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Optimal Finite-Difference Sub-Gridding Techniques
Applied to the Helmholtz Equation

John W. NehrbasdMember, IEEEand Robert LeeMember, IEEE

Abstract—Since the spatial resolution of a uniform grid deter- of interpolation and extrapolation of the field values at the
mines in part the accuracy of a given simulation, it must be judi- jnterface between the two grids of differing resolution.
ciously chosen. In some small region of the computation domain, a |, this paper, a systematic method is presented that shows

fine grid density may be needed, while in the remainder of the do- . L .
main, a coarser grid is acceptable. It would be preferable if a coarse how one may optimally choose the FD coefficients at the in-

resolution could be used over the majority of the computational terface between the two grids to approximate the Helmholtz
domain, while locally using a finer resolution around the problem equation. These coefficients are chosen based on physieal*
areas. In this presentation, a systematic method is presented that tromagnetic consideratioisnd, therefore, are not optimal for
shows how to optimally choose the finite-difference coefficients for any arbitrary function. The ideas for this sub-gridding scheme

the transition region from a coarse to a fine grid. Results are pre- . . o
sented for two-dimensional problems and for specific stencils. The come from the work in [8]. The FD coefficients are optimized

ideas can then be applied to any dimension and any desired stencil for plane waves propagating at an arbitrary angle through the
in a straightforward manner. The sub-gridding methods are veri- grid. While this paper derives results for two-dimensional (2-D)

fied for accuracy through a study of scattering from curved geome- problems and for specific stencils, the theory is general and can

tries and propagation through dense penetrable materials. be applied to any dimension and any desired stencil in a straight-
Index Terms—Electromagnetic analysis, finite-difference forward manner. In order to provide further support for this
methods, modeling, numerical analysis. theory, our sub-gridding method is compared to one in which

standard linear interpolation/extrapolation is used. We show that

|. INTRODUCTION our method maintains the second-order accuracy of the original

o . FD method, while the method based on linear interpolation/ex-

HE finite-difference (FD) method is a powerful Com'trapolation is only first-order accurate. Also, we consider its ap-

lication to scattering from curved geometries and propagation
rough dense penetrable materials.

putational technique for modeling electromagneti
phenomena. It is both easy to implement and computation
efficient. One of the problems with FD methods is their inability
to accurately handle different grid spacings. For many cases,
there may exist small isolated regions with a finer resolution Il. SUBGRIDDING THEORY
requirement than the rest of the problem space. These locations o )
occur when there is a high material property contrast or when!n [8], the 2-D Helmholtz equation is approximated by the
stairstepping is used to model nonorthogonal geometriérsegditionalfive-point stencil on a uniform grid. The optimal FD
Researchers have developed nonuniform gridding techniq¢@gfficients are then found to minimize the phase error in the
in which an interpolation scheme is used to perform the finig!ution. Due to the reduction in phase error, the method in
differencing (an example of such is demonstrated in [1] ar{g]_ |s_called the reduced dispersion FD method. For the sub_—
[2]). In these methods, we can transition between one cell s@ddding method, we apply the same method, except to an arbi-
and another by slowly increasing or decreasing the grid spacf@y stencil. To determine the stencils of interest, the following
in the transition region. Unfortunately, the nonuniform gridding*€shing scheme is adopted. First, a coarse mesh is established
concept has many problems. There is a loss in accuracy witid Placed throughout the computational domain. Next, sensi-
the transition region, especially if the transition region is smaffve regions are defined where a finer resolution is desired. In
Also, the aspect ratio of some of the FD cells may beconti@ese sensitive regions, the resolution is doubled so that every
very large, which further degrades the accuracy of the solutidifarse cell in this region is now divided into four finer cells.
Due to all of these factors, researchers in recent years hdVg refer to the region in which adjacent cells do not have the
been trying to develop sub-gridding methods in which FB2ame spatial reS(_)Iutlon as the transition region. If still finer res-
cells of two different sizes directly join. Several researchefdutions are required, the process is again repeated. By adopting
[3]-[7] have come up with algorithms for finite difference timdhis meshing scheme, all transition regions will contain adjacent

