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Integer Lattice Gas Automata for Computational
Electromagnetics
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Abstract—Integer lattice gas automata (ILGA) are combined
with the transmission-line matrix (TLM) method to yield a new
electromagnetic-field computation algorithm using very low-preci-
sion integer variables. Lattice gas automata can be evaluated using
look-up tables on special-purpose hardware and do not require
floating-point arithmetic. In this paper, we present a TLM moti-
vated ILGA with emphasis placed on algorithms that demonstrate
minimal dissipation.

Index Terms—Computational electromagnetics, lattice gas au-
tomata, TLM.

I. INTRODUCTION

T RANSMISSION-LINE matrix (TLM) methods are widely
used in the numerical solution of Maxwell’s equations [1].

The evaluation of the TLM method and other electromagnetic
(EM) analysis techniques is based on the use of floating-point
processors. Lattice gas automata (LGA) have been investigated
as an alternative approach for the solution of partial differential
equations [2], [3]. LGA can be evaluated using look-up tables
on special-purpose hardware and do not require floating-point
arithmetic. A generalization of LGA using low-precision integer
variables as opposed to single-bit variables have also been pro-
posed [4] and are referred to as integer lattice gas automata
(ILGA). We will show that we can combine the optimal fea-
tures of both of these algorithms into a “TLM-motivated” algo-
rithm for the solution of EM field problems. Special-purpose
computer architectures such as the CAM-8 cellular automata
(CA) machine [5] can be used for the efficient evaluation of
this algorithm.

The straightforward conversion of the TLM algorithm to an
integer arithmetic environment is not possible. Roundoff error
introduces statistical noise that grows with the square root of
time. This noise can eventually become larger than the desired
signals within the computation. In an integer-based algorithm,
a dissipative behavior is also present. To reduce the dissipative
errors, we have developed an algorithm based on low-precision
integer arithmetic (ILGA) rather than single-bit variables (LGA)
in order to implement TLM-like scattering events. By enforcing
conservation laws for fields and energy in our algorithm, results
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Fig. 1. ILGA usingM = 2 bits per direction on a hexagonal lattice. Each
direction can hold as many as2M �1 particles, whereM is the number of bits.
The distance between nodes along each of the three mesh directions is�l [8].

show that the dissipation can be significantly reduced using only
4-bit integer variables.

This paper will outline the algorithm and present the results
of a benchmark test of a two-dimensional waveguide structure.

II. HEXAGONAL TLM M ETHOD

Although the TLM algorithm may, in principle, be applied to
different lattices [6], [7], we base this discussion on a hexagonal
lattice. The propagation characteristics of the hexagonal mesh
are more isotropic than those of a rectangular mesh for both
TLM and finite-difference algorithms [8]. The TLM operation
for voltage propagating on a hexagonal lattice (shown in Fig. 1)
is given by [8]
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[V ]t+1 = CTLM[V ]t (1)

whereCTLM is the scattering matrix. All variables are repre-
sented by a floating-point value and the update operation re-
quires floating-point operations. Note that we have presented
the scattering matrix here in LGA notation, so that incident and
reflected voltages exchange indexes symmetrically about the
origin of the node. Equation (1) applies to a single node on the
lattice. In one time step, this equation is simultaneously applied
to all nodes on the lattice.

III. ILGA

CA have the property of being completely discretized, in
space, time, and dependent variable [9]. This differs from
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traditional TLM, finite-difference and finite-element schemes,
which are discretized in time and space, but continuous in
dependent variable. The dynamics of a cellular automaton
are specified by a “rule” that determines what the state of the
system will be at time stept + �t based on its state and the
state of its neighbors at timet.

LGA are special types of CA for which there is some asso-
ciation between the state at a site and that site’s neighbors on
the lattice and for which the rule that determines collisions at
a node obeys some conservation law, e.g., mass or momentum
[2]. A time step is composed of two phases. The first is known
as the “collision” phase. It is in this phase that the rule is ap-
plied. The second phase is known as “streaming” (or “advec-
tion”) phase, in which all particles on the lattice move to adja-
cent sites (i.e., a westbound particle moves one step west). These
particles may be thought of as variables moving about the lat-
tice. In the usual model, the state at a node may be described in
terms of single-bit variables. If a node has one of its directions
occupied, the bit for that direction is turned “on” (set to one);
if it is unoccupied, that bit is turned “off” (set to zero). These
models may also allow rest particles that can be used to change
the propagation velocity [10].

