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Hybrid Finite-Difference/Finite-Volume
Time-Domain Analysis for Microwave
Integrated Circuits with Curved PEC

Surfaces Using a Nonuniform
Rectangular Grid

Mingwu Yang, Yinchao Chen, Member, IEEE, and Raj Mittra, Life Fellow, IEEE

Abstract—In this paper, we present a hybrid algorithm
that combines the finite-difference time-domain (FDTD) and
finite-volume time-domain (FVTD) methods to analyze microwave
integrated-circuit structures that may contain curved perfect
electric conductor (PEC) surfaces. We employ the conventional
nonuniform FDTD in regions where the objects are describable
with a rectangular mesh, while applying the FVTD method
elsewhere where we need to deal with curved PEC configurations.
Both the FDTD and FVTD quantities are defined in the mutually
overlapping regions, and these fields from the respective regions
are interpolated by using their nearest neighbors. We validate this
algorithm by analyzing the scattering parameters of a stripline
with one or more adjacent cylindrical vias, whose geometries
are frequently encountered in printed-circuit-board designs. It is
found that the hybrid FDTD–FVTD approach requires little in-
crease in central processing unit time and memory in comparison
to the conventional FDTD, while its computational accuracy is
significantly improved over a wide range of frequencies. Specifi-
cally, this accuracy is found to be comparable to that achieved by
doubling the mesh density of the staircased FDTD.

Index Terms—Hybrid FDTD–FVTD algorithm, microwave inte-
grated circuits.

I. INTRODUCTION

ONE OF THE most significant drawbacks of the conven-
tional finite-difference time-domain (FDTD) method

[1]–[3] is its inability to accurately model curved surfaces
that are frequently encountered in practical electromagnetic
problems, whose geometries are approximated by using a
staircasing approach. Previous attempts to overcome this
difficulty and to reduce the effect of discretization error have
resulted in the development of various modified versions of the
FDTD, e.g., FDTD on a curvilinear grid, contour-path integral
FDTD [4], hybrid FDTD–finite-volume time-domain (FVTD)
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[5]–[8], and hybrid FDTD–finite-element time-domain (FETD)
techniques [9]. In the conventional hybrid FDTD–FVTD
approach [6]–[8], a geometrically conformal grid is required
to construct the field solution, one that ensures that each cell
is homogeneously filled with the same material. A great deal
of effort is often required to generate a complex mesh that
satisfies the above criterion.

In this paper, we present a hybridization scheme for com-
bining the FDTD–FVTD algorithms, both operating on a
nonuniform rectangular grid, to analyze microwave integrated
circuits (MIC’s) with curved surfaces that are perfect electric
conductors (PEC’s). Our primary objective is to retain the
simplicity of the rectangular grid generation and still maintain
the ability to handle curved PEC surfaces accurately, even when
the object being analyzed is inhomogeneous. We accomplish
this by using the FDTD in regions where the object is describ-
able with a rectangular mesh, and switch to the FVTD in the
complementary regions where its PEC surfaces are curved.
For the cells that contain a combination of PEC and dielectric
materials, we use an effective volume factor to modify the
coefficients defined in the update FVTD equations. We retain a
few overlapping layers between the FDTD and FVTD regions
for the purpose of achieving a smooth transition of the fields
from one region to the other via field interpolations. It is found
that the hybrid FDTD–FVTD approach requires little increase
in central processing unit (CPU) time and memory over the
conventional FDTD. However, its computational accuracy is
significantly improved, and is comparable to that achieved by
using a staircased FDTD with twice the mesh density.

II. HYBRIDIZATION OF FDTD AND FVTD

A. Nonuniform Orthogonal FDTD Algorithm

As mentioned earlier, we apply a nonuniform and orthogonal
version of the FDTD Maxwell solver in regions that contain
only rectangular-shaped objects, by using an algorithm that is
similar to the ones described in [10] and [11]. The fundamental
computational block is a pair of coupled FDTD cells, i.e.,E-
andH-cells, whose topology is illustrated in Fig. 1(a). Typical
update equations, for instance, for the twox-components of the
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electric and magnetic fields, are given by (1) and (2), shown at
the bottom of this page, with
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where�ye; h(j) and�ze; h(k) are nonuniform edge lengths for
theE- andH-cells, respectively. For the sake of generality, we
assume that all the medium parameters are characterized by a
biaxial tensor form.