domain (FDTD) to perform the subgridding based on the u§glls with a2: 1 ratio of resolutions. As illustrated in Fig. 1, one
can pass from the most coarse mesh to a mé&8h fimes as
. . , fine in the space of only one coarse cell. Heren represents
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wherek is the wavenumber angl is the angle of propagation.
The values of the plane wave sampled at the nodal locations are
Coarse Cell given as
Resolution
Jfo=1
fl — 6jkh cos( )
2xResolution f5 = e~ Ikh cos(9)
Coarse Cell f3 = e—Jkh sin(4)
4xResolution Resolution ) .
kh -
T I T | ¢ 8xResolution fo = Hh(con()=ain(s)
NENEREERNRENEEE! 8xResolution f4 — e—jkh(cos(¢)+sin(¢))
jkh(— 2 si
Fig. 1. Sampling location convention. fo=¢ ( cos( )+ s1n(¢))
. f7 — ejkh(cos(¢)-|—2 sin(¢)) ) (4)
e % The above can be rigorously solved for a given propagation
6 V angle. However, for arbitrary scatterers, a spectrum of plane
o waves may be present. Assuming that all angles are equally
s < f1\ probable, the approximation is solved in an average sense as
X follows:
f4 f3 f> 27
/ h*Res(¢)d¢ = 0. (5)
0

Fig. 2. Middle stencil.
Performing the integration and solving fer yields

Let us consider a functiofi, which satisfies the Helmholtz
equation in a homogeneous region of space. There are th¥ée= — [(wl + ws + ws)Jo(kh) + (w2 + w4)J0(\/§kh)
stencils used in the subgridding method to discretize the
Helmholtz equation. These stencils are referred to as the middle Hws + w7)‘]0(\/gkh)] - (6

stencil, the cross stencil, and the corner stencil. The fungtiongg¢gre solving for the other coefficients, the number of un-

is discretized into nodal values on each stengiltbrough/y 1 nowns is further reduced by exploiting the symmetry of the
with N depending on the stencil of interest). In the next threg. jbiom The relations; = ws, ws = w4, ws = wr) MUSt

subsections, the den_vaﬂon of the FD equat|on_s are prese HRf true in order that the wave does not have a preferred prop-
for these three stencils. The lengthy mathematics are inclu

i - ) agation direction. One of the coefficients is fixed so that the
in the appendixes for the interested reader. others are uniquely determined. We choese= ws = 1 so
that our approximating equation becomes

A. FD Equation for the Middle Stencil

The stencil for the middle nod, is shown in Fig. 2. The  w, [26—1“ $2(%) cos (kh cos()) — QJO(\/ikh)]
associated FD equation in its most general form is given by

wo fotwy fi+wa fot+ws fatwa fatws fs+ws fe+wrfr 0 ' .
h2 = + we [2632“ sin(¢) cog (kh cos(gb)) — 2]0(\/513/1)]

1

@ = 2[Jo(kh) — cos (kh cos(@))] (7)
wheret is the spacing for the smaller grid, and through
wr are the unknown FD coefficients. The goal is to choose théhich is rewritten in the form
coefficients such that (1) is true for all solutions to the Helmholtz
equation; however, it is not possible to do so. In general, the
solution to the Helmholtz equation satisfies

wq fo+w1 f1+wa fo+ws fa+wy fatws fs+ws fo +wr fr

+ w3 [e‘jkh sin(¢) _ Jo(/ch)]

WiFy + Woby +WsF3=R (8)

