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Integer Lattice Gas Automata for Computational
Electromagnetics

Joanne R. Treurniet, Neil R. S. Simons, and Greg E. Bridigiesnber, IEEE

Abstract—Integer lattice gas automata (ILGA) are combined / \ / /
with the transmission-line matrix (TLM) method to yield a new
electromagnetic-field computation algorithm using very low-preci-
sion integer variables. Lattice gas automata can be evaluated using

look-up tables on special-purpose hardware and do not require
floating-point arithmetic. In this paper, we present a TLM moti-
vated ILGA with emphasis placed on algorithms that demonstrate

minimal dissipation.

Index Terms—Computational electromagnetics, lattice gas au-

tomata, TLM.
Fig. 1. ILGA usingM = 2 bhits per direction on a hexagonal lattice. Each
direction can hold as many a8’ — 1 particles, wheré/ is the number of bits.
|. INTRODUCTION The distance between nodes along each of the three mesh directibhf8s

RANSMISSION-LINE matrix (TLM) methods are widely gpq\y that the dissipation can be significantly reduced using only
used in the numerical solution of Maxwell's equations [1];_p i integer variables.

The evaluat|_0n of th_e TLM_ method and other electromagnet_lc-l-his paper will outline the algorithm and present the results
(EM) analysis te_chmques is based on the use of ro_atmg-_poB]Ia benchmark test of a two-dimensionaweguide structure.
processors. Lattice gas automata (LGA) have been investigated
as an alternative approach for the solution of partial differential
equations [2], [3]. LGA can be evaluated using look-up tables
on special-purpose hardware and do not require floating-pointAlthough the TLM algorithm may, in principle, be applied to
arithmetic. A generalization of LGA using low-precision integeflifferent lattices [6], [7], we base this discussion on a hexagonal
variables as opposed to single-bit variables have also been pa#tice. The propagation characteristics of the hexagonal mesh
posed [4] and are referred to as integer lattice gas automatg more isotropic than those of a rectangular mesh for both
(ILGA). We will show that we can combine the optimal feaTLM and finite-difference algorithms [8]. The TLM operation
tures of both of these algorithms into a “TLM-motivated” algofor voltage propagating on a hexagonal lattice (shown in Fig. 1)
rithm for the solution of EM field problems. Special-purposés given by [8]
computer architectures such as the CAM-8 cellular automata t+1

Il. HEXAGONAL TLM M ETHOD

(CA) machine [5] can be used for the efficient evaluation off .} ! ! =2 ! ! "
. : Vo 1 1 1 1 -2 1 Vo
this algorithm. v 1 1 1 1 1 1 9 v
The straightforward conversion of the TLM algorithm to an| ;> == 3
. . . : ; : Va 3|2 1 1 1 1 1 Va
integer arithmetic environment is not possible. Roundoff erro 1 _9 1 1 1 1 v
introduces statistical noise that grows with the square root df V5 1 1 _9 1 1 1 V5
time. This noise can eventually become larger than the desired” ° 6
signals within the computation. In an integer-based algorithr@f
a dissipative behavior is also present. To reduce the dissipative
p p p [V]H—l — CTLM[V]t (1)

errors, we have developed an algorithm based on low-precision
integer arithmetic (ILGA) rather than single-bit variables (LGAQNhereCTLM is the scattering matrix. All variables are repre-

in ordertolimplement TLM-Iike scatterin'g events. By enforcingented by a floating-point value and the update operation re-
conservation laws for fields and energy in our algorithm, resul&%ires floating-point operations. Note that we have presented

the scattering matrix here in LGA notation, so that incident and
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traditional TLM, finite-difference and finite-element schemes, TABLE |
which are discretized in time and space, but continuous in PERCENTAGE OF?:?JE?L%VS;VNEBJ:ET;EFT;'\TASOPERAﬂON AS A
dependent variable. The dynamics of a cellular automaton

are specified by a “rule” that determines what the state of the Bits | % TLM
system will be at time step+ At based on its state and the 5 [ 774
state of its neighbors at time 3 55.44