B. Nonuniform Orthogonal FVTD Algorithm

Next, we turn to the problem of updating the field quantities in
regions that involve curved PEC surfaces. In contrast to the con-
ventional FVTD, which is based on a geometry-conformal grid

Fig. 1. Topology of the dual FDTD and FVTD cells based on a nonuniform
rectangular grid: (a) FDTD. (b) FVTD.

[5]–[8], the present version retains the use of a nonuniform rect-
angular grid. Fig. 1(b) shows the basic topology of the stencil,
i.e., a pair of coupledE- andH-cells. We let the electric field
reside at the center of theE-cell and locate the eight magnetic
vectors at the eight vertices of this cell—andvice versafor the
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H-cells. Integrating the two Maxwell’s curl equations over an
arbitrary volume(V ) leads to the following:
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Implementing the above relations in, say, the(i; j; k)th coupled
E- andH-FVTD cells, we can derive a leapfrog FVTD update
equation as follows:
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whereP = x, y, or z, and the time-domain electric and
magnetic fields are defined at the centers of the(i; j; k)th E
andH-cells, respectively. The remaining parameters in (6) are
given by
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where thele; hP is the edge length of the(i; j; k)th E or H-cell
in theP -direction. The eight magnetic fields surrounding the
E-cell are located at the eight vertices, and they may be explic-
itly written as

*
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*
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Similarly, we can define the updated quantitiesSnx; y; z(i; j; k)
in the(i; j; k)thH-cell and its surrounding eight electric fields.

The cells containing the curved PEC surfaces can, in general,
be inhomogeneous and contain two or more different materials.
One consequence of this is that the coefficients in the update
equation (6a) in anE-cell now become different. The following
three situations can arise.

1) If anE-cell is a uniform homogeneous lossless dielectric,
then the coefficient�p(i; j; k) = 1.

2) If an E-cell only has a PEC, then�p(i; j; k) =
�p(i; j; k) = 0.

3) If anE-cell is a combination of a lossless dielectric and a
conductor,�p(i; j; k) remains unity, but�p(i; j; k)must
be weighted by an effective volume factorVe�(i; j; k),
defined as the ratio of the volume of lossless dielec-
tric to the total volume of theE-cell, and the update
(6a) becomes

En+1
P (i; j; k) = �P (i; j; k)E

n
P (i; j; k) + Ve�(i; j; k)

��P (i; j; k)Q
n+1=2
P (i; j; k): (11)

Note that this yields consistent results for the two limiting cases,
i.e.,Ve�(i; j; k) = 1 for a cell filled with a uniform lossless di-
electric, and zero for a PEC cell. In particular, the present tech-
nique does not require a PEC or an impedance boundary at a
discontinuity interface between a dielectric and a PEC structure
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inside an FVTD region, as does the conventional FVTD with a
tetrahedron grid used to fit the curved PEC surfaces [8].

C. Interpolation in the FDTD–FVTD Overlapping Regions

Rather than using a more complex and generalized overlap-
ping technique in the FDTD–FVTD overlapping region where
the FDTD and FVTD grids are nonaligned [12], we employ an
identical rectangular grid for both the FDTD and FVTD algo-
rithms in the overlapping region. One consequence of this is that
the interpolations between the FDTD and FVTD field quan-
tities can be carried out relatively easily. As shown in Fig. 1,
the center of the(i; j; k)th FVTD E-cell is located at the node
(i; j; k), where the three components of FVTD electric fields
are defined, while the three components of the FDTD elec-
tric fields in the(i; j; k)th cell are located at(i � 1=2; j; k),
(i; j�1=2; k), (i; j; k�1=2), respectively. We define an over-
lapping layer between the FDTD and FVTD regions for interpo-
lating the FDTD and FVTD fields. We now present two interpo-
lation techniques that have been found to provide the smoothest
transition of time-domain fields from one region to the other.