For an ILGA, the state at a node may be described in terms
of multiple-bit variables [4], i.e., a site may have more than one
particle traveling in any direction. An integer then represents
the number of particles in a given direction, as opposed to only
1 bit in the standard LGA. Fig. 1 shows the ILGA on a hexagonal
lattice using 2 bits per direction, thus allowing 0–3 particles to
exist per direction at a site.

IV. TLM-M OTIVATED ILGA COLLISION RULE

For an integer variable hexagonal lattice, we specify the state
of a cell by a vector of six integers,[N ], one for each direc-
tion. If M -bit integer variables are used, up to2M � 1 particles
per direction are allowed,0 < Ni < 2M � 1. The TLM op-
eration may be applied as an ILGA collision rule if truncation
due to the use of integer arithmetic is accounted for [11]. For
the hexagonal lattice of Fig. 1, a collision rule is constructed by
splitting the number of particles in each direction into a quo-
tient, i.e.,NQ, which is divisible by three and a remainderNR.
Specifying[N ] = [NQ]+[NR], the TLM collision operation (1)
can then be exactly applied toNQ without roundoff. The ILGA
collision operation is defined by applying the TLM operator to
NQ and a streaming operator toNR as

[NR]
t = mod

�
[N ]t; 3

	
(2)

[NQ]
t = [N ]t � [NR]

t (3)

[N ]t+1 = CTLM[NQ]
t + I6[NR]

t (4)

whereCTLM was defined in (1), andI6 is the 6� 6 identity
matrix. Note that the collision operation as applied by (4) does
not simply imply rounding down to the nearest integer divisible
by three. The operation exactly conserves the total number of
particles and the particle momentum (and, thus, localE- and
H-fields). Local energy density is not exactly conserved, but

TABLE I
PERCENTAGE OFSTATES INVOLVED IN THE TLM OPERATION AS A

FUNCTION OF NUMBER OF BITS

is approximately conserved since the particles undergoing the
TLM operation conserve energy density and the streamed par-
ticles act as a perturbation to this. The nonexact conservation
of energy in the model leads to a dissipation of fields as they
propagate in the lattice and is discussed later in the paper. Alter-
nate operators, in place of the trivial streaming operatorI6, that
still obey the same conservations can also be found, such as the
single-bit FHP rule [10] used in fluid dynamics models.

The operation (4) handles roundoff due to integer arithmetic,
but does not handle possible overflow or underflow of variables.
All variables before and after collision must be in the range0 <
Ni < 2M � 1. If the operation defined by (4) does not satisfy
this condition, we alter the original state by a fractional amount
�k as

[N 0]t = int
�
�k[N ]t

	
(5)

[N 00]t = [N ]t� [N 0]t (6)

�k = k
��
2M � 1

�
(7)

wherek�f0; 1; 2; � � � ; 2M � 1g andintfxg is the integer por-
tion of x. A streaming operation is then applied toN 0 and the
TLM operation is applied to the remainingN 00 following the
rule defined in (4) as

[N ]t+1 = CTLM
�
N 00

Q

�t
+ I6

�
N 00

R

�t
+ I6

�
N 0

�t
: (8)

The procedure (5)–(7) is repeated fork = 0; 1; 2 to 2M � 1
until a valid collision operator is obtained where all0 < Ni <

2M � 1.
When the number of bitsM used in the model is small, col-

lisions will be dominated by the streaming operation. As the
number of bits increases, however, the proportion of particles
undergoing a TLM operation increases and the proportion of
particles streamed decreases. Table I gives the percentage of par-
ticles that undergo a TLM collision event forM = 2; 3; 4; 5
bit variables. Table I was determined by summing the propor-
tion of particles that undergo a TLM collision for all possible
input vector combinations and weighting these by the proba-
bility of their occurrence. We observe that, for even 5-bit vari-
ables, almost all collision events obey the TLM operation. For
5-bit variables, energy density is almost exactly conserved, and
we expect that the dissipation will be very small. This is exam-
ined in Section VI.

