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Abstract—Conventional definitions of the characteristic
impedance, such as the voltage–current, power–current, and
power–voltage methods, which have been commonly used for
standard nonleaky transmission lines, become invalid when power
leakage occurs. In this paper, we present a new theory of the char-
acteristic impedance for printed transmission lines, applicable
under the general conditions with or without power leakage. The
theory is founded on dual field and circuit theories of transmission
lines, formulated in the spectral domain, and uses a new approach
called “the wavenumber perturbation approach.” In order to
correctly compute the complex characteristic impedance under
leakage conditions, the new theory requires to carefully “extract
out” the surface-wave or parallel plate-wave poles on the complex

-plane. In obvious difference to this, it is well known that the
poles must be “included” for a correct solution of the complex
propagation constant of the leaky line. Incidentally, unlike the
conventional methods, the new theory derives the complex char-
acteristic impedance together with the solution of the phase and
attenuation constants, in a single unified procedure. This avoids
additional efforts in computational or analytical/formulational
complexity. Results for selected cases of interest are presented,
which demonstrate the validity and simplicity/elegance of the new
theory.

Index Terms—Characteristic impedance, leaky waves, planar
transmission line, stripline, slotline.

I. INTRODUCTION

I T IS WELL known that, under appropriate conditions,
printed transmission lines can leak power transversely to

the characteristic surface-wave mode(s) of its surrounding
structure [1]–[4]. However, early research on this subject
mainly concentrated on the propagation behavior. It is equally
important to model the characteristic impedance of the leaky
lines for use in circuit design purposes. The standard defini-
tions of the characteristic impedance for TEM or quasi-TEM
transmission lines, such as the current–voltage, current–power,
and voltage–power definitions [5]–[7], which have been
commonly used for nonleaky transmission lines, do not apply
when leakage exists. This is due to the strong non-TEM nature
of the transverse fields excited by the leaky lines, having a
nonstandard exponential growth in the transverse directions.
Further, any analysis of a printed transmission line, which uses
a surrounding boxed structure [8], [9] for computational or
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analytical convenience, would fail to work. The boxed structure
will not allow any leakage power to escape out in transverse
directions and, therefore, would not fundamentally support
the leaky mode. An equivalent characteristic impedance, as
seen by a particular input excitation, may be extracted from a
three-dimensional (3-D) electromagnetic modeling of a section
of a leaky line [10], [11], excited by a suitable source. However,
it is always desirable to define a characteristic impedance,
based on a simple two-dimensional (2-D) analysis of an
infinite-length leaky line, which is independent of the specific
source of excitation, or of the specific circuit configuration
the line is used in. Some attempts have recently been made
to model the characteristic impedance in such a manner [11],
[12], with reasonable results.

In this paper, we present a new theory of the characteristic
impedance of a general printed line, applicable when the line
leaks to a guided mode of the surrounding structure. The deriva-
tion is well founded on dual circuit and field theories of trans-
mission lines, employs a new technique called the “wavenumber
perturbation technique,” and applies to leaky as well as non-
leaky lines, with or without any material loss. The analysis starts
with a general transmission line with distributed power-leakage
elements, in addition to the conventional storage and/or mate-
rial loss elements. The wavenumber (in general complex) of the
transmission line is then perturbed to see various changes in the
total field and circuit behavior. The resulting information is used
in order to obtain an equivalent characteristic impedance of the
line. Using this approach, the information already available in a
standard moment-method solution of the propagation constant
[1], [13] can be reused to derive the characteristic impedance
of the line, without any additional formulation or computation.
This results in a theoretically as well as computationally effi-
cient/elegant approach.

The basic theory is developed in Section II, first for leaky
strip-type lines, which is then generalized for slot-type lines as
well. Results for selected cases of interest are presented in Sec-
tion III in order to demonstrate the accuracy and validity of the
new theory.

II. THEORY

A. Strip-Type Leaky Lines

Fig. 1 shows the cross-sectional geometry of a leaky stripline
that leaks power to its parallel-plate mode. This geometry rep-
resents leakage from general strip-type transmission lines. The

0018–9480/00$10.00 © 2000 IEEE



DAS: THEORY OF CHARACTERISTIC IMPEDANCE OF GENERAL PRINTED TRANSMISSION LINES 1109

Fig. 1. Cross-sectional geometry of an example leaky stripline, showing power
leaking from the central strip through the sidewalls. Due to the presence of
the leakage fields, which spread in the transverse directions indefinitely, the
transmission line is electrically unbounded in transverse dimension.

total electric and magnetic fields, i.e., and , of the line
can be decomposed into two parts [1]