1) Interpolation Over an FDTD–FVTD Overlapping Layer
with a Finite Thickness:The first choice for handing the transi-
tion region between the FDTD and FVTD is to employ an over-
lapping region with a finite layer thickness. For this case, the
electric fields on the outer boundary of the FVTD, e.g.,~Ev, can
be linearly interpolated by using the nearest FDTD fields,ED

1P

andED
2P , as shown in Fig. 2(a), to yield

EV
P =

lP2E
D
1P + lP1E

D
2P

lP1 + lP2
(12a)

whereP = x; y; z. For instance, they-component of the~Ev

can be calculated from

EV
y =

ly2E
D
1y + ly1E

D
2y

ly1 + ly2
: (12b)

At the inner boundary of the FDTD, which is inside the FVTD
region, the FDTD tangential electric fieldED

t can also be lin-
early interpolated by using the nearest fields of the FVTD as
follows:

ED
t =

EV
1t + EV

2t

2
(13)

wheret designates the tangential components of the fields. Al-
though the above method is relatively straightforward to imple-
ment, it does require additional computer storage for the fields
in the overlapping region.

2) Interpolation Over an Infinitesimally Thin FDTD–FVTD
Interface: An alternative to the approach just described above
is to choose the FDTD–FVTD overlapping region as an in-
finitesimally thin interface. In this case the tangential FDTD
electric fields on the interface, i.e.,ED

1x andED
2x [see Fig. 2(b)],

are still determined with the conventional FDTD updating pro-
cedure by using the four surrounding magnetic fields, respec-
tively. However, one of the magnetic fields is now located in
the FVTD region; hence, it must first be interpolated by using
the nearest FVTD magnetic fields. For example, an FVTD elec-
tric field, i.e., ~EV

1
, on the interface can be interpolated by using

Fig. 2. Interpolation techniques within an FDTD–FVTD overlapping layer (a)
Layer with thickness. (b) Infinitesimally thin interface.

(ED
1x; E

D
2x) and(ED

1y; E
V
2y) for its tangential and normal com-

ponents, respectively, to yield

EV
1x =

lx2E
D
1x + lx1E

D
2x

lx1 + lx2
(14a)

EV
1y =

2ly2E
D
1y + ly1E

V
2y

ly1 + 2ly2
: (14b)

The above scheme requires no additional memory, and yet it
turns out to be a simple, efficient, and accurate technique for
interpolating the fields. In particular, it has been found that this
interpolation scheme presents the same high level of accuracy as
the previous one in this analysis. In addition, the two interpola-
tion methods share the same level of excellent stability; hence,
in practice, we only employ the second interpolation scheme,
which requires no overlapping layer.

III. N UMERICAL RESULTS

To validate the hybrid FDTD–FVTD algorithm, we analyze
a stripline with one or more cylindrical vias, a geometry that
is frequently encountered in an integrated printed circuit board
(PCB). The front and top views of the geometry are displayed
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Fig. 3. Geometry of a stripline with two adjacent cylindrical vias.

Fig. 4. Magnitude of characteristic impedanceZ0 as a function of frequency
for a uniform strip line (h = 1:2,w = 0:6, t = 0:1mm;"

r
= 2:62) calculated

with the FDTD and hybrid approaches, respectively.

in Fig. 3. We excite the structure symmetrically with a Gaussian
pulse, at the lower and upper sides of the strip, with anEz

component of the field, and apply a second-order dispersive ab-
sorbing condition for mesh truncation [13].

As a preamble to addressing the via problem, we investigate
the characteristic impedanceZ0 of a uniform stripline by using
both the FDTD and hybrid FDTD–FVTD approaches , as shown
in Fig. 4. We find that both the magnitude and phase of the
Z0, obtained by using the FDTD and the hybrid approach, are
essentially identical for this canonical test problem. However,
this helps us to set the stage for the follow-up step, in which the
computational domain, which is designated here as the FVTD
region, is modified by the introduction of the vias. To see how
the vias affect the propagation of the time-domain signals, we
sample the normalized voltage signals at the input and output
ports with and without a cylindrical via. It is found that a small
ripple of time-domain voltage signal appears at the output port.

