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Optimal Finite-Difference Sub-Gridding Techniques
Applied to the Helmholtz Equation

John W. Nehrbass, Member, IEEE,and Robert Lee, Member, IEEE

Abstract—Since the spatial resolution of a uniform grid deter-
mines in part the accuracy of a given simulation, it must be judi-
ciously chosen. In some small region of the computation domain, a
fine grid density may be needed, while in the remainder of the do-
main, a coarser grid is acceptable. It would be preferable if a coarse
resolution could be used over the majority of the computational
domain, while locally using a finer resolution around the problem
areas. In this presentation, a systematic method is presented that
shows how to optimally choose the finite-difference coefficients for
the transition region from a coarse to a fine grid. Results are pre-
sented for two-dimensional problems and for specific stencils. The
ideas can then be applied to any dimension and any desired stencil
in a straightforward manner. The sub-gridding methods are veri-
fied for accuracy through a study of scattering from curved geome-
tries and propagation through dense penetrable materials.

Index Terms—Electromagnetic analysis, finite-difference
methods, modeling, numerical analysis.

I. INTRODUCTION

T HE finite-difference (FD) method is a powerful com-
putational technique for modeling electromagnetic

phenomena. It is both easy to implement and computationally
efficient. One of the problems with FD methods is their inability
to accurately handle different grid spacings. For many cases,
there may exist small isolated regions with a finer resolution
requirement than the rest of the problem space. These locations
occur when there is a high material property contrast or when
stairstepping is used to model nonorthogonal geometries.
Researchers have developed nonuniform gridding techniques
in which an interpolation scheme is used to perform the finite
differencing (an example of such is demonstrated in [1] and
[2]). In these methods, we can transition between one cell size
and another by slowly increasing or decreasing the grid spacing
in the transition region. Unfortunately, the nonuniform gridding
concept has many problems. There is a loss in accuracy within
the transition region, especially if the transition region is small.
Also, the aspect ratio of some of the FD cells may become
very large, which further degrades the accuracy of the solution.
Due to all of these factors, researchers in recent years have
been trying to develop sub-gridding methods in which FD
cells of two different sizes directly join. Several researchers
[3]–[7] have come up with algorithms for finite difference time
domain (FDTD) to perform the subgridding based on the use
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of interpolation and extrapolation of the field values at the
interface between the two grids of differing resolution.

In this paper, a systematic method is presented that shows
how one may optimally choose the FD coefficients at the in-
terface between the two grids to approximate the Helmholtz
equation. These coefficients are chosen based on physical “elec-
tromagnetic considerations” and, therefore, are not optimal for
any arbitrary function. The ideas for this sub-gridding scheme
come from the work in [8]. The FD coefficients are optimized
for plane waves propagating at an arbitrary angle through the
grid. While this paper derives results for two-dimensional (2-D)
problems and for specific stencils, the theory is general and can
be applied to any dimension and any desired stencil in a straight-
forward manner. In order to provide further support for this
theory, our sub-gridding method is compared to one in which
standard linear interpolation/extrapolation is used. We show that
our method maintains the second-order accuracy of the original
FD method, while the method based on linear interpolation/ex-
trapolation is only first-order accurate. Also, we consider its ap-
plication to scattering from curved geometries and propagation
through dense penetrable materials.

II. SUBGRIDDING THEORY

In [8], the 2-D Helmholtz equation is approximated by the
traditionalfive-point stencil on a uniform grid. The optimal FD
coefficients are then found to minimize the phase error in the
solution. Due to the reduction in phase error, the method in
[8] is called the reduced dispersion FD method. For the sub-
gridding method, we apply the same method, except to an arbi-
trary stencil. To determine the stencils of interest, the following
meshing scheme is adopted. First, a coarse mesh is established
and placed throughout the computational domain. Next, sensi-
tive regions are defined where a finer resolution is desired. In
these sensitive regions, the resolution is doubled so that every
coarse cell in this region is now divided into four finer cells.
We refer to the region in which adjacent cells do not have the
same spatial resolution as the transition region. If still finer res-
olutions are required, the process is again repeated. By adopting
this meshing scheme, all transition regions will contain adjacent
cells with a 2 : 1 ratio of resolutions. As illustrated in Fig. 1, one
can pass from the most coarse mesh to a mesh 2tran times as
fine in the space of only one coarse cell. Here,tran represents
the number of transitions that are required. This allows the user
to grid to an arbitrarily fine resolution while retaining a course
gridding in the majority of the problem domain . The only re-
striction is that the material properties within the transition re-
gion must be homogeneous.