(1)

and are the parts contributed due to the leakage radiation,
having nonstandard exponential growth in transversedirec-
tions. These leakage fields may be referred to as the “growing
fields.” If the growing fields are removed from the total field,
the remaining fields and in (1) are confined or bound to
the central region, and are called the “bound fields.” A spec-
tral-domain analysis of the transmission line can be used to de-
rive the “growing fields” and from the total fields
and . This is done by careful extraction of the singular parts,
contributed due to surface-wave poles on the transverse spec-
tral -plane [1]. The surface-wave poles (that are responsible
for the power leakage) in the spectral plane of the total fields

and are to be carefully removed using proper “extrac-
tion functions.” The remaining parts are the bound fieldsand

. The singular parts that were extracted out constitute the un-
bounded growing leakage fields and

We first discuss the moment-method analysis of the propaga-
tion constant of a leaky strip line, as relevant to the rest of the
derivation of the characteristic impedance. The surface current

on the central strip is expanded using a set of basis functions
with unknown coefficients

(2)

(3)

(4)

Just for simplicity of formulation, we have normalized such
that the total current along the longitudinal -direction is
unity. The normalization should not affect our final results. The
tangential component of the electric field should be zero ev-
erywhere on the central strip. This boundary condition is en-

Fig. 2. ContourC on the complexk spectral plane, properly deformed
around the poles at�k due to surface-wave-type modes. Such a contour
must be used in spectral integrals in order to include the contribution due
to leakage fields. The residue contributions around the singularities can be
attributed to the power leakage to the surface-wave mode. The singularities at
�k may be properly extracted in order to exclude the leakage fields. The
remaining integral is attributed only to the “bound fields,” which then can be
integrated along the real axis.

forced using a Galerkin-type testing procedure, resulting in a
moment-matrix equation

(5)

(6)

(7)

The quantities in (7) are the moments of the total field
produced by theth basis current with theth basis current, and

are computed using a Fourier-plane integration. are the

Fourier transforms of the space functions , is the
spectral-domain dyadic Green’s function for the electric field,
produced due to electric currents [5]. When leakage exists, be-
cause of the exponential growth of the leakage field, the required
spectral-integration contour should be properly deformed along

around surface-wave singularities, as shown in Fig. 2. After
’s are computed, the determinant equation (6) can be solved

for the unknown propagation constant, .
If the total current is known, at least approximately, then

the solution of the matrix equation in (7) can be simplified to
solving for the zero of a single moment function

(8)
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and

(9)

The above procedure only finds the propagation characteristics
of the line. In the following, we establish a new theory for the
complex characteristic impedance of the leaky line. The new
theory relates the characteristic impedance of the line to the
above moment computations, based on a dual field-circuit for-
malism. The procedure will allow derivation of the character-
istic impedance, together with the propagation constant, without
additional computation.

Under an ideal situation, when a transmission line is infin-
itely long in the direction of propagation, the growing fields

and increase indefinitely in transverse -directions,
to infinity at large distances. This makes the line
electrically unbounded in the transverse plane. One can trans-
form the electrically unbounded structure of Fig. 1 to an equiv-
alent transmission line with a bounded transverse section. This
is shown in Fig. 3(a), consisting of only the bounded fields
and . The leakage from the central strip is a distributed ra-
diation process, which carries power away from the line, and
is responsible for the “unbounded” leakage fieldsand .
This distributed radiation process may be equivalently mod-
eled using a distributed radiation impedance,per unit length,
along the strip. One may visualize this as having distributed an-
tennas loaded along the transmission line, which produce the
leakage radiation fields. Since we assume a total current of a
unit amplitude, is the negative of the complex reaction per
unit length due to the leakage field. Therefore, we may express

using the following reaction integral:

(10)

The central strip of Fig. 3(a) is electrically different from the
metal strip in the original transmission line. This may be seen
by comparing the required boundary conditions of the electric
fields in the two cases. In the original transmission line, the tan-
gential component of the total electric field is zero every-
where on the strip (assume for now a perfectly conducting strip).
Whereas, the equivalent transmission line of Fig. 3(a) consists
of only the bounded electric fields, the tangential component
of which is no longer zero on the central strip.

(11)

where is any unit vector along the surface of the strip, which
may be either or .