V. LOOK-UP-TABLE-BASED COMPUTATION

Since our model is entirely integer based, a look-up table can
be used to describe the state of a node after a collision occurs. If
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one allows a long integer (32 bits) to represent the state of one
lattice site, then each of the six directions at a node would have
up to 5 bits available to specify the number of particles in that di-
rection. For 4 bits per direction, for example, a 24-bit integer de-
scribes the state. A simple look-up table can then be configured
to directly correspond to the integer representing the new state
of the node. ForM bits per direction, there are 26M possible
states available, hence, for 4 bits per direction, a 4� 224 = 67.1
� 106 byte look-up table is required. Using 5 bits per direction
becomes impractical since the look-up table requires 4.29� 109

bytes. In this case, the collisions can be determined without the
use of the look-up table, i.e., by determining collisions as the
simulation proceeds, but at a great sacrifice to speed.

One of the motivations for using the LGA approach is that it
is amenable to implementation on a fine-grain parallel architec-
ture, such as the cellular automata machine 8 (CAM-8) [5]. The
CAM-8 contains one or more modules containing 106 16-bit
cells along with the hardware for updating them. Each cell rep-
resents a node on the lattice. Therefore, a square lattice can hold
as many as 15 particles in each of its four directions [11]. The
CAM-8 is capable of performing 200� 106 site updates per
second on spaces consisting of 32� 106 sites. For a hexagonal
lattice, the CAM-8 is not as desirable due to the extra number of
particles representing the state and, therefore, the large look-up
table size. The 16 bits would only yield a maximum of 2 bits per
direction for this approach, which may not sufficiently reduce
the dissipation (see Table I).

CAM-8 operates on 16 bits per site at any instant of time. Im-
plementations involving cell sizes of more than 16 bits can be
accommodated by parsing the particle interactions into 16-bit
operations. It is desirable to minimize the number of 16-bit
operations required. In general, anN -bit collision process re-
quires a 2N -sized look-up table. If anN -bit collision operator
(N = K + 16) look-up table is to be parsed in a brute-force
manner into 16-bit operations, 2K look-up tables are required.
It is, therefore, desirable to exploit any symmetries or factor-
izations to parse a collision operator involving more than 16
bits. For example, in [12], the implementation of a face-centered
hyper-cubic (FCHC) LGA on CAM-8 is described. The FCHC
LGA requires 24 particles per cell, however, Alder,et al.were
able to split the 24-bit collision process into two 16-bit colli-
sion events.

Evaluation of the algorithm as implemented on the hexagonal
lattice was performed using a C program, while evaluation of the
algorithm as implemented on the square lattice was performed
using CAM-8 [11].

VI. RESULTS

It is common to characterize an LGA by determining its
equilibrium properties. One way of characterizing the state of a
lattice at a particular time step is to accumulate the occurrence
of every possible state forNi over the entire lattice. Once these
accumulated states remain (relatively) constant versus time,
equilibrium has been reached. Usually this occurs after tens of
time steps for the ILGA investigated here.

To show that the TLM method is approximated by the ILGA
algorithm, the equilibrium distributions were determined for

Fig. 2. Comparison of the equilibrium distributions for the two methods. The
TLM distribution is similar to that of the ILGA.

both models. Fig. 2 compares the equilibrium distributions of
particles as a fractional occupation for the ILGA with 4 bits per
direction and for the floating-point TLM method. The TLM
equilibrium distribution was obtained through simulation of
a randomly initialized TLM mesh. Voltage pulses within a
TLM mesh were initialized using a uniform distribution from
0 to 1. The TLM space using these random initial values was
simulated for several thousand time steps in order to obtain
an equilibrium distribution of voltages. The floating-point
TLM equilibrium voltage values were binned using 0.0625
intervals. If a particle is interpreted as a packet of voltage, their
distributions are similar. The tails of the ILGA distribution must
necessarily be cut off at zero and 2M

� 1, which is the main
source of the deviation in the distribution from the TLM model.

An inherent dissipation is present within simulations using
the TLM-motivated ILGA. The streamed particles (discussed
in Section IV) are similar to those seen in ILGA simulations of
fluid dynamics, in which a viscosity is inherent. These do not
obey TLM-like energy conserving collisions. The dissipation is
analogous to a viscosity, the effect of which can be determined
by solving the Navier–Stokes equation to give the variation in
density of particles with time�� as [13]

�� / exp
�
�k2�t

�
(9)

wherek = 2�=� defines the wavenumber and� is the viscosity.
If the viscosity is zero, we obtain lossless behavior. Hence,
the validity of the ILGA model as applied to electromagnetics
is dependent on showing that the viscosity can be eliminated
in some manner. Quantification of the viscosity has been
performed through derivation of the dispersion relation of the
method [14].