0018–9480/00$10.00 © 2000 IEEE
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Fig. 1. Sampling location convention.

Fig. 2. Middle stencil.

Let us consider a functionf , which satisfies the Helmholtz
equation in a homogeneous region of space. There are three
stencils used in the subgridding method to discretize the
Helmholtz equation. These stencils are referred to as the middle
stencil, the cross stencil, and the corner stencil. The functionf

is discretized into nodal values on each stencil (f0 throughfN
with N depending on the stencil of interest). In the next three
subsections, the derivation of the FD equations are presented
for these three stencils. The lengthy mathematics are included
in the appendixes for the interested reader.

A. FD Equation for the Middle Stencil

The stencil for the middle nodef0 is shown in Fig. 2. The
associated FD equation in its most general form is given by

w0f0+w1f1+w2f2+w3f3+w4f4+w5f5+w6f6+w7f7

h2
= 0

(1)

whereh is the spacing for the smaller grid, andw0 through
w7 are the unknown FD coefficients. The goal is to choose the
coefficients such that (1) is true for all solutions to the Helmholtz
equation; however, it is not possible to do so. In general, the
solution to the Helmholtz equation satisfies

w0f0+w1f1+w2f2+w3f3+w4f4+w5f5+w6f6+w7f7

h2

= Res(�) � 0 (2)

whereRes is a residual term, which we want to be as close
to zero as possible. To minimizeRes, we use a subset of all
possible solutions of the Helmholtz equation, more specifically,
a plane wave that propagates along an arbitrary direction

f = e
jk

�
x cos(�)+y sin(�)

�
(3)

wherek is the wavenumber and� is the angle of propagation.
The values of the plane wave sampled at the nodal locations are
given as

f0 =1

f1 = ejkh cos(�)

f5 = e�jkh cos(�)

f3 = e�jkh sin(�)

f2 = e
jkh

�
cos(�)�sin(�)

�

f4 = e
�jkh

�
cos(�)+sin(�)

�

f6 = e
jkh

�
�cos(�)+2 sin(�)

�

f7 = e
jkh

�
cos(�)+2 sin(�)

�
: (4)

The above can be rigorously solved for a given propagation
angle. However, for arbitrary scatterers, a spectrum of plane
waves may be present. Assuming that all angles are equally
probable, the approximation is solved in an average sense as
follows: Z 2�

0

h2Res(�) d� = 0: (5)

Performing the integration and solving forw0 yields

w0 = �
h
(w1 +w3 + w5)J0(kh) + (w2 + w4)J0(

p
2kh)

+(w6 +w7)J0(
p
5kh)

i
: (6)

Before solving for the other coefficients, the number of un-
knowns is further reduced by exploiting the symmetry of the
problem. The relations (w1 = w5, w2 = w4, w6 = w7) must
hold true in order that the wave does not have a preferred prop-
agation direction. One of the coefficients is fixed so that the
others are uniquely determined. We choosew1 = w5 = 1 so
that our approximating equation becomes

w2

h
2e�jkh sin(�) cos

�
kh cos(�)

�
� 2J0(

p
2kh)

i

+ w3

h
e�jkh sin(�) � J0(kh)

i

+ w6

h
2ej2kh sin(�) cos

�
kh cos(�)

�
� 2J0(

p
5kh)

i

= 2
h
J0(kh)� cos

�
kh cos(�)

�i
(7)

which is rewritten in the form

W1F1 +W2F2 +W3F3 = R (8)

wherew2 = W1; w3 = W2; w6 = W3 and

F1 =2e�jkh sin(�) cos
�
kh cos(�)

�
� 2J0(

p
2kh)

R =2
h
J0(kh)� cos

�
kh cos(�)

�i

F3 =2ej2kh sin(�) cos
�
kh cos(�)

�
� 2J0(

p
5kh)

F2 = e�jkh sin(�) � J0(kh): (9)

Appendix A shows the process for finding the optimal coeffi-
cient values for this reduced equation. These coefficients are a
function of only one variable (kh) and are plotted versuskh in
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Fig. 3. Optimal coefficients for the middle stencil.

Fig. 4. Cross stencil.

Fig. 3. Note that the derivation of the coefficients for the cross
and corner stencils are not given in this paper, but can be found
in [9]. Greater accuracy can be achieved by coupling more nodes
together; however, this decreases the sparsity of the resulting
matrix. For the stencil selections presented, the given FD coef-
ficients are the most optimal in the average sense.