Besides the boundary condition on the strip, it can be
shown that the bound fields and independently satisfy
the Maxwell’s equations everywhere inside the enclosure of
Fig. 3(a), and also have zero tangential electric and/or magnetic
fields on the enclosure surface . Under this condition, we

(a)

(b)

Fig. 3. (a) Equivalent bounded geometry of a general strip-type leaky line
with distributed radiation impedanceZ to account for the leakage radiation.
The outer boundaryS is chosen on a metal wall (when there is a ground
plane on top and/or bottom) or sufficiently far away where open (sides and
top/bottom, depending if there is a metal wall or not) such that the electric and
magnetic fieldsE,H ' 0. (b) The modified bounded geometry of (a), when the
strip currentJ is perturbed toJ with a slightly different propagation constant
k +�k . The corresponding fieldsE, H , powerP , and distributed leakage
impedanceZ are perturbed toE ,H , P , andZ , respectively.

can apply the following reaction (not power) integral to the
equivalent transmission line of Fig. 3(a) [14]:

(12)
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Equation (1) is used to deduce the last step of (12). In the
right-hand side of (12), the first two terms may be interpreted,
respectively, as the negative of the complex electric reaction
and the complex magnetic reaction stored in the enclosed
element volume of Fig. 3(a). and are the magnetic per-
meability and electric permittivity of the medium, respectively,
which may be complex quantities in order to handle any mag-
netic or electric loss in the medium. If the top or/and bottom
layer of a transmission line is a lossy ground plane, then the re-
sulting metal loss can be modeled in (12) by treating the ground
plane(s) as a lossy dielectric material.

The third term in the right-hand side of (12) involving may
be identified as the negative of the power radiated per unit length

from the transmission line in the form of the leakage field.
is equal to the distributed radiation impedanceper unit

length, as defined earlier in (10). Let us call the last term in (12)
a driving term, i.e., , which for now is zero, because the total
electric field is zero on the central strip

(13)

(14)

Since the total strip current is initially assumed to be unity,
the integration of over the transverse cross section
in Fig. 3(a) is equal to the negative of the complex charac-
teristic impedance [11]. This is based on a power-current
(or alternately reaction-current) definition of the characteristic
impedance, where the reaction is defined as

(because ), and is cross-sectional power (reaction,
) due to the bound fields [11]

(15)

The contribution to the reaction integral from the surfacecan
be derived from that of by including the incremental phase
shifts of the field quantities over the element length

(16)

Adding (15) to (16), and then using the results in (13), we get

(17)

Consider a perturbation in the equivalent geometry of
Fig. 3(a), where the propagation constant is changed
to . The perturbed situation is shown in
Fig. 3(b). Let us represent all new quantities with primed
variables, with the corresponding change with a prefix. The
perturbed field components are in general different from the
corresponding original fields. However, like the unperturbed
case, the bound fields in the perturbed case also independently
satisfy Maxwell’s equations inside the enclosed volume,

Fig. 4. Circuit equivalent of the perturbed stripline geometry of Fig. 3(b)
(with propagation constantk + �k ). For the unperturbed case of Fig. 3(a)
(with propagation constantk ), the changes necessary in the equivalent circuit
are�V = 0 and�Z = 0. Z andY ideally remain unchanged with the
perturbation. WhereasZ is the distributed series impedance due to the leakage
radiation, which is strongly changed by the perturbation.

and the same boundary conditions everywhere on the surfaces
( ). However, the perturbed boundary conditions
on the strip will change. The total electric field in the per-
turbed problem will no longer be zero on the strip. The leakage
radiation fields and and, hence, , are also strongly
affected by the change in . As the total field changes, as well
as the leakage field (which is only a part of the total field), the
remaining bound field will also change accordingly. On the
strip, we have

(18)

(19)

Under these conditions, we can reapply the reaction equations
(12)–(17) to the new perturbed situation of Fig. 3(b). The final
results may be expressed as follows:

(20)

(21)

The equation (17) may be subtracted from (20), keeping only
the first-order differential terms

(22)

From the above field analysis, it may be useful to derive a dual
circuit representation for the bound-mode transmission line of
Fig. 3(a). This is shown in Fig. 4, where the four terms in (13),
(17), (20), (22), i.e., , , and , respectively, correspond
to the four circuit elements , , , and of Fig. 4. The an-
alytical relationships between the corresponding elements can
be established via simple circuit theory [15]. Careful attention
may be given to the signs of different field components asso-
ciated with the four parts. Some specific points may be ob-
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served, which are of particular significance to the new pertur-
bation field-circuit treatment. The distributed driving voltage

in Fig. 4 represents in (20), which, as shown in (21),
is related to the tangential total electric field (not bound elec-
tric field) on the strip. Consistent with the conditions of
tangential on the strip, as discussed, is zero without
the perturbation, but nonzero under the perturbation. Next, the
leakage-radiation impedance relates to the leakage field ,
and is strongly affected by the perturbation in. This is be-
cause the power associated with a leakage radiation is strongly
dependent on the phasing of the source of radiation or, equiva-
lently, . In contrast to , the distributed series impedance
and shunt admittance are determined only by the geometrical
structure and physical medium, not by the mode of excitation
of the strip current or, equivalently, by the phasing due to.
Strictly speaking, the last condition is valid for TEM-type fields,
but can be treated as a good approximations for quasi-TEM
lines, or for leaky transmission lines where the “bound fields”
closely resemble TEM or quasi-TEM fields. Fortunately, this is
the case for many practical geometries. Under these constraints,
we can make approximations in the dual field-circuit equations
of (22)

(23)

(24)

Equations (23) and (24) may be used to simplify (22)

(25)

(26)

The expression of in (25) may be compared with that of
in (8) and (9). It should be recognized that is equal

to the part of after excluding the contribution from the
leakage field. In other words, is the moment function of the
bound electric field (instead of for ) on the source
at .