Wherew2 = Wl, ws = Wz, we = W3 and

Fy = 2¢~Ikhsin(9) g (kh cos(q/))) — 2J0(\/§kh)

h2
= Res(¢) =0 (2) R=2 [Jo(kh) — cos (kh cos(qb))]
whereRes is a residual term, which we want to be as close  Fj = 2¢/" (%) cos (kh cos(¢)) — 2Jo(V5kh)
to zero as possible. To minimizdges, we use a subset of all Fy = =ik sn(8) _ J(kp). ©)

possible solutions of the Helmholtz equation, more specifically,
a plane wave that propagates along an arbitrary direction ~ Appendix A shows the process for finding the optimal coeffi-
cient values for this reduced equation. These coefficients are a
f= ejk(x cos($)+y sin(4)) (3) function of only one variablek:) and are plotted versugh in
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Fig. 3. Optimal coefficients for the middle stencil. Fig. 5. Optimal coefficients for the cross stencil.

Proceeding as before, we integrate o¥erand solve foru, as

Y
s wo = — [(2 + ws)Jo(kh) + 2waJo(V2kR) + w6JO(2kh)]
2h "0 (12)
fs f1
A B S 08 where we have made use of the symmetry andlet ws = 1,
h@ £, |fs |6 andws = wy. As before

WiFL+ WoFs+WsF35=R (13)
Fig. 4. Cross stencil.
Wherewz = Wl, w3 = Wz, We = W3 and

Fig. 3. Note that the derivation of the coefficients for the cross Fy = 2e7Ik0s1009) cos(cos @) — 2J0(V/2kh)
and corner stencils are not given in this paper, but can be found Fy = e~ ikhsin(4) _ Jo(kh)
in [9]. Greater accuracy can be achieved by coupling more nodes __j2kh sin(¢)
; . . F3 =& - Jo(?kh)
together; however, this decreases the sparsity of the resulting
matrix. For the stencil selections presented, the given FD coef- R= -2 [ cos (kh cos(¢)) — Jo(/fh)] : (14)

ficients are the most optimal in the average sense. ) o
These optimal values are plotted vergusin Fig. 5.

B. FD Equation for the Cross Stencil C. FD Equation for the Corner Stencil

_ Next, _the optimal interpolation scheme for the cross stencil Finally, the optimal FD equation for the corner interpolation
IS de_scnbed. The_ valges ofthe _plane wave sampled at the noQidhes are derived. The values of the plane wave sampled at the
locations shown in Fig. 4 are given as nodal locations shown Fig. 6 are given as

fl — 6jkh cos(¢) fl — ejZkh cos( )
f2 :ejkh<cos(¢)—sin(¢)) f2 :e—_]kh sin(¢)
f3 — e—jkh sin(¢)

fo=1
f5 :e—jkh cos(¢)

f4 _ e—jkh(cos(¢)+sin(¢))
f6 :ejZk‘h Sin((Z)). (10)

fy = eI 2R sin(¢)
fr = I sin(9)

fs = eIk cos(4)
fo = eI 2kh cos(9)

f4 — e—jkh ( cos(¢)+sin(¢))

fo=1 (15)
It is now desired to approximate the field in the center of thl?' desired t imate the field in th ter of th
stencil f as a function of the neighboring nodes IS now desired to approximate the hieid in the center ot the

stencil fy as a function of the neighboring nodes

wofo +wifi +wafo + wafs +wafa +wsfs +wefs wo fo+ w1 f1+wa fotws fat+wa fatws fs+ws fo+wr fr
h? h?
= Res(¢) = 0. (11) = Res(¢) = 0. (16)
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Fig. 7. Optimal coefficients for the corner stencil.

Again, we integrate over 2w interval and solve fotv, as

wy = — [2(1 + ws)Jo(2kh) + 2w Jo(kh) + w4JO(\/§kh)]

where we have made use of the symmetry andlet wr = 1,
ws = ws, andws = we. The simplified equation becomes

Wherewz = Wl, w3 = Wz, Wwyqg = W3 and

These optimal values are plotted vergusin Fig. 7.