As the number of bits allocated per direction increases, the
proportion of states that obey TLM-like collision operations
increases, as seen in Table I, and the model approximates the
floating-point TLM method. We, therefore, expect the effect of
damping to decrease as the number of bits increases. In addi-
tion, from (9), we expect the effect of the damping to disappear
as�l=� approaches zero (the grid spacing becomes infinites-
simal) sincek = 2��l=�.

To study the effect of damping in our ILGA algorithm and
its dependence on the number of bits used to represent the vari-
ables, we have simulated a two-dimensional cross section of a
rectangular waveguide of dimensiona � b.
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Fig. 3. Five trials for an FHP collision rule [10] for 3 bits per direction,
initialized to a(1; 0) mode. They-axis is the average density of particles in
the sample space.

The TE propagation equations for a waveguide operating in
an (m; n) mode are described by [15]

Hz =A cos
�m�x

a

�
cos
�n�y

b

�
e�
z

Ez =0 (10)

whereA is a constant, andEz andHz are thez components
of the electric- and magnetic-field strengths, respectively. If
the density of particles is taken to be proportional to the field
strength, ana � b lattice may be initialized to reflect the field
strength. The cutoff frequency of a particular mode is

fm;n =
cs
2

r�m
a

�2
+

4

3

�n
b

�2
(11)

wherecs = �l=(
p
2�t). The 4/3 term is due to the asymmetry

of a hexagonal grid in thex andy dimensions (see Fig. 1). The
distance between grid points in thex-direction is�l, however,
the distance between grid lines in they-direction is

p
(3)�l=2.

In (10),x andy are expressed in terms of Cartesian coordinates,
while a andb in (11) refer to the number of grid points in thex-
andy-directions, respectively.

The simulation size wasa = b = 64, corresponding to
a physical space of64 � (

p
3=2)64. The sample space was

a 10� 10 section in a region containing a maximum at ini-
tialization. Several different modes were tested, in particular
(m; n) = (0;1), (1,0), (1,1) and (2,1), for up to 5 bits per di-
rection. To excite the lattice, the probabilityp of filling a bit at
a node was defined as

p = 0:5 + 0:1 cos
�m�x

a

�
cos
�n�y

b

�
(12)

to achieve a 50% density perturbed according to (10). Five dif-
ferent initial distributions inHz were used.

Fig. 3 shows the density versus time step forfive different ini-
tial (1; 0)-mode distributions, using a traditional LGA rule that

Fig. 4. Averaged data and envelope curve using 3 bits per direction, initialized
to a(1;0) mode.

Fig. 5. Envelope curves for 2–5 bits per direction, initialized to a(1;0) mode.
Note that since the amplitudes and average values increase with the number of
bits used, these curves have been normalized such that they all lie between�1
and+1.

conserves mass and momentum, but does not attempt to opti-
mally apply theCTLM collision operator. This can be considered
as analogous to the FHP rule [10] using 3 bits per direction, as
applied in [4]. The results are noisy due to the small grid used.
An increase in grid size to 128� 128 considerably reduces the
noise, but requires four times the computation time. We use en-
semble averaging overfive trials in our results. In the remainder
of this paper, we present data obtained from application of the
ILGA described in Section IV.

To obtain a viscosity from these curves, an average of thefive
data sets was taken and the result fit to the analytical expression

Hz(t) = A sin(!t + �) exp(�Bt) +C (13)
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TABLE II
VISCOSITY FOR ALL RULES AND ALL MODES

Fig. 6. Viscosity as a function of number of bits for the(1; 0), (0;1), (1;1),
and(2; 1) modes.

using the Levenberg–Marquardt method [16]. Here,B = k2�
and� is the viscosity. The uncertainty on each data point was
taken as the standard deviation.

