2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Microwave Theory and Techniques
Volume 48 Number 7, July 2000

Table of Contents for this issue

Complete paper in PDF format

Specific Absorption Rate and Temperature Increases in the Head of a Cellular-Phone User

Paolo Bernardi, Fellow, IEEE Marta Cavagnaro, Stefano Pisa, Member, IEEE and Emanuele Piuzzi

Page 1118.

Abstract:

In this paper, a complete electromagnetic and thermal analysis has been performed considering the head of a subject exposed to various kinds of cellular phones available on the market, and focusing the attention on important organs like the eye lens and brain. Attention has first been posed on a particular phone model, and a comparison between the absorbed power distribution and steady-state temperature increases has been carried out. The influence of different antennas (dipole, monopole, whip, and planar inverted F antenna) on the power absorption and on the consequent tissue heating has then been analyzed. The obtained results show, for a radiated power of 600 mW, maximum SAR values, averaged over 1 g, from 2.2 to 3.7 W/kg depending on the considered phone. The maximum temperature increases are obtained in the ear and vary from 0.22 °C to 0.43 °C, while the maximum temperature increases in the brain lie from 0.08 ° C to 0.19 ° C. These steady-state temperature increases are obtained after about 50 min of exposure, with a time constant of approximately 6 min. Finally,the results evidence a maximum temperature increase in the external part of the brain from 0.10 °C to 0.16 °C for every 1 W/kg of SAR, averaged over 1 g of brain tissue.