(27)

When the transverse variation of the strip current is
knowna priori, at least approximately, can be derived from
the total moment function of (9) by properly excluding the
contribution due to the leakage field via residue theory or, in

other words, by properly extracting the part only due to the
bound fields. A simple method of pole extraction can be used
in the expression of in (9) to derive

(28)

(29)

where is the propagation constant of the characteristic wave
(surface-wave or parallel-plate wave) of the surrounding struc-
ture to which power leaks from the transmission line. When the
strip width is electrically small (most practical cases,) it can be
shown that the second part of (28) may be approximated by
residues of the integrand of in (9)

(30)

where means the residue of (9) at
. It is of mathematical significance that in the above

expression of , we have , and not . This means, in order
to obtain the “bound mode” moment function , one needs
to subtract from the total moment function only half of its
residue contribution around the poles at .

If the transverse variation of the strip current is expanded
using a basis set, as in (2), can be expressed as a superpo-
sition of moment testing functions . The moment
testing functions can be derived/extracted from the
corresponding total testing functions of (7)

(31)

(32)

The results of (26)–(32) may now be summarized as follows.
The characteristic impedance of a strip-type transmission line
is times the derivative of the moment (reaction) function

, computed at . The needed for this com-
putation can be derived from the total moment function[or,
alternately from moment testing functions ] by just ex-
tracting out the singular contribution at the surface-wave poles.
It is important to note that the same moment function is
also used to search for the complex propagation constantof
the line, where . In other words, the zero of
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gives the complex propagation constant, while the deriva-
tive of (after simple removal of the singular contribution)
provides the characteristic impedance of the line without any
additional computation or analytical formulation. The derivative
may be numerically computed at by incrementing the

along any convenient direction on the complex plane, which
is already performed anyway in the process of searching for the
propagation constant [1].

It is also important to observe that, in a spectral-domain so-
lution of the propagation constant of a leaky line, one mustin-
cludethe pole contribution [1] in the computation. Whereas for
the computation of the characteristic impedance of the leaky
line, the present process requires toexcludethe pole contribu-
tion for a correct result. This conclusion follows from the theo-
retical derivation we have presented, the validity of which will
be demonstrated through independent comparisons in the fol-
lowing section.

B. Slot-Type Leaky Lines

The results are similar for a slot-type line, except that in the
final equations, the characteristic impedanceshould be re-
placed by characteristic admittance of the slotline, and the
various electric-field moment functions , , , and
be replaced by appropriate magnetic-field moment functions,

, , and , respectively. Fig. 5 shows the geometry
of a slot-type leaky transmission line, indicating changes re-
quired when the complex propagation constantis perturbed.
The corresponding circuit model is shown in Fig. 6. In contrast
to the electric currents used to model the central strip of a
strip-type leaky line, here, two equivalent magnetic surface cur-
rents and are placed, respectively, slightly
above and below the slot plane in order to model the slot-elec-
tric field . In the above equivalent magnetic-current formu-
lation, one needs to fill in the slot region by continuation of
the surrounding ground plane. In addition, the boundary condi-
tion that needs to be enforced now is the continuity of the mag-
netic fields across the two sides of the slot (or across the

). Based on the above changes, and following similar
steps as for strip-type leaky lines in Section II-A, we present
here only the key expressions for the characteristic admittance,

of a slot-type leaky line

(33)

(34)

(35)

(36)

Fig. 5. Equivalent bound geometry of a general slot-type leaky line, with
distributed radiation admittanceY to account for the leakage radiation. The
outer arbitrary boundary is chosen on a outer metal wall (when there is a
ground plane) or sufficiently far away (on sides or on top/bottom when open)
such thatE, H ' 0. Only one slot is shown here. For coplanar waveguides,
which are also treated as slot-type lines, the single slot in this figure can be
replaced with two slots, each of widthW , with center-to-center separation
= S. As in Fig. 3(b), the perturbed case here for the slotline would require
the following changes:E ! E , E ! E , H ! H , E ! E ,
H ! H , k ! k = k + �k , P ! P , P ! P , Y ! Y , and
(H ! H ) 6= 0 across the slot.