B. FD Equation for the Cross Stencil

Next, the optimal interpolation scheme for the cross stencil
is described. The values of the plane wave sampled at the nodal
locations shown in Fig. 4 are given as

f1 = ejkh cos(�)

f2 = e
jkh

�
cos(�)�sin(�)

�

f3 = e�jkh sin(�)

f0 =1

f5 = e�jkh cos(�)

f4 = e
�jkh

�
cos(�)+sin(�)

�

f6 = ej2kh sin(�): (10)

It is now desired to approximate the field in the center of the
stencilf0 as a function of the neighboring nodes

w0f0 +w1f1 +w2f2 +w3f3 +w4f4 +w5f5 +w6f6

h2

= Res(�) � 0: (11)

Fig. 5. Optimal coefficients for the cross stencil.

Proceeding as before, we integrate over2� and solve forw0 as

w0 = �
h
(2 +w3)J0(kh) + 2w2J0(

p
2kh) +w6J0(2kh)

i

(12)

where we have made use of the symmetry and letw1 = w5 = 1,
andw2 = w4. As before

W1F1 +W2F2 +W3F3 = R (13)

wherew2 = W1; w3 = W2; w6 = W3 and

F1 = 2e�jkh sin(�) cos(cos �)� 2J0(
p
2kh)

F2 = e�jkh sin(�) � J0(kh)

F3 = ej2kh sin(�) � J0(2kh)

R = � 2
h
cos

�
kh cos(�)

�
� J0(kh)

i
: (14)

These optimal values are plotted versuskh in Fig. 5.

C. FD Equation for the Corner Stencil

Finally, the optimal FD equation for the corner interpolation
nodes are derived. The values of the plane wave sampled at the
nodal locations shown Fig. 6 are given as

f1 = ej2kh cos(�)

f2 = e�jkh sin(�)

f3 = e�j2kh sin(�)

f7 = ej2kh sin(�)

f5 = e�jkh cos(�)

f6 = e�j2kh cos(�)

f4 = e
�jkh

�
cos(�)+sin(�)

�

f0 =1: (15)

It is now desired to approximate the field in the center of the
stencilf0 as a function of the neighboring nodes

w0f0+w1f1+w2f2+w3f3+w4f4+w5f5+w6f6+w7f7

h2

= Res(�) � 0: (16)
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Fig. 6. Corner stencil.

Fig. 7. Optimal coefficients for the corner stencil.

Again, we integrate over a2� interval and solve forw0 as

w0 = �
h
2(1 + w3)J0(2kh) + 2w2J0(kh) + w4J0(

p
2kh)

i

(17)

where we have made use of the symmetry and letw1 = w7 = 1,
w2 = w5, andw3 = w6. The simplified equation becomes

W1F1 +W2F2 +W3F3 = R (18)

wherew2 = W1; w3 = W2; w4 = W3 and

F1 = e�jkh sin(�) + e�jkh cos(�) � 2J0(kh)

F2 = e�j2kh sin(�) + e�j2kh cos(�) � 2J0(2kh)

F3 = e�jkh
�
cos(�)+sin(�)

�
� J0(

p
2kh)

R =2J0(2kh) � ej2kh sin(�) � ej2kh cos(�): (19)

These optimal values are plotted versuskh in Fig. 7.

III. N UMERICAL VERIFICATION

To study the accuracy of the proposed subgridding method,
we consider several numerical experiments. The first is sub-
gridding in free space, which allows us to obtain the order of
accuracy of the subgridding scheme. The second numerical
problem is scattering from a perfectly conducting circular

Fig. 8. Sample locations for different resolutions.

cylinder, which demonstrates the ability of subgridding to
accurately model nonorthogonal geometries. The last problem
is plane-wave reflection from a dielectric interface of high-per-
mittivity contrast. This problem shows the advantages of
subgridding for such geometries.

A. Free-Space Subgridding

To test out the errors due to subgridding, we consider a square
computation domain of size0:8� � 0:8�. Four different grids
are considered for this region, as shown in Fig. 8. On the bottom
and left-hand-side boundaries of this domain, we force Dirichlet
boundary conditions, shown as squares in this figure. On the top
and right-hand-side boundaries, we place a first-order absorbing
boundary condition (ABC), depicted as stars. The upper portion
of the domain contains a grid that is twice as fine as the lower
portion. We choose the lower grid spacings to be�=10, �=20,
�=40, and�=80 with sampling locations, shown as plus signs in
Fig. 8.