WikFy + WoFy + Wil =R

F’1 — e_jkh sin(¢) + e—jkh cos($) 2J0(l€h)
Py = ¢mi2kh sin(9) | =2k cos(4) _ 9 7, (2kh)
Fy = e‘jkh(cos(¢)+sin(¢)) _ JO(\/ik’h)

R =2Jo(2kh) — el 2*h sin(¢) _ ,j2kh cos(¢)

I1l. NUMERICAL VERIFICATION
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Fig. 8. Sample locations for different resolutions.

cylinder, which demonstrates the ability of subgridding to
accurately model nonorthogonal geometries. The last problem
is plane-wave reflection from a dielectric interface of high-per-
mittivity contrast. This problem shows the advantages of
subgridding for such geometries.

A. Free-Space Subgridding

To test out the errors due to subgridding, we consider a square
computation domain of siz@ 8 x 0.8A. Four different grids
are considered for this region, as shown in Fig. 8. On the bottom
and left-hand-side boundaries of this domain, we force Dirichlet
boundary conditions, shown as squares in this figure. On the top
and right-hand-side boundaries, we place afirst-order absorbing
boundary condition (ABC), depicted as stars. The upper portion
of the domain contains a grid that is twice as fine as the lower
portion. We choose the lower grid spacings toXya0, A/20,
A/40, andA /80 with sampling locations, shown as plus signs in
Fig. 8.

The RDFD method (from [8]) is used for grid locations away
from the transition region. For the nodes on the transition region,
we calculated results by two different methods. First, the op-
timal equations, as described previously, are used. These results
are compared to results obtained with simple linear interpola-
tionin Fig. 9. The errors are shown for a plane wave propagating
along angles from 0to 9C°. The solid curves are for linear in-
terpolation cases where the largest error isifer A/10 and de-
creasing to the smallest error/at= A/80. The star curves are
the errors for the same grid densities with the new optimized
method. Experiments show that one would have to use a grid
spacing oft = A/53 for the linear case in order to get the same
level of error as that for the optimal case/at= A/10. The
order of each method as a function of wave propagation angle is
shown in Fig. 10. These order of accuracy curves were produced
from a least squares fit at each incidence angle of the error at the
four grid densities shown in Fig. 8.

To study the accuracy of the proposed subgridding method,Using linear interpolation clearly reduces the accuracy from
we consider several numerical experiments. The first is sukecond to first order and appears to be a strong function of
gridding in free space, which allows us to obtain the order pfopagation angle. In contrast, the new method achieve almost
accuracy of the subgridding scheme. The second numerisatond-order accuracy, while maintaining fairly constant results
problem is scattering from a perfectly conducting circulaas a function of angle.
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Fig. 9. Plot of the normalized error versus incidence angle of plane wave
for both the optimized subgridding method (curves represented-pwand
subgridding based on linear interpolation (curves represented by solid lines).
The curves show the error for grid spacings\gfio, X /20, A/40, and\ /80
where the error curves decrease with decreasing grid spacing.

Fig. 11. Reference solution for plane wave scattering by a PEC cylinder.
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Fig. 12. Cylinder boundary conditions assuming propagating field.

06 i ; ; j ; ; ; ;
’ Theta For the calculated problem, we need to specify appropriate

_ o o boundary conditions. Itis assumed that as the energy is scattered

Fig. 10. Order of accuracy for the optimized subgridding method (curve "&Rbm the cyIinder, it propagates ina radially outward direction.