Fig. 6. Circuit equivalent of Fig. 5 for the perturbed case. For the
corresponding unperturbed case,�I = 0 and�Y = 0. As in the stripline
equivalent circuit of Fig. 4,Z andY are ideally unchanged with perturbation.
Whereas the distributed shunt admittanceY due to leakage radiation is
strongly affected by the perturbation.

(37)

(38)

In (37) and (38), is the spectral dyadic Green’s
function for magnetic field observed above the slot plane, pro-
duced due to a magnetic current placed on top of the slot plane,
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whereas is the same, but observed below the slot
plane, produced due to a magnetic current placed below the slot

plane. and may be derived as in [5], [16], and

[17]. is the transform of the transverse variation of the
equivalent magnetic current placed on top of the slot (negative
for below the slot). is expanded using basis functions
with unknown coefficients and normalized such that the total
slot voltage is unity.

C. General Comments

As described in the derivation, the new theory models the
leakage loss, in addition to any material loss that may be
present [dielectric or magnetic loss, and metal loss in the
ground plane(s)]. The same general procedure will also apply
when there is metal loss in the strip. In this case, an appropriate
impedance boundary condition is to be used [1] on the strip,
which can be shown to result in an additional reaction term in
(17) and (20). The additional term can be treated as an extra
distributed impedance in the circuit model. Assuming that this
new strip-loss element is independent of any perturbation in
(similar to the case for and ), the final expression for the
characteristic impedance in (26) will remain unchanged.

Clearly, as a simpler special case, the method will also apply
when there is no leakage. In this case, the treatment is actually
simplified by having and without the need
for any special pole extraction. This is, however, significant,
considering that unlike the conventional methods (power-cur-
rent or voltage-current) [5], [18], [19] used in the past, no addi-
tional theoretical or computational effort will be needed in order
to obtain the characteristic impedance. It may also be mentioned
that, though the theory is explicitly developed for printed-type
transmission lines, it is applicable in principle to nonplanar lines
as well. Except, for nonplanar lines the formulation only in the
spatial domain would be meaningful, while the spectral for-
mulation will no longer be relevant.

III. RESULTS

A. Strip-Type Lines

We first check the correctness of the theory for the special
case of a nonleaky strip-type line, for which data for the char-
acteristic impedance are well established. We chose a standard
microstrip line without any material loss. Here, the character-
istic impedance is a real number because there is no leakage
or material loss. The characteristic impedance using the new
wavenumber perturbation theory is compared in Fig. 7 with that
from a commonly used power-current definition [5], [18], [19],
[20]. Fig. 7 shows practically no difference in the two sets of
results. As we have discussed in Section II, in the new method,
we obtain the from information already available in a mo-
ment-method solution of the propagation constant of the line.
Whereas in the power-current method, one needs a separate re-
formulation in order to find the cross-sectional power, from
which the characteristic impedance is derived as .
For a standard single-layer microstrip line, the additional effort
needed may not be that significant. However, the effort could
significantly increase for complex multilayering arrangements,

Fig. 7. Characteristic impedance of a standard nonleaky microstrip line
computed using the new wavenumber perturbation method, as compared with
that computed using a power-current method. Strip width= W . Substrate:
relative dielectric constant= � = 10:2, thickness= d = 0:127 cm, no
material loss. Frequency= 10 GHz.

Fig. 8. (a) Real and (b) imaginary parts of the complex characteristic
impedance of a leaky two-layer stripline calculated using the new method and
compared with the “boundZ ” method [11] and the “circuit extraction” method
[12]. Strip width= W = 0:3 cm, frequency= 10 GHz. Lower substrate:
relative dielectric constant� = 10:2, thickness= d = 0:127 cm. Upper
substrate: relative dielectric constant= � , thickness= d = 0:0254 cm.

in which case, the present method may be analytically and/or
computationally superior.

We then apply the theory to a leaky stripline, consisting of
two different substrates above and below the central strip. In a
standard stripline, the same substrate is used above and below
the strip, which results in having the central strip placed in a
uniform medium, placed symmetrically between the top and
bottom conducting planes. In contrast to the standard stripline,
for the stripline we consider here the top substrate is thinner than
the bottom substrate, and the dielectric constant of the top sub-
strate ( ) is lower than that ( ) of the lower substrate. Under
this condition, it is known that the stripline can leak power to the
parallel-plate mode [1], [3], [21]. The characteristic impedance
as well as the propagation constant of the line becomes a com-
plex number, with both real and imaginary parts. Fig. 8 shows
the real and imaginary parts of the characteristic impedance of
one such leaky stripline as a function of the dielectric constant

of the upper substrate. The results are compared with two
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Fig. 9. Results for Fig. 8 as a function of strip widthW with � = 5:0.