LGA are special types of CA for which there is some asso- 4 83.55
ciation between the state at a site and that site’s neighbors on 5 | 9800

the lattice and for which the rule that determines collisions at

a node obeys some conservation law, e.g., mass or momentum

[2]. A time step is composed of two phases. The first is know# approximately conserved since the particles undergoing the
as the “collision” phase. It is in this phase that the rule is ag-M operation conserve energy density and the streamed par-
plied. The second phase is known as “streaming” (or “advdicles act as a perturbation to this. The nonexact conservation
tion”) phase, in which all particles on the lattice move to adj&f energy in the model leads to a dissipation of fields as they
centsites (i.e., awestbound particle moves one step west). TH¥QPagate in the lattice and is discussed later in the paper. Alter-
particles may be thought of as variables moving about the 18@te operators, in place of the trivial streaming operafpthat

tice. In the usual model, the state at a node may be describe§!i obey the same conservations can also be found, such as the
terms of single-bit variables. If a node has one of its directiogégle-bit FHP rule [10] used in fluid dynamics models.
occupied, the bit for that direction is turned “on” (set to one); The operation (4) handles roundoff due to integer arithmetic,
if it is unoccupied, that bit is turned “off’ (set to zero). Thesd®ut does not handle possible overflow or underflow of variables.

models may also allow rest particles that can be used to chafge/ariables before and after collision must be in the rabge

the propagation velocity [10]. N; < 2M — 1. 1f the operation defined by (4) does not satisfy
For an ILGA, the state at a node may be described in terithis condition, we alter the original state by a fractional amount

of multiple-bit variables [4], i.e., a site may have more than orf&: as

particle traveling in any direction. An integer then represents

nt _ 13
the number of particles in a given direction, as opposed to only [NT = mt{ak[N] } ®)
1 bitin the standard LGA. Fig. 1 shows the ILGA on a hexagonal N — INTE— [T 6
lattice using 2 bits per direction, thus allowing 0-3 particles to [VTT" = [N = V7] (6)
exist per direction at a site. o
ap =k/ (2" 1) @)
V. TLM-M OTIVATED ILGA COLLISION RULE whereke{0, 1, 2, ---, 2M — 1} andint{z} is the integer por-

For an integer variable hexagonal lattice, we specify the stdi@n of z. A streaming operation is then appliedAd and the
of a cell by a vector of six integerg)V], one for each direc- TLM operation is applied to the remaininyy” following the
tion. If M -bit integer variables are used, up2Y — 1 particles rule defined in (4) as
per direction are allowed) < N; < 2™ — 1. The TLM op- 41 it it mt
eration may be applied as an ILGA collision rule if truncation [N = Crum[Ng] + s [NE] + Is[N']. (8)
due to the use of integer arithmetic is accounted for [11]. Fehe procedure (5)—(7) is repeated for= 0, 1, 2 to 24 — 1
the hexagonal lattice of Fig. 1, a collision rule is constructed Ryj| 5 valid collision operator is obtained where @ik N; <
splitting the number of particles in each direction into a quaps _
tient, i.e.,Nq, which is divisible by three and a remaind¥.. When the number of bitd/ used in the model is small, col-
Specifying[N] = [Ng]+[Nr], the TLM collision operation (1) |isions will be dominated by the streaming operation. As the
can then be exactly applied fé&; without roundoff. The ILGA  hymper of bits increases, however, the proportion of particles
collision operation is defined by applying the TLM operator tngergoing a TLM operation increases and the proportion of
Nq and a streaming operator 0 as particles streamed decreases. Table | gives the percentage of par-

" " ticles that undergo a TLM collision event fad = 2, 3, 4, 5

[Nr]" = mOd{[N] ' 3} (2) bit variables. Table | was determined by summing the propor-
tion of particles that undergo a TLM collision for all possible
[No]" = [N]' — [Ng]' (3) input vector combinations and weighting these by the proba-
bility of their occurrence. We observe that, for even 5-bit vari-
ables, almost all collision events obey the TLM operation. For
5-bit variables, energy density is almost exactly conserved, and
we expect that the dissipation will be very small. This is exam-
ér%ed in Section VI.