For the(1; 0) mode, the raw data is shown with the exponen-
tial envelope curve for 3 bits per direction in Fig. 4. The transient
response is provided for over 50 periods. The raw data shown is
the average over thefive data sets obtained for different random
number generator seeds. Fig. 5 shows the exponential envelope
curves for a(1; 0) mode for 2–5 bits per direction. As expected,
the damping decreases as the number of bits increases. In ad-
dition, the damping observed in simulations of the ILGA pre-
sented in this paper is significantly less than that observed in
simulations of the ILGA of [4].

The viscosity values calculated from the fit parameters are
given in Table II for (1; 0), (0; 1), (1; 1), and (2; 1) modes
and shown graphically in Fig. 6. These modes correspond to
plane-wave propagation through the mesh at angles of 0�, 90�,
45�, and 26.6� to thex-axis, respectively. These results show
that the viscosity is slightly anisotropic, which is unexpected
for a hexagonal lattice.

Results were also obtained using 3 bits per direction for the
(2; 0) and(4; 2) modes for comparison to the(1; 0) and(2; 1)
modes, respectively. A 128� 128 lattice was used for these
higher modes since the results decay rapidly on a smaller lattice.
For these cases,�20 = 0:024 � 0:001 and �42 = 0:017 �
0:002, showing good agreement with the(1; 0) and(2; 1) results

of �10 = 0:0204 � 0:0009 and�21 = 0:0174 � 0:0007. A
(3; 0) mode gives�30 = 0:026 � 0:007. We have observed
that the uncertainty in the viscosity increases considerably for
higher modes.

VII. D ISCUSSION

We have developed an algorithm that successfully combines
TLM and ILGA methods for the numerical solution of EM field
problems. The dissipative error encountered is significantly re-
duced for larger numbers of bits. In [14], the dispersion rela-
tion of the algorithm is derived in order to quantify the dissipa-
tive errors.

The algorithm’s total discretization of time, space, and depen-
dent variable has the advantage of implementation on a CAM-8
style processor, thus eliminating the need for a floating-point
processor. Since the model is entirely integer-based, a look-up
table can be used to describe the state of a node after a col-
lision occurs, resulting in a relatively small computational re-
quirement to update the individual cells.

As a preliminary investigation into the relative computational
effort (CE) required for the TLM-motivated ILGA, we use the
method presented in [17] to compare to the standard TLM, using
a square lattice. In two dimensions, for physical dimensions
Dx�Dy, the number of cells isDx=�lx andDy=�ly, respec-
tively. The relative CE in two dimensions is then

CETLM
CEILGA

=
N t
TLMN

x
TLMNy

TLMN
ops
TLM

N t
ILGAN

x
ILGAN

y

ILGAN
ops
ILGA

(14)

whereN t is the number of time steps,Nx; y is the number
of cells in thex or y dimension, andNops is the number of
operations required per cell per time step. The time steps,
i.e.,�t = �l=

p
(2), are the same for both algorithms in two

dimensions. From our numerical experiments, we have found
that 2–3 TLM-motivated ILGA cells per dimension are required
(at 4 bits per direction) for every cell in the TLM method per
dimension to achieve the same degree of accuracy. Taking the
worst case,�lTLM = 3�lILGA. We obtain

CETLM
CEILGA

=

�
�lILGA
�lTLM

�3
Nops

TLM

Nops
ILGA

(15)

CETLM
CEILGA

=

�
1

27

�
Nops
TLM

Nops
ILGA

: (16)

For a square lattice, the TLM method requires 16 floating-point
multiplications and 12 additions per cell at each time step. How-
ever, the ILGA requires only a single look-up-table operation
per time step. The ILGA can be evaluated using special-purpose



990 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 48, NO. 6, JUNE 2000

hardware such as CAM-8 where parallelism is easily and inex-
pensively realized. A comparison of actual computation speeds
would require comparison of a floating point architecture with
a look-up-table-based computing architecture.

To solve the most general EM-field problems, an algorithm
such as the three-dimensional symmetrical condensed node
(SCN) TLM is required [18], as well as graded meshes and
permittivity stubs. The general form of these scattering matrices
contains real number entries, not easily divisible by integers.
We are currently investigating the applicability of the approach
described here to these more complex algorithms. An LGA
(using single-bit variables) for solving Maxwell’s equations in
three dimensions is described in [19]. The algorithm described
here is compatible with the three-dimensional LGA.
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