The RDFD method (from [8]) is used for grid locations away
from the transition region. For the nodes on the transition region,
we calculated results by two different methods. First, the op-
timal equations, as described previously, are used. These results
are compared to results obtained with simple linear interpola-
tion in Fig. 9. The errors are shown for a plane wave propagating
along angles from 0� to 90�. The solid curves are for linear in-
terpolation cases where the largest error is forh = �=10 and de-
creasing to the smallest error ath = �=80. The star curves are
the errors for the same grid densities with the new optimized
method. Experiments show that one would have to use a grid
spacing ofh = �=53 for the linear case in order to get the same
level of error as that for the optimal case ath = �=10. The
order of each method as a function of wave propagation angle is
shown in Fig. 10. These order of accuracy curves were produced
from a least squares fit at each incidence angle of the error at the
four grid densities shown in Fig. 8.

Using linear interpolation clearly reduces the accuracy from
second to first order and appears to be a strong function of
propagation angle. In contrast, the new method achieve almost
second-order accuracy, while maintaining fairly constant results
as a function of angle.
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Fig. 9. Plot of the normalized error versus incidence angle of plane wave
for both the optimized subgridding method (curves represented by+) and
subgridding based on linear interpolation (curves represented by solid lines).
The curves show the error for grid spacings of�=10, �=20, �=40, and�=80
where the error curves decrease with decreasing grid spacing.

Fig. 10. Order of accuracy for the optimized subgridding method (curve near
“2”) versus subgridding based on linear interpolation (curve near “1”).

B. Scattering from a PEC Cylinder

In this section, the sub-gridding methods are first numeri-
cally verified for accuracy through a study of the scattering
from an infinitely long perfect electric conductor (PEC) circular
cylinder excited by a plane wave. This geometry is chosen for a
number of reasons. First, the solution of this problem is known
in closed form. This allows us to compute the error in the pre-
dicted results. A desirable feature of the sub-gridding method is
the ability to resolve curved surfaces. To this extent, the cylinder
is a good choice.

We first model the scatterer by placing it in the center of a
mesh consisting of 35 cells� 35 cells. The radius of the cylinder
is chosen to be 4.5-cells wide. The spatial resolution for this
example is fixed ath = �=15. The reference solution for this
problem is shown in Fig. 11. This solution is the exact solu-
tion as computed by an eigenfunction expansion. Here, the mag-
nitude of the scattered field is plotted over the surface of the
problem domain. From this figure, it is apparent where the en-
ergy has been reflected from the cylinder and where the cylinder
shadows the incident wave.

Fig. 11. Reference solution for plane wave scattering by a PEC cylinder.

Fig. 12. Cylinder boundary conditions assuming a�̂ propagating field.

For the calculated problem, we need to specify appropriate
boundary conditions. It is assumed that as the energy is scattered
from the cylinder, it propagates in a radially outward direction.
From Fig. 12, we can approximate the field at the boundary
(EBnd) as a weighted function of the fields only one cell inside
the problem domain (E1, E2) times a phaser that propagates in
the �̂ direction

EBnd =

��
1� D2

D1

�
E2 +

D2

D1
E1

�
e�jkh

p
(D2=D1)2+1:

(20)
The scattered field is calculated by using the four different

sub-gridding meshes, as shown in Fig. 13. In the first case,
we calculate the solution by using only the coarse mesh
everywhere. The sampling locations are illustrated in Fig. 13
as plus signs. These are placed over every sampling location.
For the remaining three meshes, a sensitive region around the
cylinder is identified. This sensitive region occupies an area of
12� 12 coarse cells with the cylinder located in the center. For
the second, third, and fourth calculations, the meshes inside
the sensitive region are resolved more finely in order to more
accurately model the curvature of the cylinder. In the second
calculation, the mesh size is half (h = �=30) that of the first
case. For the third case, the mesh is halved again (h = �=60).
In the fourth case, the mesh is halved (h = �=120) yet again.



NEHRBASS AND LEE: OPTIMAL FD SUB-GRIDDING TECHNIQUES APPLIED TO HELMHOLTZ EQUATION 981

(a) (b)

(c) (d)

Fig. 13. Coarse and fine sampling locations indicated by “+” signs. (a) Coarse
sample locations. (b) Coarse/2. (c) Coarse/4. (d) Coarse/8.

In the transition regions, the meshes follow the convention as
explained earlier.