[N]*! = Crim([Ng]' + Is[NR)' 4)

whereCti,m Was defined in (1), ands is the 6 x 6 identity
matrix. Note that the collision operation as applied by (4) do
not simply imply rounding down to the nearest integer divisible
by three. The operation exactly conserves the total number of
particles and the particle momentum (and, thus, ld¢abnd Since our model is entirely integer based, a look-up table can
H -fields). Local energy density is not exactly conserved, bbie used to describe the state of a node after a collision occurs. If

V. Look-UP-TABLE-BASED COMPUTATION
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one allows a long integer (32 bits) to represent the state of or 4|
lattice site, then each of the six directions at a node would hax
up to 5 bits available to specify the number of particles in that di § ooy
rection. For 4 bits per direction, for example, a 24-bit integer de § aos
scribes the state. A simple look-up table can then be configure?,
to directly correspond to the integer representing the new sta **
of the node. ForM bits per direction, there aré¥ possible
states available, hence, for 4 bits per directionya2f* = 67.1
x 10° byte look-up table is required. Using 5 bits per direction *%="—e——%¢ 75 —is 0 . m

. . . . Mugnitude of veflage pulse (TLM) Number of particles (ILGA)
becomes impractical since the look-up table requires A.20°
bytes. In this case, the COI.“SIOnS can be (.je.term'”?q without |8. 2. Comparison of the equilibrium distributions for the two methods. The
use of the look-up table, i.e., by determining collisions as thgw gistribution is similar to that of the ILGA.
simulation proceeds, but at a great sacrifice to speed.

One of the motivations for using the LGA approach is that it . . C
is amenable to implementation on a fine-grain parallel archite?th models. Fig. 2 compares the equilibrium distributions of

ture, such as the cellular automata machine 8 (CAM-8) [5] Trpé@lrticles as a fractional occupation for the ILGA with 4 bits per
CAM-S contains one or more modules containing J]GB-bit. direction and for the floating-point TLM method. The TLM
cells along with the hardware for updating them. Each cell reBguilibrium o!is_trib_ution was obtained through simula_tio_n of
resents a node on the lattice. Therefore, a square lattice can KbiEgndomly initialized TLM mesh. Voltage pulses within a
as many as 15 particles in each of its four directions [11]. TH&-M mesh were initialized using a uniform distribution from
CAM-8 is capable of performing 208 10° site updates per 0 to 1. The TLM space using these random initial values was
second on spaces consisting o820 sites. For a hexagonaISimUIated for several thousand time steps in order to obtain
lattice, the CAM-8 is not as desirable due to the extra number3f eq“"'?’!““_m distribution of voltages. . The floz_ﬂlng-pomt
particles representing the state and, therefore, the large Iook_--rd‘ﬂvI equilibrium _volt_ag_e values were binned using 0'0625_
table size. The 16 bits would only yield a maximum of 2 bits péptervals. If a particle is interpreted as a packet of voltage, their
direction for this approach, which may not sufficiently reducdistributions are similar. The tails of the ILGA distribution must
the dissipation (see Table i) necessarily be cut off at zero and2- 1, which is the main
CAM-8 operates on 16 bité per site at any instant of time insource of the deviation in the distribution from the TLM model.