independent set of results computed using: 1) a power–current
definition based on the bound-mode power [11] and 2) a cir-
cuit-extraction method [12]. All three methods agree well with
each other. As can be seen from Fig. 8, whenis equal to

, the characteristic impedance becomes purely real.
This is expected because, in this limiting case, the transmission
line becomes a purely TEM structure and, hence, nonleaky. In
the absence of the leakage, and also in the absence of any mate-
rial loss as assumed here, the propagation constant and the char-
acteristic impedance of the limiting TEM line are purely real
quantities. As deviates from , the line becomes increas-
ingly leaky with a nonzero value for the imaginary part of the
characteristic impedance. The real part of the impedance (and
the magnitude) reduces with increase in, as expected from
basic impedance principle. It may be noticed that the imaginary
part of the characteristic impedance is negative. This is consis-
tent with the circuit model of Fig. 4, where and and purely
imaginary numbers, and is a series impedance with a positive
real part.

The results for the same leaky geometry of Fig. 8, but as a
function of the strip width (while keeping ), are
plotted in Fig. 9, showing similar comparison with the methods
of [11] and [12]. The magnitude of impedance is seen to reduce
with increasing , which is a normal behavior for strip-type
lines.

Next, we need to validate the new theory for cases with
material loss, particularly when the loss is high. We compute
the characteristic impedance of a uniform stripline, which does
not exhibit any leakage, but is now lossy with a relatively large
loss tangent of the dielectric substrate. Like a stripline line
with leakage, the propagation constant and the characteristic
impedance for the lossy line are also complex numbers.
However, it may be recognized that the present theory of the
characteristic impedance treats the leakage loss differently from
the material loss. It is important to see how the method works
for the case with lossy materials as opposed to a case with
leakage loss. We have independent computations of the charac-
teristic impedance for the lossy stripline using a voltage-current
approach. The results are compared in Fig. 10, showing good
agreement that further supports the fundamentals of the theory.
Notice that the imaginary part of the lossy stripline in Fig. 10

Fig. 10. Example of a standard stripline case with large substrate
material loss (dielectric only) for which the characteristic impedance is
calculated as a function of the substrate loss tangent= tan � using the
new wavenumber perturbation method, and compared with that using a
well-known voltage-current method. Strip width= W = 0:12 cm. Substrate:
relative dielectric constant (complex)= � = 10:2(1 � j tan �), thickness
= d = 0:127 cm (each above and below the strip). Frequency= 10 GHz.
This example validated the new method when material loss exists (small or
large loss).

Fig. 11. Comparison of the characteristic impedance of a standard nonleaky
slotline computed using the new wavenumber perturbation method, with that
using the standard power-voltage method. Slotline width= W . Substrate:
relative dielectric constant= � = 10:2, thickness= d = 0:127 cm, no
material loss. Frequency= 10 GHz.

is positive, whereas that of a leaky stripline in Figs. 8 and 9 is
negative. These are consistent with the circuit model in Fig. 4,
where the leakage introduces a positive real part to the series
impedance, while the dielectric loss introduces a positive real
part to the shunt admittance of the transmission line.

B. Slot-Type Lines

As a first check of the theory for slot-type lines, we apply the
new method to a standard nonleaky slotline. Fig. 11 presents the
computed results from the new method, as compared with those
from a standard power-voltage method [18]–[20].
The comparison of the results continues to be good, though not
as good as in the case of a nonleaky microstrip line in Fig. 7.
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Fig. 12. (a) Real and (b) imaginary parts of the complex characteristic
impedance calculated using the new method as compared with the
“bound-modeZ ” method of [11] and the “circuit extraction” method of [12]
for a leaky CBCPW. Slot width= W = 0:1 cm, center-to-center separation
= S = 0:2 cm, frequency= 10 GHz, substrate thickness= d, and substrate
� = 6:0.

We turn to a slot-type transmission line with power
leakage. We selected a conductor-backed coplanar waveguide
(CBCPW) for the investigation. The mechanical support
provided by the conductor backing of a CBCPW is a
particular attraction for integrated-circuits applications. Un-
fortunately, the geometry is known to suffer from the power
leakage problem [2]. The results of the real and imaginary
parts of the complex characteristic impedance of a CBCPW,
obtained from the present theory, are compared in Fig. 12
with two sets of independent results from [11] and [12].
Good agreement is seen between the independent methods,
which demonstrates the applicability of the new method to
slot-type leaky lines as well. It should be observed that the
imaginary part of the characteristic impedance is positive.
This is consistent with the circuit model of Fig. 6, where

