sussman-Fort and L. Billonnet, "MMIC-simulated inductors using compensated gyrators", Int. J. Microwave Millimeter-Wave Computer-Aided Eng., vol. 7, no. 3, pp.  241-249, May  1997.
  9. A. Brucher, C. Cenac, M. Delmond, F. Delpino, B. Madrangeas, P. Meunier, V. Madrangeas, L. Billonnet and B. Jarry, "Several methodologies for active filter design at microwaves", Int. J. Microwave Millimeter-Wave Computer-Aided Eng. , vol. 7, no. 3, pp.  250-267, May  1997.
  10. S. Sussman-Fort, "Design concepts for microwave GaAs FET active filters", IEEE Trans. Microwave Theory Tech., vol. 37, pp.  1418-1424, Sept.  1989.
  11. J. Sinsky and C. Westgate, "New approach to designing active MMIC tuning elements using second-generation current conveyors", IEEE Microwave Guided Wave Lett., vol. 6, pp.  326-328, Sept.  1996.
  12. S. El Khoury, "The design of active floating positive and negative inductors in MMIC technology", IEEE Microwave Guided Wave Lett., vol. 5, pp.  321-323, Oct.  1995.