plementations involving cell sizes of more than 16 bits can e/ AN mheren_t dissipation is present within S|_mulat|ons using
accommodated by parsing the particle interactions into 16-Di TLM-motivated ILGA. The streamed particles (discussed

operations. It is desirable to minimize the number of 16-blfp Section I\_/) are sim_ilar to t_hose_se_en_in ILGA simulations of
operations required. In general, &hbit collision process re- luid dynam_lcs, in which a V|sc_:05|ty IS |_nherent. Thes_e d_o ”F’t
quires a 2’ -sized look-up table. If anV-bit collision operator obey TLM-like energy conserving CO"'S'O_nS' The d|SS|pat|or_1 IS
(N = K + 16) look-up table is to be parsed in a brute-forcé‘nak)g(_)us to awsqosny, the effect qf Wh|ch_can be de'Fer_mm_ed
manner into 16-bit operationsX2look-up tables are required. by solving the Navier—Stokes equation to give the variation in

It is, therefore, desirable to exploit any symmetries or factofiensity of particles with timép as [13]

izations to parse a collision operator involving more than 16

bits. For example, in [12], the implementation of a face-centered ép o exp (—k*vt) (9)
hyper-cubic (FCHC) LGA on CAM-8 is described. The FCHC

LGA requires 24 particles per cell, however, Alderal.were wherek = 27/ defines the wavenumber ands the viscosity.
able to split the 24-bit collision process into two 16-bit colli{f the viscosity is zero, we obtain lossless behavior. Hence,
sion events. the validity of the ILGA model as applied to electromagnetics

Evaluation of the algorithm as implemented on the hexagorigldependent on showing that the viscosity can be eliminated
lattice was performed using a C program, while evaluation of tii¢ some manner. Quantification of the viscosity has been
algorithm as implemented on the square lattice was performgeiformed through derivation of the dispersion relation of the
using CAM-8 [11]. method [14].

As the number of bits allocated per direction increases, the
proportion of states that obey TLM-like collision operations
increases, as seen in Table |, and the model approximates the

It is common to characterize an LGA by determining itfloating-point TLM method. We, therefore, expect the effect of
equilibrium properties. One way of characterizing the state ofdamping to decrease as the number of bits increases. In addi-
lattice at a particular time step is to accumulate the occurrertaan, from (9), we expect the effect of the damping to disappear
of every possible state fd¥; over the entire lattice. Once theseas Al/A approaches zero (the grid spacing becomes infinites-
accumulated states remain (relatively) constant versus tinsemal) sincek = 2w Al/A.
equilibrium has been reached. Usually this occurs after tens ofTo study the effect of damping in our ILGA algorithm and
time steps for the ILGA investigated here. its dependence on the number of bits used to represent the vari-

To show that the TLM method is approximated by the ILGAbles, we have simulated a two-dimensional cross section of a
algorithm, the equilibrium distributions were determined forectangular aveguide of dimension x b.
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initialized to a(1,0) mode. They-axis is the average density of particles in ’ ‘
the sample space.
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The TE propagation equations for aveguide operating in . o ffff‘f‘- T4
an(m, n) mode are described by [15] i g ]
H, =A cos (mﬂ'x) cos (%> e 7 0'5,7 }
a b ey
E, =0 (10) g I ]
A
where 4 is a constant, and’. and H, are thez components ¢ ool \\‘>‘2ﬁ
of the electric- and magnetic-field strengths, respectively. If%
the density of particles is taken to be proportional to the field &
strength, are x b lattice may be initialized to reflect the field 2 ,
strength. The cutoff frequency of a particular mode is —0.50 |
s my\2 4 sn\2 I ’ -]
fmx”—iﬂz) t3 (5) (11) ; L i
e R B Sabiir it W B
wherec, = Al/(v/2 At). The 4/3 term is due to the asymmetry 0 2000 40;)9 St6000 8000 10000
ime ep

of a hexagonal grid in the andy dimensions (see Fig. 1). The
dlstance between g”d p_om_ts m_tlnedlr_ectlo_n IS_AI' however, Fig. 5. Envelope curves for 2-5 bits per direction, initialized ta @) mode.
the distance between grid lines in theirection |5\/®A1/2- Note that since the amplitudes and average values increase with the number of
In (10),z andy are expressed in terms of Cartesian coordinateXs used, these curves have been normalized such that they all lie beteen
while a andb in (11) refer to the number of grid points in the 29+
andy-directions, respectively.