“2") versus subgridding based on linear interpolation (curve near “1”). _ X .
From Fig. 12, we can approximate the field at the boundary

(EBna) as a weighted function of the fields only one cell inside

the problem domainK;, F) times a phaser that propagates in
In this section, the sub-gridding methods are first numethe 5 direction

cally verified for accuracy through a study of the scattering

B. Scattering from a PEC Cylinder

from an infinitely long perfect electric conductor (PEC) circular Dy Dy —jkh\/(Da/D1)241
cylinder excited by a plane wave. This geometry is chosen for a~“Bnd — 1= Dy By + D—1E1 e’ ( e
number of reasons. First, the solution of this problem is known (20)

in closed form. This allows us to compute the error in the pre- The scattered field is calculated by using the four different
dicted results. A desirable feature of the sub-gridding methoddsb-gridding meshes, as shown in Fig. 13. In the first case,
the ability to resolve curved surfaces. To this extent, the cylindee calculate the solution by using only the coarse mesh
is a good choice. everywhere. The sampling locations are illustrated in Fig. 13
We first model the scatterer by placing it in the center of as plus signs. These are placed over every sampling location.
mesh consisting of 35 cells 35 cells. The radius of the cylinder For the remaining three meshes, a sensitive region around the
is chosen to be 4.5-cells wide. The spatial resolution for thiylinder is identified. This sensitive region occupies an area of
example is fixed at. = A/15. The reference solution for this 12 x 12 coarse cells with the cylinder located in the center. For
problem is shown in Fig. 11. This solution is the exact soldhe second, third, and fourth calculations, the meshes inside
tion as computed by an eigenfunction expansion. Here, the m#ge sensitive region are resolved more finely in order to more
nitude of the scattered field is plotted over the surface of tlaecurately model the curvature of the cylinder. In the second
problem domain. From this figure, it is apparent where the eoalculation, the mesh size is half (= A/30) that of the first
ergy has been reflected from the cylinder and where the cylinderse. For the third case, the mesh is halved adaia ¢ /60).
shadows the incident wave. In the fourth case, the mesh is halveéd£ A/120) yet again.
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Fig. 13. Coarse and fine sampling locations indicated#bysigns. (a) Coarse
sample locations. (b) Coarse/2. (c) Coarse/4. (d) Coarse/8.

In the transition regions, the meshes follow the convention as (© (d)

eXplamed earlier. i i i Fig. 14. Absolute value of the difference between the calculated and exact
The results for these four cases are illustrated in Fig. 14. Fhttered field. (a) Coarse resolution. (b) Coarse/2. (c) Coarse/4. (d) Coarse/8.

these figures, the error is defined as the absolute value of the

differences between calculated and exact values. This error is

"
then plotted over the problem domain. Notice that in the first o Aa
calculation (coarse mesh used everywhere), the largest error oc- ixd
curs directly behind the cylinder. This is the location where E s e Transistion

Region

the cylinder shadows the incident wave. The maximum error

has a relative value of 0.3086 and there are 1152 unknowns g

throughout the domain. In the second calculation, a rectangular .

region surrounding the cylinder is identified and given a spatial

resolution twice as fine as in the coarse region. The maximum e

error for this calculation is reduced to 0.1684. Notice that the : =

maximum error has been reduced by almost half, while the total ~ V¥ ‘== : DS

amount of unknowns has only been increased to 1424. The max-

imum error generated in the third case was 0.1005 with 216iw. 15. Coarse grid placed over the semiinfinite dielectric half-plane=(

unknowns used. For the fourth case, 4496 unknowns were used,

generating a maximum error of 0.0835. As the mesh is further

refined, the error continues to decrease, but not at such a ¢fa0 be reduced as much a)aN"'°) process. This implies

matic rate. This error bound results from the region that maiHat the processing time will become somewhere between 8-59

tains a coarse mesh. The error generated in the coarse rediggs more efficient.

couples to the entire problem. When the contribution of error

generated in the coarse region becomes more significant thanh

contribution of the error generated by approximating the curva-To add further support for the sub-gridding concept, energy

ture of the cylinder, global mesh refinement is required for fupropagating through a dense dielectric material is studied. For

ther error reduction. this case, we examine a semiinfinite dielectric half-space, as
To exaggerate the usefulness of the sub-gridding technigakpwn in Fig. 15. The dielectric has a relative dielectric con-

lets us reconsider the second case. If the same problem donstémt ofe, = 64. The wavelength inside the dielectrit, is,

were to be examined using a uniform mesh sizé ef A/30, therefore, one-eighth that of the free-spakg) fvavelength. A

the number of unknowns required to calculate this region wouldl;) x (A4) region of the dielectric is sampled. The dimensions

be 4528. This implies that the sub-gridding technique alloves the free-space region are one free-space wavelengjhy

one to calculate a problem of this sort with over a 3.9 timeme dielectric wavelength\g).

