2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Microwave Theory and Techniques
Volume 48 Number 6, June 2000

Table of Contents for this issue

Complete paper in PDF format

Chiral Hard-Surface Waveguide Mode Transformer

Ari J. Viitanen

Page 1077.

Abstract:

Field propagation in cylindrical axially corrugated waveguide filled with chiral medium is considered in this paper. The depth of the corrugation is a quarter-wavelength, making a hard-surface (HS) boundary. The eigenfields inside the chiral HS waveguide are circularly polarized. In a nonchiral HS waveguide, these eigenmodes are propagating with the same propagation factor. However, for small chirality values, there exists weak coupling between the eigenfields, which results in a change in polarization of the propagating field. This effect makes it possible to make mode transformers and phase shifters. Also, the chiral HS waveguide of a proper length can be used as a matching element between different kinds of circular waveguides.

References

  1. P. J. B. Clarricoats and A. D. Olver, Corrugated Horns for Microwave Antennas, Stevenage: U.K.: Peregrinus, 1984.
  2. P.-S. Kildal, "Artificially soft and hard surfaces in electromagnetics", IEEE Trans. Antennas Propagat., vol. 38, pp.  1537-1544, Oct.  1990.
  3. P. Pelet and N. Engheta, "The theory of chirowaveguides", IEEE Trans. Antennas Propagat., vol. 38, pp.  90-97, Jan.  1990.
  4. N. Engheta and P. Pelet, "Mode orthogonality in chirowaveguides", IEEE Trans. Microwave Theory Tech., vol. 38, pp.  1631 -1634, Nov.  1990.
  5. S. F. Mahmoud, "Guided modes on open chirowaveguides", IEEE Trans. Microwave Theory Tech., vol. 43, pp.  205 -209, Jan.  1995.
  6. S. F. Mahmoud, "Mode characteristics in chirowaveguides with constant impedance walls", J. Electromag. Waves Applicat., vol. 6, no. 5/6, pp.  625-640, 1992.
  7. I. V. Lindell, A. H. Sihvola, S. A. Tretyakov and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-Isotropic Media, Norwood, MA: Artech House, 1994.
  8. F. Mariotte, S. A. Tretyakov and B. Sauviac, "Isotropic chiral composite modeling: Comparison between analytical, numerical and experimental results", Microwave Opt. Technol. Lett., vol. 7, no. 18, pp.  861-864, 1994.
  9. R. E. Collin, Foundations for Microwave Engineering, New York: McGraw-Hill, 1966.