The simulation size was = b = 64, corresponding to conserves mass and momentum, but does not attempt to opti-
a physical space a4 x (/3/2)64. The sample space wasmally apply the'r1: collision operator. This can be considered
a 10 x 10 section in a region containing a maximum at inias analogous to the FHP rule [10] using 3 bits per direction, as
tialization. Several different modes were tested, in particulapplied in [4]. The results are noisy due to the small grid used.
(m, n) = (0,1), (1,0), (1,1) and (2,1), for up to 5 bits per di-An increase in grid size to 128 128 considerably reduces the
rection. To excite the lattice, the probabiljpyof filling a bit at noise, but requires four times the computation time. We use en-

a node was defined as semble averaging ovéive trials in our results. In the remainder
mrx nwy of this paper, we present data obtained from application of the
p=05+0.1 cos ( p ) cos (T> (12) ILGA described in Section IV.

To obtain a viscosity from these curves, an average ditbe
to achieve a 50% density perturbed according to (10). Five difata sets was taken and the result fit to the analytical expression
ferent initial distributions in/f, were used.
Fig. 3 shows the density versus time stefifigr different ini-
tial (1, 0)-mode distributions, using a traditional LGA rule that H,(t) = A sin(wt + ¢) exp(—Bt) + C (13)
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TABLE I
VISCOSITY FOR ALL RULES AND ALL MODES

Bits Vo1 V10 Vi1 Va1
2 0.204:0.01 0.204+0.02 0.184:0.02 0.14+0.03
3 0.019740.0007 | 0.0204+0.0009 | 0.01754:0.0005 0.0154+£0.0005
4 0.0093+0.0004 | 0.0122+0.0005 | 0.0048+0.0002 0.0054+0.0002
5 0.00580+:0.00009 | 0.003440.0001 | 0.00667+0.00007 | 0.00421+0.00004

0.25 — - of Vg = 0.0204 £ 0.0009 andl/21 = 0.0174 &£ 0.0007. A
(3,0) mode givesrsy = 0.026 + 0.007. We have observed
that the uncertainty in the viscosity increases considerably for
higher modes.

VII. DISCUSSION

. We have developed an algorithm that successfully combines
TLM and ILGA methods for the numerical solution of EM field
problems. The dissipative error encountered is significantly re-
duced for larger numbers of bits. In [14], the dispersion rela-
tion of the algorithm is derived in order to quantify the dissipa-

1 tive errors.

The algorithm’s total discretization of time, space, and depen-
dent variable has the advantage of implementation on a CAM-8
style processor, thus eliminating the need for a floating-point
= 7 processor. Since the model is entirely integer-based, a look-up

o - table can be used to describe the state of a node after a col-
, 4 5 lision occurs, resulting in a relatively small computational re-
Number of Bits per Direction . . ..
guirement to update the individual cells.
Fig. 6. Viscosity as a function of number of bits for tfie 0), (0,1), (1,1), As a preliminary investigation into the relative computational
and(2,1) modes. effort (CE) required for the TLM-motivated ILGA, we use the
method presented in [17] to compare to the standard TLM, using
using the Levenberg—Marquardt method [16]. Hé#e= kv @ square lattice. In two dimensions, for physical dimensions
andv is the viscosity. The uncertainty on each data point wda: x Dy, the number of cells i®). /Al and D, /Al,, respec-
taken as the standard deviation. tively. The relative CE in two dimensions is then