reduction in memory requirements. Matrix inversion @@v?) The coarse spatial resolution is chosen as a fortieth of a

process; however, for this type of problem, the matrix is spargeee-space wavelengthh (= X,/40). While this sampling

Depending on the bandwidth of the sparse matrix, the problemterval is sufficient to accurately model the field behavior in

eWave Behavior Inside a Dense Dielectric Material
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Fig. 16. Profile of the exact solution for the semiinfinite dielectric half-plane
(e = 64).

the free-space region, it is not sufficient for the region inside
the dielectric. Inside the dielectric, a samplingfot= Ay /40

is equivalent toh = X4/5. The phase error generated by this
coarse sampling will accumulate over the problem domain and
produce unacceptable errors. For a plane wave traveling from
within the dielectric incident normal to the dielectric free-space
interface, the solution takes the profile shown in Fig. 16.

Notice that the magnitude of the reference solution goes
through two oscillations as the dielectric is one-wavelength
(A4) long. The sub-gridding method is used to sample this
region at a more fine spatial resolution while maintaining a
coarse resolution in the free-space region. Since the solutfde 17.  Sub-gridding errors for the semiinfinite dielectric half-plane.
to this problem is known in closed form, Dirichlet boundary
conditions are used at the truncation boundaries. solutions. These sub-gridding techniques are shown to be

This problem is studied by using three different sub-griddingseful when trying to increase accuracy while minimizing
meshes of spatial resolutions: = A;/20 (two transitions), computational resources.

h = A4/40 (three transitions), andl = A4/80 (4 transitions).

The number of unknowns for these case are 574, 1818, and APPENDIX A

6697, respectively. The errors, defined as the absolute value of OPTIMIZATION OF THE COEEFICIENTS

the difference between exact and calculated results, for each _

case are illustrated in Fig. 17. What values ofV; approximate R(¢) the best for all

As evident from the provided illustrations, the sub-griddinﬁmglew?
works well, causing no abrupt discontinuous errors as the
wave propagates through the transition region. Errors for all
three cases are minimized near the boundaries and follow tﬂﬁ

i i i X This can be solved in aleast squares sense by first defining an or-
same profile as the reference solution. Notice that if a Spat{ﬁlogonal basi&®; that spans the same space as the functions

resolution ofA4/80 were used everywhere, this would requirel. e inner product space for this system and the norm squared
56 801 unknowns. Therefore, the sub-gridding method reduc Fi respectively, defined as

the number of unknowns by over eight times, reduced the com-

K|
Ul
o
)
(1

Wik + WaFs + WsFs = R. (21)

putation time by over 64 times, and maintained an acceptable 2

error range. When results were calculated with a free-space (F, P)= / F(g)P(¢)do

coarse mesh used everywhere, the errors were so severe that Ozﬂ

they were not included in the illustrations. This sub-gridding ||F||2 =(F, F)= / F(®)F*(¢)dg. (22)
0

method is, therefore, ideal for dense problems of this type.
The Gram Schmidt Orthogonalization Process can be used to

IV. SUMMARY define an orthogonal basi§ as
In this paper, a new subgridding method is presented that
maintains the order of accuracy of the original FD method. A Pr=rn
specific sub-gridding stencil is adopted for the 2-D examples Py =Fy— (F2, P1) P,
in this paper; however, the theory is general enough so that || P

<F3JP1> <F3JP2>
r 2 i p oy 2P 23
E T mE e @&

other stencils and higher dimensions may be implemented.