The results for these four cases are illustrated in Fig. 14. For
these figures, the error is defined as the absolute value of the
differences between calculated and exact values. This error is
then plotted over the problem domain. Notice that in the first
calculation (coarse mesh used everywhere), the largest error oc-
curs directly behind the cylinder. This is the location where
the cylinder shadows the incident wave. The maximum error
has a relative value of 0.3086 and there are 1152 unknowns
throughout the domain. In the second calculation, a rectangular
region surrounding the cylinder is identified and given a spatial
resolution twice as fine as in the coarse region. The maximum
error for this calculation is reduced to 0.1684. Notice that the
maximum error has been reduced by almost half, while the total
amount of unknowns has only been increased to 1424. The max-
imum error generated in the third case was 0.1005 with 2164
unknowns used. For the fourth case, 4496 unknowns were used,
generating a maximum error of 0.0835. As the mesh is further
refined, the error continues to decrease, but not at such a dra-
matic rate. This error bound results from the region that main-
tains a coarse mesh. The error generated in the coarse region
couples to the entire problem. When the contribution of error
generated in the coarse region becomes more significant than the
contribution of the error generated by approximating the curva-
ture of the cylinder, global mesh refinement is required for fur-
ther error reduction.

To exaggerate the usefulness of the sub-gridding technique,
lets us reconsider the second case. If the same problem domain
were to be examined using a uniform mesh size ofh = �=30,
the number of unknowns required to calculate this region would
be 4528. This implies that the sub-gridding technique allows
one to calculate a problem of this sort with over a 3.9 times
reduction in memory requirements. Matrix inversion is aO(N3)
process; however, for this type of problem, the matrix is sparse.
Depending on the bandwidth of the sparse matrix, the problem

(a) (b)

(c) (d)

Fig. 14. Absolute value of the difference between the calculated and exact
scattered field. (a) Coarse resolution. (b) Coarse/2. (c) Coarse/4. (d) Coarse/8.

Fig. 15. Coarse grid placed over the semiinfinite dielectric half-plane (�r =

64).

can be reduced as much as aO(N1:5) process. This implies
that the processing time will become somewhere between 8–59
times more efficient.

C. Wave Behavior Inside a Dense Dielectric Material

To add further support for the sub-gridding concept, energy
propagating through a dense dielectric material is studied. For
this case, we examine a semiinfinite dielectric half-space, as
shown in Fig. 15. The dielectric has a relative dielectric con-
stant of�r = 64. The wavelength inside the dielectric (�d) is,
therefore, one-eighth that of the free-space (�0) wavelength. A
(�d)� (�d) region of the dielectric is sampled. The dimensions
of the free-space region are one free-space wavelength (�0) by
one dielectric wavelength (�d).

The coarse spatial resolution is chosen as a fortieth of a
free-space wavelength (h = �0=40). While this sampling
interval is sufficient to accurately model the field behavior in
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Fig. 16. Profile of the exact solution for the semiinfinite dielectric half-plane
(�r = 64).

the free-space region, it is not sufficient for the region inside
the dielectric. Inside the dielectric, a sampling ofh = �0=40
is equivalent toh = �d=5. The phase error generated by this
coarse sampling will accumulate over the problem domain and
produce unacceptable errors. For a plane wave traveling from
within the dielectric incident normal to the dielectric free-space
interface, the solution takes the profile shown in Fig. 16.

Notice that the magnitude of the reference solution goes
through two oscillations as the dielectric is one-wavelength
(�d) long. The sub-gridding method is used to sample this
region at a more fine spatial resolution while maintaining a
coarse resolution in the free-space region. Since the solution
to this problem is known in closed form, Dirichlet boundary
conditions are used at the truncation boundaries.

This problem is studied by using three different sub-gridding
meshes of spatial resolutions:h = �d=20 (two transitions),
h = �d=40 (three transitions), andh = �d=80 (4 transitions).
The number of unknowns for these case are 574, 1818, and
6697, respectively. The errors, defined as the absolute value of
the difference between exact and calculated results, for each
case are illustrated in Fig. 17.

As evident from the provided illustrations, the sub-gridding
works well, causing no abrupt discontinuous errors as the
wave propagates through the transition region. Errors for all
three cases are minimized near the boundaries and follow the
same profile as the reference solution. Notice that if a spatial
resolution of�d=80 were used everywhere, this would require
56 801 unknowns. Therefore, the sub-gridding method reduced
the number of unknowns by over eight times, reduced the com-
putation time by over 64 times, and maintained an acceptable
error range. When results were calculated with a free-space
coarse mesh used everywhere, the errors were so severe that
they were not included in the illustrations. This sub-gridding
method is, therefore, ideal for dense problems of this type.