and are purely imaginary numbers and is a shunt
impedance with a positive real part. Further, the impedance
is zero when the conducting back plane is placed at
zero distance from the coplanar waveguide ( ). This
happens due to the short-circuiting effect of the conductor
back plane. This is a trivial limiting situation. As the back
plane is displaced away from the top plane, the leakage
level is expected to sharply increase asincreases, due to
strong coupling to the parallel-plate field. However, as
is increased beyond certain limit ( ), the leakage
should reduce due to eventual weakening of the interaction
between the coplanar waveguide fields on top and the
conducting back plane at the bottom. The above trend
may be seen with the imaginary part of the characteristic
impedance in Fig. 12. Accordingly, the imaginary part first
exhibits a sharp increase from zero at , and than
gradually reduces as is increased. The real part, on the
other hand, increases sharply from a short circuit at ,
but it quickly saturates due to weak coupling with the
back plane. Other studies involving change in the dielectric
constant, and have also been conducted, showing
similar comparison with the independent methods.

IV. CONCLUSION

We have presented a new derivation for the characteristic
impedance of general printed transmission lines, applicable to
conditions when power leaks to a background mode. The theory
was numerically implemented for both slot- and strip-type
lines that may include dielectric and metal loss. Using this
approach, the characteristic impedance is computed together
with the propagation constant in a single process, employing
information obtained by perturbing the propagation constant
of the transmission line. The method applies to nonleaky
printed lines as well and, in principle, would also apply to
nonplanar transmission lines. When leakage exists, the deriva-
tion of the characteristic impedance requires proper removal
of the pole contributions (due to background surface-wave or
parallel-plate-type modes) from various spectral integrations.
As an interesting contrast, the derivation of the propagation
constant requires inclusion of the pole contributions in order to
properly model the leakage.

We demonstrated the validity and accuracy of the theory
through case studies of strip-type as well as slot-type lines. We
presented only selected cases to demonstrate the theory for
representative situations. However, we have performed other
studies for strip- and slot-type lines with different substrate
and physical parameters, and with increased number of layers.
All observations are generally consistent with those we have
presented here, together establishing significant confidence
in the validity of the new “wavenumber perturbation” theory
to diverse conditions. Together with [1] for the propagation
modeling, the present theory of the characteristic impedance is
expected to provide a unified analytical/computational frame-
work for a complete modeling of general printed transmission
lines.

ACKNOWLEDGMENT

The author acknowledges useful technical discussions with
Prof. D. Youla, Polytechnic University, Farmingdale, NY, par-
ticularly on related analytical developments in his circuit theory
work.

REFERENCES

[1] N. K. Das and D. M. Pozar, “Full-wave spectral-domain computation
of material, radiation and guided wave losses in infinite multilayered
printed transmission lines,”IEEE Trans. Microwave Theory Tech., vol.
39, pp. 54–63, Jan. 1991.

[2] H. Shigesawa, M. Tsuji, and A. A. Oliner, “Conductor backed slot-
line and coplanar waveguide: Dangers and full-wave analyses,” inIEEE
MTT-S Int. Microwave Symp. Dig., 1988, pp. 199–202.

[3] L. Carin and N. K. Das, “Leaky waves in broadside-coupled mi-
crostrips,” IEEE Trans. Microwave Theory Tech., vol. 40, pp. 58–66,
Jan. 1992.

[4] D. Nghiem, J. T. Williams, and D. R. Jackson, “Leakage of the dominant
mode on stripline with a small air gap,”IEEE Trans. Microwave Theory
Tech., vol. 43, pp. 2549–2556, Nov. 1995.

[5] N. K. Das and D. M. Pozar, “A generalized spectral-domain Green’s
function for multilayer dielectric substrates with applications to mul-
tilayer transmission lines,”IEEE Trans. Microwave Theory Tech., vol.
MTT-35, pp. 326–335, Mar. 1987.

[6] R. W. Jackson, “Considerations in the use of coplanar waveguide for mil-
limeter-wave integrated circuits,”IEEE Trans. Microwave Theory Tech.,
vol. MTT-34, pp. 1021–1027, Dec. 1986.



DAS: THEORY OF CHARACTERISTIC IMPEDANCE OF GENERAL PRINTED TRANSMISSION LINES 1117

[7] E. J. Denlinger, “A frequency dependent solution for microstrip trans-
mission lines,”IEEE Trans. Microwave Theory Tech., vol. MTT-19, pp.
30–39, Jan. 1971.

[8] D. Mirshekar-Syahkal and J. B. Davies, “Accurate solution of mi-
crostrip and coplanar structures for dispersion and for dielectric and
conductor losses,”IEEE Trans. Microwave Theory Tech., vol. MTT-27,
pp. 694–699, July 1979.