Results were verified by studying problems with known Py =15 -



NEHRBASS AND LEE: OPTIMAL FD SUB-GRIDDING TECHNIQUES APPLIED TO HELMHOLTZ EQUATION 983

Equation (21) can now be “best” approximated as D3 = 1(4d1Js10 + 2d2.J3 + 2d2J 513 — 4. s5d1.J
(R, Pr) (R, P) (R, Ps) o — 4] 55d2] 52)
e e P e B Y pi=r(a(@? + as?) + 270(2d1d3 + 2d1d2)

SinceF; andF; span the same space, the left-hand side of (21) + 4d2d3Js2 + d22(1 + JQ))

can be equated to the left-hand side of (24). Now the values dA —92D92DA4

W; can be approximated for by the least square method or ex-

actly solved for. Since the least squared method is easily ap- d5 = —2D1D4 — D2D3d?2

plied, the following section shows how one may execute the d6 = — D2D3d1

above-described process in order to solve for the various op- 47 = — 2p2D4Js5 + 2D1D4Js2 — D2D3d3.  (28)
timal middle stencil coefficients exactly. In order to reduce the

length of the equations, the following list of variables are de- The coefficients are now defined as

fined, and only the middle stencil coefficients are explicitly de- d4(R, Ps)

rived. Derivations for the cross and corner stencil coefficients Ws = W

are given in [9] W — dl ((R, P,) N 2W3d6)
Y =

JO = Jo(kh) || 2] dld4
J2 = Jo(2kh) S G VA LR <_d2d6 _ d_5> . (29)
73 = Jo(3kh) 174]] 2d1 dldi 4
J4 = Jo(4kh) Combining all of the above gives the closed-form solution for
Js2 = Jo (\/ikh) optimal coefficients in the middle stencil
Js5 = Jo(V/5kh) Wy =— (J252 42727557052 —3J252J0°
J510 = Jo (V10kh) 725270 7244725270252 —2J0° T 55°
Ts13 = Jo (V13kh) 9755707 510J 52425570 s10+J 55 51370
J252 = Jo (2v/2kh). (25) 1 J25202—27252] 522+ Js5J3J0%+4J02 510
~J513J0°—J3J0%—Js5J3—Js5Js13
APPENDIX B +2J55%J52—6J0°Js10Js2+2J0°Js10.J2
COEFFICIENTS FOR THEMIDDLE STENCIL +2J0%Ts5+J2—3J0%J2—J0%J2% =2 522 J2
The spanning set of functions for the middle stencil are +J2°4+4J55]0]52—2Js5J0J2—70J 3

+4J0J3J52+4J0J513Js2—J0J s13—2.J 510 52
+4J510J52% —2J55J0—4J 52T 5510
—2J522J0J513—2J522J0J3—2J510J2.J 52
+4.J0%72J52) /(470 Js5° +4.Js5J0J s10.J2
R=2 {JO — cos (kh COS(¢>))] : (26) ~8755J0J510752+4.Js5707510—4J 557 513.70
—4Js5J3J0%—2J510%J2—3.J0%+2J0%J3Js13
+4.J55.J52.J513+4J55J52J3—4.J510J0J513.] 52
P=n 1272447510J073—47s10J0J3] s2

Py = o(=i%h sin(4) (dl +d2 cos (kh cos(q/)))) +d3 +J0% 73747075137 —2J3Js13 + 4J510% J2”
+4J510J0J513—2Js5%J2—Js13%—2Js5%—J 3*
—4J0%J24-4J0%Js2—J0% J22 =2 522 J 2+ J 2*

+ d5 cos (kbh cos(9))e (=74 5n(¥) 275107 =27 52* +14+4]0% 12 52) (30)
+ dge(=iFnsin@) 4 g7

Fy = 2¢= 08k sin(9) o5 (kh cos(¢)) — 2J52
Fy :e—jkh sin{¢) _ Jo
Fy = 2632k sin(9) og (kh cos(¢)) —2J5s5