Next, we evaluate the accuracy of the hybrid algorithm by
analyzing the scattering parameterS11 of a stripline with vias.
The following three cases have been investigated:

Fig. 5. Top view of mesh patterns around a via. (a) Coarse-mesh density
(�x = �y = 0:1, �z = 0:11 mm). (b) Double-mesh density
(�x = �y = 0:05, �z = 0:11 mm).

1) staircased FDTD approach on a coarse mesh
(�x = �y = 0:1, �z = 0:11 mm);

2) hybrid method also applied on a coarse mesh;
3) staircased FDTD approach with a mesh size given by

�x = �y = 0:05, �z = 0:11 mm, which is finer by
a factor of two in thex- andy-directions than it is in the
z-direction.

The region containing the cylindrical vias is chosen to be the
FVTD region. The mesh patterns for the coarse- and fine-mesh
densities at the cross section of one of the vias are displayed in
Fig. 5(a) and (b). It is evident from Fig. 6(a) and (b) that the com-
putational accuracy achieved by using the hybrid approach is
comparable to that obtained by doubling the mesh density in the
conventional FDTD method that exacts a significant increase in
cost in terms of CPU time and memory. Note that all the results



974 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 48, NO. 6, JUNE 2000

Fig. 6. Magnitude of scattering parameterS11 as a function of frequency for
a stripline with adjacent vias (h = 1:2, w = 0:6, t = 0:1, a = 1:55 mm,
"r = 2:62). (a) One via. (b) Two vias (b = 1:44 mm).

derived from the hybrid FDTD–FVTD method have been ob-
tained by using the infinitesimally thin interpolation scheme. It
was found that the calculations remained stable for all the cases
investigated in this paper, when the FDTD–FVTD overlapping
regions are chosen appropriately. It is expected that the algo-
rithm would also be useful for analyzing the resonant type of
microwave structures when it is used in conjunction with extrap-
olation techniques [14], [15] to avoid any late time instability.

Before closing, we would like to make some observations re-
garding the influence of the via locations on the frequency be-
havior of the reflection coefficient. We note that the magnitude
of the reflection coefficient for the one-via structure increases
almost linearly as the operating frequency is increased, while
the response of the two-via structure is considerably different,
as it exhibits a dip from 20 to 30 GHz for different values of the
distanceb between the two vias (see Fig. 7). This is because the
reflected waves from the two vias interfere destructively—when
the phase difference between them approaches� at a particular

Fig. 7. Magnitude of scattering parameterS11 as a function of frequency for
a stripline with two adjacent vias (h = 1:2, w = 0:6, t = 0:1, d = 1:2,
a = 1:55 mm,"r = 2:62).

Fig. 8. Null frequency versus the distanceb between two vias (h = 0:6, t =
0:1, w = 0:6, s = 0:4, d = 0:6, a = 0:4 mm).

frequency—to yield a reflection coefficient that is almost zero.
In Fig. 7, we see that the null frequency where this occurs de-
creases monotonously with an increase inb. In fact, the null fre-
quency can be predicted precisely from the out-of-phase condi-
tion, and is given byfnull = VP=(4b), whereVP is the phase
velocity of the wave. In Fig. 8, we see that the null frequency
predicted by using the above relation is in very good agreement
with the computed one directly.

IV. CONCLUSIONS

In this paper, we have presented a hybrid FDTD–FVTD al-
gorithm for the analysis of MIC’s with curved PEC surfaces.
The algorithm is based on the use of a nonuniform rectangular
grid, and has been validated by analyzing theS-parameters of a
stripline with two cylindrical vias that are close to each other. It
is found that, for this structure, the hybrid approach significantly
improves the computational accuracy, and yields results that are
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comparable to those obtained by doubling the mesh density in
the staircased-FDTD approach.
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