References

  1. "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz", IEEE Standard C95.1-1991, 1992.
  2. "Evaluating compliance with FCC guidelines for human exposure to radiofrequency electromagnetic fields", Federal Communications Commission, Washington, D.C, OET Bull. 65, Aug. 1997.
  3. "Human Exposure to Electromagnetic Fields. High frequency (10 kHz to 300 GHz)", IEEE Prestandard ENV 50 166-2, Jan. 1995.
  4. ICNIRP Guidelines "Guidelines for limiting exposure to time-varying electric, magnetic and electromagnetic fields (up to 300 GHz)", Health Phys., vol. 74, no.  4, pp.  494-522, 1998.
  5. P. Bernardi, M. Cavagnaro, S. Pisa and E. Piuzzi, "SAR distribution and temperature increase in an anatomical model of the human eye exposed to the field radiated by the user antenna in a wireless LAN", IEEE Trans. Microwave Theory Tech., vol. 46, pp.  2074-2082, Dec.  1998.
  6. P. Bernardi, M. Cavagnaro, S. Pisa and E. Piuzzi, "Temperature elevation induced in the head of a cellular phone user", in Int. Sci. Meeting Electromag. Medicine , Chicago, IL, Nov. 1997, p.  76. 
  7. C. H. Durney, "The physical interactions of radiofrequency radiation fields and biological systems,"in AGARD Lecture Series, Neuilly Sur Seine: France: NATO AGARD, 1985, pp.  2.1-2.19. 
  8. J. C. Lin and O. P. Gandhi, "Computational method for predicting field intensity,"in Handbook of Biological Effects of Electromagnetic Fields, C. Polk, and E. Postow, Eds. Boca Raton, FL: CRC Press, 1995, pp.  337-402. 
  9. A. Taflove and M. E. Brodwin, "Computation of the electromagnetic fields and induced temperatures within a model of the microwave irradiated human eye", IEEE Trans. Microwave Theory Tech., vol. MTT-23, pp.  888-896, Nov.  1975.
  10. R. J. Spiegel, "The thermal response of a human in the near-zone of a resonant thin-wire antenna", IEEE Trans. Microwave Theory Tech., vol. MTT-30, pp.  177-184, Feb.  1982.
  11. I. Chatterjee and O. P. Gandhi, "An inhomogeneous thermal block model of man for the electromagnetic environment", IEEE Trans. Biomed. Eng., vol. BME-30, pp.  707-715, Nov.  1983.
  12. V. Handerson and K. H. Joyner, "Specific absorption rate levels measured in a phantom head exposed to radio frequency transmission from analog hand-held mobile phones", Bioelectromag., vol. 16, pp.  60-69, 1995.
  13. Y. Lu, J. Ying, T. Tan and K. Arichandran, "Electromagnetic and thermal simulations of 3-D human head model under RF radiation by using the FDTD and FD approaches", IEEE Trans. Magn., vol. 42, pp.  1653-1656, May  1996 .
  14. A. C. Guyton, Textbook of Medical Physiology, Philadelphia, PA: Saunders, 1991.
  15. A. W. Guy, J. C. Lin, P. O. Kramar and A. F. Emery, "Effect of 2450-MHz radiation on the rabbit eye", IEEE Trans. Microwave Theory Tech., vol. MTT-23, pp.  492-498, June  1975.
  16. B. Appleton, S. E. Hirsch and P. V. K. Brown, "Investigation of single-exposure microwave ocular effects at 3000 MHz", Ann. New York Academy Sci., vol. 247, pp.  125-134,  1975.
  17. D. H. Sliney and B. E. Stuck, "Microwave exposure limits for the eye: Applying infrared laser threshold data,"in Radiofrequency Radiation Standards, New York: Plenum, 1994, pp.  79-87. 
  18. J. D. Hardy, H. G. Wolff and H. Goodell, Pain Sensations and Reactions, Baltimore, MD: Williams & Wilkins, 1952.
  19. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Norwood, MA: Artech House, 1995.
  20. K. S. Kunz and R. J. Luebbers, The Finite Difference Time Domain Method for Electromagnetics, Boca Raton, FL: CRC Press, 1993.
  21. G. Mur, "Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic-field equations", IEEE Trans. Electromag. Compat., vol. EMC-23, pp.  377-382, Apr.  1981.
  22. P. Bernardi, M. Cavagnaro and S. Pisa, "Evaluation of the SAR distribution in the human head for cellular phones used in a partially closed environment", IEEE Trans. Electromag. Compat., vol. 38, pp.  357-366, Aug.  1996.
  23. I. G. Zubal, C. R. Harrell, E. O. Smith, Z. Rattner, G. R. Gindi and P. B. Hoffer, "Computerized three-dimensional segmented human anatomy", Med. Phys., vol. 21, no. 2, pp.  299-302, 1994.
  24. S. Gabriel, R. W. Lau and C. Gabriel, "The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues", Phys. Med. Biol., vol. 41, pp.  2271-2293, 1996.
  25. J. Toftgard, S. N. Hornsleth and J. B. Andersen, "Effects on portable antennas of the presence of a person", IEEE Trans. Antennas Propagat., vol. 41, pp.  739-746,  June  1993.
  26. P. J. Dimbylow and S. M. Mann, "SAR calculations in an anatomically realistic model of the head for mobile communication transceivers at 900 MHz and 1.8 GHz", Phys. Med. Biol., vol. 39, pp.  1537-1553, 1994.
  27. O. P. Gandhi, G. Lazzi and C. M. Furse, "Electromagnetic absorption in the human head and neck for mobile telephones at 835 and 1900 MHz", IEEE Trans. Microwave Theory Tech., vol. 44, pp.  1884-1897, Oct.  1996.
  28. M. Okoniewski and M. A. Stuchly, "A study of the handset antenna and human body interaction", IEEE Trans. Microwave Theory Tech., vol. 44, pp.  1855-1864, Oct.  1996.
  29. V. Hombach, K. Meier, M. Burkhardt, E. Kuhn and N. Kuster, "The dependence of EM energy absorption upon human head modeling at 900 MHz", IEEE Trans. Microwave Theory Tech., vol. 44, pp.  1865-1873, Oct.  1996.
  30. S. Watanabe, M. Taki, T. Nojima and O. Fujiwara, "Characteristics of the SAR distributions in a head exposed to electromagnetic fields radiated by a hand-held portable radio", IEEE Trans. Microwave Theory Tech., vol. 44, pp.  1874-1883, Oct.  1996.
  31. K. Kagoshima and T. Taga, "Land mobile antennas systems I: basic techniques and applications,"in Mobile Antenna Systems Handbook, K. Fujimoto, and J. R. James, Eds. Norwood, MA: Artech House, 1994.
  32. M. Cavagnaro and S. Pisa, "Simulation of cellular phone antennas by using inductive lumped elements in the 3D/FDTD algorithm", Microwave Opt. Technol. Lett., pp.  324-327, Dec.  1996.
  33. M. A. Jensen and Y. Rahmat-Samii, "EM Interaction of handset antennas and a human in personal communications", Proc. IEEE, vol. 83, pp.  7-17, Jan.  1995.
  34. F. A. Duck, Physical Properties of Tissue, New York: Academic, 1990.
  35. J. J. W. Lagendijk, "A mathematical model to calculate temperature distributions in human and rabbit eyes during hyperthermic treatment", Phys. Med. Biol., vol. 27, no. 11, pp.  1301-1311, 1982 .
  36. J. A. Scott, "A finite element model of heat transport in the human eye", Phys. Med. Biol., vol. 33, no. 2, pp.  227-241, 1988.
  37. L. R. Williams and R. W. Leggett, "Reference values for resting blood flow to organs of man", Clinical Phys. Physiol. Meas., vol. 10, no.  3, pp.  187-217, 1989.
  38. R. G. Gordon, R. B. Roemer and S. M. Horvath, "A mathematical model of the human temperature regulatory system-Transient cold exposure response", IEEE Trans. Biomed. Eng., vol. BME-23, pp.  434-444, Nov.  1976.
  39. R. J. Dickinson, "An ultrasound system for local hypothermia using scanned focused transducers", IEEE Trans. Biomed. Eng., vol. BME-31, pp.  120-125, Jan.  1984.
  40. A. D. Tinniswood, C. M. Furse and O. P. Gandhi, "Computation of SAR distributions for two anatomically based models of the human head using CAD files of commercial telephones and the parallelized FDTD code", IEEE Trans. Antennas Propagat., vol. 46, pp.  829-833, June  1998.
  41. M. G. Douglas, M. Okoniewski and M. A. Stuchly, "A planar diversity antenna for handheld PCS devices", IEEE Trans. Veh. Technol., vol. 47, pp.  747-754, Aug.  1998 .
  42. Q. Balzano, O. Garay and T. J. Manning, "Electromagnetic energy exposure of simulated users of portable cellular telephones", IEEE Trans. Veh. Technol., vol. 44, pp.  390-403, Aug.  1995.