For the(1, 0) mode, the raw data is shown with the exponen-
tial envelope curve for 3 bits per direction in Fig. 4. The transient D =V Nt NT. O
response is provided for over 50 periods. The raw data shown is ILGA ILGA'ILGA T ILGA'ILGA
the average over tHeve data sets obtained for different randonwhere N* is the number of time stepsy®'¥ is the number
number generator seeds. Fig. 5 shows the exponential envelgpeells in thex or y dimension, andV°Ps is the number of

curves for g 1,0) mode for 2-5 bits per direction. As expectedoperations required per cell per time step. The time steps,
the damping decreases as the number of bits increases. Injgd-At = Al/\/@, are the same for both algorithms in two
dition, the damping observed in simulations of the ILGA predimensions. From our numerical experiments, we have found
sented in this paper is significantly less than that observedtitat 2—3 TLM-motivated ILGA cells per dimension are required
simulations of the ILGA of [4]. (at 4 bits per direction) for every cell in the TLM method per
The viscosity values calculated from the fit parameters agémension to achieve the same degree of accuracy. Taking the

given in Table Il for(1,0), (0,1), (1,1), and(2,1) modes worst caseAlrr.m = 3AlLca. We obtain
and shown graphically in Fig. 6. These modes correspond to

Viscosity

t T Y ops
CErtm _ NN Tom NrovNVrim

(14)

3 ops
plane-wave propagation through the mesh at angles, &®, CETrm _ <AlILGA> Nt (15)
45, and 26.6 to the z-axis, respectively. These results show CErga Alriv ) Nitéa
that the viscosity is slightly anisotropic, which is unexpected
for a hexagonal lattice. CE 1\ NOPs
. . . . . TLM TLM
Results were also obtained using 3 bits per direction for the = |55 | —ops 16
J P CErLga <27> NiLGa (19)

(2,0) and(4, 2) modes for comparison to th&, 0) and(2, 1)
modes, respectively. A 128 128 lattice was used for theseFor a square lattice, the TLM method requires 16 floating-point
higher modes since the results decay rapidly on a smaller lattiosultiplications and 12 additions per cell at each time step. How-
For these cases;, = 0.024 4+ 0.001 andvsa = 0.017 £ ever, the ILGA requires only a single look-up-table operation
0.002, showing good agreement with thie 0) and(2, 1) results  per time step. The ILGA can be evaluated using special-purpose
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hardware such as CAM-8 where parallelism is easily and inexgs] E. C. Jordan and K. G. BalmaiEjectromagnetic Waves and Radiating
pensively realized. A comparison of actual computation speeds  Systems Engelwood Cliffs, NJ: Prentice-Hall, 1968.

would require comparison of a floating point architecture wit

h[16] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,
Numerical Recipes in C: The Art of Scientific Computirggr.

a look-up-table-based computing architecture. 2. Cambridge, U.K.: Cambridge Univ. Press, 1992.
To solve the most general EM-field problems, an algorithm/17] N. R.S. Simons, R. Siushansian, J. LoVetri, and M. Cuhaci, “Compar-

such as the three-dimensional symmetrical condensed node

ison of the transmission line matrix and finite-difference time-domain
methods for a problem containing a sharp metallic edge,” IEEE Trans.

(SCN) TLM is required [18], as well as graded meshes and  Microwave Theory Tech., to be published.
permittivity stubs. The general form of these scattering matriceg8l P. B. Johns, “A symmetrical condensed node for the TLM method,”

contains real number entries, not easily divisible by integers[lg]

IEEE Trans. Microwave Theory Tec¢kol. MTT-35, pp. 370-377, 1987.
N.R. S. Simons, G. E. Bridges, and M. Cuhaci, “A lattice gas automaton

We are currently investigating the applicability of the approach ~ capable of modeling three-dimensional electromagnetic fields,”
described here to these more complex algorithms. An LGA  Comput. Physvol. 151, pp. 816-835, 1999.

(using single-bit variables) for solving Maxwell’s equations in

three dimensions is described in [19]. The algorithm described

here is compatible with the three-dimensional LGA.

(1]
(2]

(3]

[4]
(5]

(6]

(71

(8]

9]
[20]

[11]

[12]

[13]

[14]
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