IV. SUMMARY

In this paper, a new subgridding method is presented that
maintains the order of accuracy of the original FD method. A
specific sub-gridding stencil is adopted for the 2-D examples
in this paper; however, the theory is general enough so that
other stencils and higher dimensions may be implemented.
Results were verified by studying problems with known

Fig. 17. Sub-gridding errors for the semiinfinite dielectric half-plane.

solutions. These sub-gridding techniques are shown to be
useful when trying to increase accuracy while minimizing
computational resources.

APPENDIX A
OPTIMIZATION OF THE COEFFICIENTS

What values ofWi approximateR(�) the best for all
angles�?

W1F1 +W2F2 +W3F3 � R: (21)

This can be solved in a least squares sense by first defining an or-
thogonal basisPi that spans the same space as the functionsFi.
The inner product space for this system and the norm squared
are, respectively, defined as

hF; P i =

Z
2�

0

F (�)P�(�)d�

kFk2 = hF; F i =

Z
2�

0

F (�)F �(�) d�: (22)

The Gram Schmidt Orthogonalization Process can be used to
define an orthogonal basisPi as

P1 =F1

P2 =F2 �
hF2; P1i

kP1k2
P1

P3 =F3 �
hF3; P1i

kP1k2
P1 �

hF3; P2i

kP2k2
P2: (23)
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Equation (21) can now be “best” approximated as

hR; P1i
kP1k2 P1 +

hR; P2i
kP2k2 P2 +

hR; P3i
kP3k2 P3 � R: (24)

SinceFi andPi span the same space, the left-hand side of (21)
can be equated to the left-hand side of (24). Now the values
Wi can be approximated for by the least square method or ex-
actly solved for. Since the least squared method is easily ap-
plied, the following section shows how one may execute the
above-described process in order to solve for the various op-
timal middle stencil coefficients exactly. In order to reduce the
length of the equations, the following list of variables are de-
fined, and only the middle stencil coefficients are explicitly de-
rived. Derivations for the cross and corner stencil coefficients
are given in [9]

J0 = J0(kh)

J2 = J0(2kh)

J3 = J0(3kh)

J4 = J0(4kh)

Js2 = J0
�p

2kh
�

Js5 = J0
�p

5kh
�

Js10 = J0
�p

10kh
�

Js13 = J0
�p

13kh
�

J2s2 = J0
�
2
p
2kh

�
: (25)

APPENDIX B
COEFFICIENTS FOR THEMIDDLE STENCIL

The spanning set of functions for the middle stencil are

F1 =2e�jkh sin(�) cos
�
kh cos(�)

�� 2Js2

F2 = e�jkh sin(�) � J0

F3 =2ej2kh sin(�) cos
�
kh cos(�)

�� 2Js5

R =2
h
J0� cos

�
kh cos(�)

�i
: (26)

An orthogonal set that spans the same space is

P1 =F1

P2 = e

�
�jkh sin(�)

��
d1 + d2 cos

�
kh cos(�)

��
+ d3

P3 = d4 cos
�
kh cos(�)

�
e

�
2jkh sin(�)

�

+ d5 cos
�
kh cos(�)

�
e

�
�jkh sin(�)

�

+ d6e

�
�jkh sin(�)

�
+ d7 (27)

where

d1 =2Js22 � 1� J2

d2 =2J0(1� Js2)

d3 = J0(1 + J2� 2Js2)

D1 =�(4J3 + 4Js13� 8Js5Js2)

D2 =�
�� 8Js22 + 4(1 + J2)

�

D3 =�(4d1Js10 + 2d2J3 + 2d2Js13� 4Js5d1J0

� 4Js5d2Js2)

D4 =�
�
2
�
d12 + d32

�
+ 2J0

�
2d1d3+ 2d1d2

�
+ 4d2d3Js2 + d22(1 + J2)

�
d4 =2D2D4

d5 = � 2D1D4�D2D3d2

d6 = �D2D3d1

d7 = � 2D2D4Js5 + 2D1D4Js2 �D2D3d3: (28)

The coefficients are now defined as

W3 =
d4hR; P3i
2kP3k2

W2 = d1

� hR; P2i
kP2k2 +

2W3d6

d1d4

�

W1 =
hR; P1i
kP1k2 +

d2W2

2d1
�W3

�
d2d6

d1d4
� d5

d4

�
: (29)