[9] F. Arndt and G. U. Paul, “The reflection definition of the characteristic
impedance of microstrips,”IEEE Trans. Microwave Theory Tech., vol.
MTT-27, pp. 724–731, Aug. 1979.

[10] J. C. Rautio, “A new definition of characteristic impedance,” inIEEE
MTT-S Int. Microwave Symp. Dig., vol. 2, June 1991, pp. 761–764.

[11] N. K. Das, “Power leakage, characteristic impedance and mode-cou-
pling behavior of finite-length leaky printed transmission lines,”IEEE
Trans. Microwave Theory Tech., vol. 44, pp. 526–536, Apr. 1996.

[12] , “Spectral-domain analysis of complex characteristic impedance
of a leaky conductor-backed slotline,” inIEEE MTT-S Int. Microwave
Symp. Dig., 1996, pp. 1791–1794.

[13] T. Itoh, “Spectral domain immitance approach for dispersion character-
istics of generalized printed transmission lines,”IEEE Trans. Microwave
Theory Tech., vol. MTT-28, pp. 733–736, July 1980.

[14] R. F. Harrington,Time Harmonic Electromagnetic Fields. New York:
McGraw-Hill, 1984.

[15] D. M. Pozar, Microwave Engineering. Reading, MA: Ad-
dison-Wesley, 1990.

[16] N. K. Das, “A study of multilayered printed antenna structures,”
Ph.D. dissertation, Dept. Elect. Comput. Eng., Univ. Massachusetts at
Amherst, Amherst, MA, 1987.

[17] N. K. Das and D. M. Pozar, “A generalized CAD model for printed an-
tennas and arrays with arbitrary multilayer geometries,” inComputer
Physics Communication, Thematic Issue on Computational Electromag-
netics, L. Safai, Ed. Amsterdam, The Netherlands: Elsevier, 1991, vol.
68, pp. 393–440.

[18] K. C. Gupta, R. Garg, and I. J. Bahl,Microstrip Lines and Slot-
lines. Norwood, MA: Artech House, 1979.

[19] T. Itoh, Planar Transmission Line Structures, Edited Volume. New
York: IEEE Press, 1987.

[20] N. K. Das and D. M. Pozar,PCAAMT–Personal Computer Aided Anal-
ysis of Multilayer Transmission Lines—Version 1.0. Leverette, MA:
Antenna Design Associates, 1990.

[21] J. T. Williams, N. Nghiem, and D. R. Jackson, “Proper and improper
modal solutions for inhomogeneous stripline,” inIEEE MTT-S Int. Mi-
crowave Symp. Dig., 1991, pp. 567–570.

Nirod K. Das (S’87–M’88) was born in Orissa,
India, on February 27, 1963. He received the B.Tech
degree in electronics and electrical communication
engineering from the Indian Institute of Technology
(IIT), Kharagpur, India, in 1985, and the M.S. and
Ph.D. degrees in electrical engineering from The
University of Massachusetts at Amherst, in 1987
and 1989, respectively.

From 1985 to 1990, he was with the Department
of Electrical and Computer Engineering, The Univer-
sity of Massachusetts at Amherst, first as a Graduate

Research Assistant and then as a Post-Doctoral Research Associate. In 1990,
he joined the Department of Electrical Engineering, Polytechnic University of
New York, Farmingdale, where he is currently an Associate Professor since
1997. He co-editedNext Generation of MMIC Devices and Systems(New York:
Plenum, 1997). He also authored a computer-aided design (CAD)/instructional
tool, i.e., PCAAMT, for microwave multilayer printed transmission lines, and
another simulation tool, i.e., UNIFY, for unified modeling of multilayer printed
antennas and arrays. His research interests have been in the general areas of elec-
tromagnetics, antennas, and microwave and millimeter-wave integrated circuits.
His recent research activities include numerical–analytical methods for electro-
magnetics, multilayered integrated circuits, leaky waves and applications, and
advanced materials for microwave circuits and antennas.

Dr. Das is a member of the IEEE Antennas and Propagation Society (IEEE
AP-S), the IEEE Microwave Theory and Techniques Society (IEEE MTT-S),
and the New York Academy of Sciences. He currently serves on the Editorial
Board of the IEEE TRANSACTIONS ONMICROWAVE THEORY AND TECHNIQUES,
and the Technical Program Committee of the IEEE MTT-S International
Symposia. He was the co-chair of the 1996 International WRI Symposium,
Brooklyn, NY. For his doctoral research work on multilayer printed antennas,
he received a Student Paper Award (Third Prize) in 1990 from the U.S. National
Council of the International Scientific Radio Union (URSI), and the R. W. P.
King Paper Award (below 35 age group) in 1993 from the IEEE AP-S.