An orthogonal set that spans the same space is

Ps =d4 cos (kh cos(¢))e<2jkh Sin(¢)>

@7y, :2(—J252J55J0—|—J252J0J513J52—|—J510J22
where — J252.J55J0J2+2J252J55J0.52—2J2.] 52
+2J52J3Js134J2J0J3.J 524 J2.J0J513.J 52
+.J2J85J0J52—2J0%Ts5%+2.J 552 J 522
—92J55J0J 51072425570 s10.J 2

d3 = JO(1 + J2 = 2J52) —9755J0J 510437 55J 513702 —4.] 557 513.J 522
D1 =m(4J3 4+ 4J513 — 8Js5Js2) —4J55J3J52%+3Js5J3J0%+2J55°Js2+2J0°
D2 =n(—8Js2” +4(1+ J2)) —2J0%J3J513—Js2+2J510J0.J513J 52

dl=2Js22 —1— J2
d2 =2J0(1 — Js2)
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—Js10J0J3+27s10J0J3.Ts2—J0%732—27s5%70

—J0?Js13% = Js10J0Js13—2J 522751072
+3J0%J2—3J0% Js24J0? 2% — ] 5537510
—J 5513751042755 Js2J 510427 s2°
—Js5J0Js2+ 525132+ Js10J2+ Js2.J 3>
+7252J510—2J252.J510.] s2% — J252.J0J 3
+.7252J 510727252073 s2+.Js5J0
—J2J0Js13—J2J0J3—Js5.J0J2°
—J252J0J 513+ Js5%J3J04.Js5%Js13.J0
+2752° 72— 727 Js2—3J0%J2Js2)/(4J0% T s5°
+4J55J0J510J2—8Js5J0J510. 52
+4J55J0J510—4.Js5.]s13J0%—4Js573J0°
—2J510%J2—3J0%+2J0%J3J 513
+4J55.]52J513+4J55]52J3—4J510J0J513. 52
+2J244J510J0J3—4.Js10J0J3.J s2
+70%732 470275132 —2J3J513+4J510% ] 527
+4J510J0Js13—2Js5%J2— Js13% —2.J 55>
—J32—4J0%J244J0%Js2—J0? J 2% —2]52% ]2
—|—J22—2J5102—2J522—|—1—|—4J02J2J52) (31)
W, =— (—J513J2—2J0J55J52J3—2J0J55J52J513

—J3J24J04+4J0Js2Js5%+4J0J52J s10*
+J3J0%7242J55T52J2+Js5—2J510J0% 513
+J513J0%72-27510J0%73—2J0J 5524703
—2J55°—2J0J510J2Js2—3Js5J 0% 2
+2J0J510J2—Js5J0*—J252J513—4.J0J 52
—J252J3—2J0J510%+4Js5%J0Js10
—2J252Js5J0%+JsbJ2+ 725270273
+.J252J0% 513427252 55.] 52
—2J0J52J252J510+2.J 22 J042.J510.] s2.] s13
+J0%72—4J2J0J52+42T510.Js2.J 3
+2J55J0J51342J55J0J3—4Js10J52%Js5
+2J2J522J0—2J55J510%4+2.J0.J2s2.J 510
+70J2)/(470%Js524+4.Js5J0J510J2
—8J55J0J510J52+4.J5J0.Js10
—4Js5Js13J0% =4Js5J3J0% —2Js10%J2
—3J0%4+270%73J513+4J55J52.Js13
+4J55J52J3—4J510J0Js13J52+2J2
+4J510J0J3—4J510J0J3.J s2+J0% J 3
+J0%Js13%2—2J3Js13+4.Js10% Js2?
+4J510J0Js13—2Js5%72— Js13>
—2Js5%—J3%—4J0%J2+44J0%Js2—J0% 22
—2J522J24 722 —2J510%—2.752?

—|—1—|—4J02J2J52) . (32)
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