Combining all of the above gives the closed-form solution for
optimal coefficients in the middle stencil

W3=�
�
J2s2 + 2J2Js5J0Js2�3J2s2J02

� J2s2J02J2+4J2s2J02Js2�2J02Js52

�2Js5J0Js10Js2+2Js5J0Js10+Js5Js13J02

+J2s2J2�2J2s2Js22+Js5J3J02+4J02Js10

�Js13J03�J3J03�Js5J3�Js5Js13
+2Js52Js2�6J02Js10Js2+2J02Js10J2

+2J03Js5+J2�3J02J2�J02J22�2Js22J2

+J22+4Js5J0Js2�2Js5J0J2�J0J3
+4J0J3Js2+4J0Js13Js2�J0Js13�2Js10Js2

+4Js10Js23�2Js5J0�4Js22Js5J0

�2Js22J0Js13�2Js22J0J3�2Js10J2Js2

+4J02J2Js2)=(4J02Js52+4Js5J0Js10J2

�8Js5J0Js10Js2+4Js5J0Js10�4Js5Js13J02

�4Js5J3J02�2Js102J2�3J02+2J02J3Js13

+4Js5Js2Js13+4Js5Js2J3�4Js10J0Js13Js2

+2J2+4Js10J0J3�4Js10J0J3Js2

+J02J32+J02Js132�2J3Js13 + 4Js102Js22

+4Js10J0Js13�2Js52J2�Js132�2Js52�J32
�4J02J2+4J02Js2�J02J22�2Js22J2+J22

�2Js102�2Js22+1+4J02J2Js2
�

(30)

W2 =2
�
�J2s2Js5J0+J2s2J0Js13Js2+Js10J22
�J2s2Js5J0J2+2J2s2Js5J0Js2�2J2Js2

+2Js2J3Js13+J2J0J3Js2+J2J0Js13Js2

+J2Js5J0Js2�2J02Js52+2Js52Js2J2

�2Js5J0Js10J2+2Js5J0Js10Js2

�2Js5J0Js10+3Js5Js13J02�4Js5Js13Js22

�4Js5J3Js22+3Js5J3J02+2Js52Js2+2J02

�2J02J3Js13�Js2+2Js10J0Js13Js2
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�Js10J0J3+2Js10J0J3Js2�J02J32�2Js53J0

�J02Js132�Js10J0Js13�2Js22Js10J2

+3J02J2�3J02Js2+J02J22�Js5J3Js10

�Js5Js13Js10+2Js52Js2Js10+2Js23

�Js5J0Js2+Js2Js132+Js10J2+Js2J32

+J2s2Js10�2J2s2Js10Js22�J2s2J0J3

+J2s2Js10J2J2s2J0J3Js2+Js5J0

�J2J0Js13�J2J0J3�Js5J0J22

�J2s2J0Js13+Js52J3J0+Js52Js13J0

+2Js23J2�J22Js2�3J02J2Js2)=(4J02Js52

+4Js5J0Js10J2�8Js5J0Js10Js2

+4Js5J0Js10�4Js5Js13J02�4Js5J3J02

�2Js102J2�3J02+2J02J3Js13

+4Js5Js2Js13+4Js5Js2J3�4Js10J0Js13Js2

+2J2+4Js10J0J3�4Js10J0J3Js2

+J02J32+J02Js132�2J3Js13+4Js102Js22

+4Js10J0Js13�2Js52J2�Js132�2Js52

�J32�4J02J2+4J02Js2�J02J22�2Js22J2

+J22�2Js102�2Js22+1+4J02J2Js2
�

(31)

W1 = �
�
�Js13J2�2J0Js5Js2J3�2J0Js5Js2Js13

�J3J2+J0+4J0Js2Js52+4J0Js2Js102

+J3J02J2+2Js5Js2J2+Js5�2Js10J02Js13

+Js13J02J2�2Js10J02J3�2J0Js52+J03

�2Js53�2J0Js10J2Js2�3Js5J02J2

+2J0Js10J2�Js5J02�J2s2Js13�4J0Js2

�J2s2J3�2J0Js102+4Js52J0Js10

�2J2s2Js5J02+Js5J2+J2s2J02J3

+J2s2J02Js13+2J2s2Js5Js2

�2J0Js2J2s2Js10+2Js22J0+2Js10Js2Js13

+J03J2�4J2J0Js2+2Js10Js2J3

+2Js5J0Js13+2Js5J0J3�4Js10Js22Js5

+2J2Js22J0�2Js5Js102+2J0J2s2Js10

+J0J2)=(4J02Js52+4Js5J0Js10J2

�8Js5J0Js10Js2+4Js5J0Js10

�4Js5Js13J02�4Js5J3J02�2Js102J2

�3J02+2J02J3Js13+4Js5Js2Js13

+4Js5Js2J3�4Js10J0Js13Js2+2J2

+4Js10J0J3�4Js10J0J3Js2+J02J32

+J02Js132�2J3Js13+4Js102Js22

+4Js10J0Js13�2Js52J2�Js132

�2Js52�J32�4J02J2+4J02Js2�J02J22

�2Js22J2+J22�2Js102�2Js22

+1+4J02J2Js2
�
: (32)

REFERENCES

[1] E. Kalnay De Rivas, “On the use of nonuniform grids in finite-difference
equations,”J. Comput. Phys., vol. 10, pp. 202–210, 1972.

[2] S. Xiao and R. Vahldieck, “A fast FDTD analysis of guided wave struc-
tures using a continuously variable mesh with second order accuracy,”
J. Int. Elect. Telecommun. Eng., vol. 41, pp. 3–14, Jan.–Feb. 1995.

[3] S. S. Zivanovic, K. S. Yee, and K. K. Mei, “A subgridding method for the
time-domain finite-difference method to solve Maxwell’s equations,”
IEEE Trans. Microwave Theory Tech., vol. 39, pp. 471–479, Mar. 1991.

[4] D. T. Prescott and N. V. Shuley, “A method for incorporating different
sized cells into the finite-difference time-domain analysis technique,”
IEEE Microwave Guided Wave Lett., vol. 2, pp. 434–436, Nov. 1992.

[5] M. W. Chevalier, R. J. Luebbers, and V. P. Cable, “FDTD local grid
with material traverse,”IEEE Trans. Antennas Propagat., vol. 45, pp.
411–421, Mar. 1997.

[6] M. Okoniewski, E. Okoniewski, and M. A. Stuchly, “Three-dimensional
subgridding algorithm for FDTD,”IEEE Trans. Antennas Propagat.,
vol. 45, pp. 422–429, Mar. 1997.

[7] P. Monk, “Sub-gridding FDTD schemes,”ACES J., vol. 11, pp. 37–46,
1996.

[8] J. Nehrbass, J. Jevtic, and R. Lee, “Reducing the phase error for finite
difference methods without increasing the order,”IEEE Trans. Antennas
Propagat., vol. 46, pp. 1194–1201, Aug. 1998.

[9] J. W. Nehrbass, “Advances in finite difference methods for electromag-
netic modeling,” Ph.D. dissertation, Dept. Elect. Eng., Ohio State Univ.,
Columbus, OH, 1996.

John W. Nehrbass(S’91–M’97) was born in Buf-
falo, NY, in 1967. He received the B.S. degree in elec-
trical engineering and the M.S. degree in electromag-
netics from Arizona State University, Tempe, in 1989
and 1991, respectively, and the Ph.D. degree in elec-
trical engineering from The Ohio State University,
Columbus, in 1996.

He has been with the Aeronautical System
Center (ASC) Major Shared Resource (MSRC),
Wright-Patterson Air Force Base, OH, as part of the
Department of Defenses (DoD) High Performance

Computing Modernization Program since September 1996. He is employed
through the Ohio Supercomputer Center and has been helping the DoD
integrate electromagnetic algorithms to massively parallel platforms.

Dr. Nehrbass was nominated for the 1998 Computerworld Smithsonian
Award. His work is archived in the National Museum of American History,
Smithsonian Institution, Washington, DC.

Robert Lee (S’82–M’83) received the B.S.E.E. degree from Lehigh University
in Bethlehem, PA, in 1983, and the M.S.E.E. and Ph.D. degrees from the Uni-
versity of Arizona, Tucson, in 1983 and 1990, respectively.

From 1983 to 1984, he was a Microwave Engineer with the Microwave Semi-
conductor Corporation, Somerset, NJ. From 1984 to 1986, he was a Member
of the Technical Staff at Hughes Aircraft Company, Tucson, AZ. In addition,
during the summers of 1987–1989, he was with Sandia National Laboratories,
Albuquerque, NM. Since 1990, he has been with The Ohio State University,
Columbus, where he is currently an Associate Professor. His major research
interests are in the analysis and development of finite methods for electromag-
netics.

Prof. Lee is a member of the International Union of Radio Science (URSI)
and was a recipient of the 1996 URSI Young Scientist Award.


