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A New Theory of the Characteristic Impedance of
General Printed Transmission Lines Applicable
When Power Leakage EXxists

Nirod K. Das Member, IEEE

Abstract—Conventional definitions of the characteristic analytical convenience, would fail to work. The boxed structure
impedance, such as the voltage—current, power—current, and will not allow any leakage power to escape out in transverse
power-voltage methods, which have been commonly used for yiractions and, therefore, would not fundamentally support

standard nonleaky transmission lines, become invalid when power the leak de. A ivalent ch teristic i d
leakage occurs. In this paper, we present a new theory of the char- € leaky mode. An equivalent characteristic impedance, as

acteristic impedance for printed transmission lines, applicable S€€N by a particular input excitation, may be extracted from a
under the general conditions with or without power leakage. The three-dimensional (3-D) electromagnetic modeling of a section

theory is founded on dual field and circuit theories of transmission  of a leaky line [10], [11], excited by a suitable source. However,
lines, formulated in the spectral domain, and uses a new approach it is always desirable to define a characteristic impedance,

called “the wavenumber perturbation approach.” In order to b d imple two-di . | (2-D Vsi f
correctly compute the complex characteristic impedance under ased on a simple two-dimensional (2-D) analysis of an

leakage conditions, the new theory requires to carefully “extract infinite-length leaky line, which is independent of the specific
out” the surface-wave or parallel plate-wave poles on the complex source of excitation, or of the specific circuit configuration

k-plane. In obvious difference to this, it is well known that the the line is used in. Some attempts have recently been made

poles must be “included” for a correct solution of the complex 1 mogel the characteristic impedance in such a manner [11],
propagation constant of the leaky line. Incidentally, unlike the .
[12], with reasonable results.

conventional methods, the new theory derives the complex char- ) o
acteristic impedance together with the solution of the phase and  In this paper, we present a new theory of the characteristic
attenuation constants, in a single unified procedure. This avoids impedance of a general printed line, applicable when the line

additional efforts in computational or analytical/formulational  |eaks to a guided mode of the surrounding structure. The deriva-
complexity. Results for selected cases of interest are presentedy;q, ig el founded on dual circuit and field theories of trans-
which demonstrate the validity and simplicity/elegance ofthe new . = "~ . “
theory. mission Ilpes, empl'oys anew techn_lque called the “wavenumber
perturbation technique,” and applies to leaky as well as non-
leaky lines, with or without any material loss. The analysis starts
with a general transmission line with distributed power-leakage
elements, in addition to the conventional storage and/or mate-
I. INTRODUCTION rial loss elements. The wavenumber (in general complex) of the
transmission line is then perturbed to see various changes in the
fl%tal field and circuit behavior. The resulting information is used

Index Terms—Characteristic impedance, leaky waves, planar
transmission line, stripline, slotline.

I T IS WELL known that, under appropriate conditions

printed transmission lines can leak power transversely

the characteristic surface-wave mode(s) of its surroundiﬂborder_to ob_tain an equivaler_1t charaqteristicimpedapce of the
structure [1]-[4]. However, early research on this subjeEPe' Using this approach, the information already available in a

mainly concentrated on the propagation behavior. It is equa ndard moment-method SO“,J“O” of the propa_Lgatlgn constant
important to model the characteristic impedance of the leaky’ [13_] can _be reused to (_:ignve the char_acterlsnc mpedance
lines for use in circuit design purposes. The standard defi@ll the line, without any additional formulation or computation.
tions of the characteristic impedance for TEM or quasi-TEIW"S results in a theoretically as well as computationally effi-

transmission lines, such as the current—voltage, current—povf&gnt/élegant approach. _ _ _
and voltage—power definitions [5]-[7], which have been The basic theory is developed in Section I, first for leaky

commonly used for nonleaky transmission lines, do not app?)t,rip—type lines, which is then generalized for slot-type lines as
when leakage exists. This is due to the strong non-TEM natl¥g!l- Results for selected cases of interest are presented in Sec-

of the transverse fields excited by the leaky lines, havingt@n [l in order to demonstrate the accuracy and validity of the

nonstandard exponential growth in the transverse directiof§W theory.

Further, any analysis of a printed transmission line, which uses
a surrounding boxed structure [8], [9] for computational or Il. THEORY
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Fig. 1. Cross-sectional geometry of an example leaky stripline, showing power kyp
leaking from the central strip through the sidewalls. Due to the presence of

the leakage fields, which spread in the transverse directions indefinitely, the
transmission line is electrically unbounded in transverse dimension.

total electric and magnetic fields, i.&; and H, of the line

can be decomposed into two parts [1]
Fig. 2. ContourC' on the complexk, spectral plane, properly deformed

T _ 5T, P.IT. _IT I around the poles atk,, due to surface-wave-type modes. Such a contour

Er=E+E; Hy =H+ Hi. (l) must be used in spectral integrals in order to include the contribution due
— __ . . . to leakage fields. The residue contributions around the singularities can be
EyandH, are the parts contributed due to the leakage radiatiGfiyibuted to the power leakage to the surface-wave mode. The singularities at

having nonstandard exponential growth in transvégdelirec- £k, may be prolp_erly egtrac;ed :n ordﬁr ttk)) e><0(|ju?|eI Jhe le;':\karl]gerr1 fields. Wt')he
; - « remaining integral is attributed only to the “bound fields,” which then can be
t_lons. ;I'hese Ieaka_ge fl_elds may be referred to as the gr_owﬁ@'grated along the real axis.

fields.” If the growing fields are removed from the total field,

the remaining f_ieldsE andH in (1) are confined_or bound to forced using a Galerkin-type testing procedure, resulting in a
the central region, and are called the “bound fields.” A SPef;

. ) e noment-matrix equation

tral-domain analysis of the transmission line can be used to de-

rive the “growing fields” E; and H; from the total fieldsE - N

andH . This is done by careful extraction of the singular parts)_, @ Zrij(kx = k) =0,  j=1,---, N ®)
contributed due to surface-wave poles on the transverse spegt

tral k,-plane [1]. The surface-wave poles (that are responsible

for the power leakage) in the spectral plane of the total fields det [Zrij(ke = ke)] o = O (6)
Er andH g are to be carefully removed using proper “extrac- NN

tion functions.” The remaining parts are the bound figttland

H. The singular parts that were extracted out constitute the un- _ _
bounded growing leakage fields, andH; Zrij(k) = / . Eri(y; ka) - Jjdy
We first discuss the moment-method analysis of the propaga- strip, x=0 o -
tion constant of a leaky strip line, as relevant to the rest of the = / filky) - Gps(—ky, ky)-f;(=ky)dky.  (7)
c

derivation of the characteristic impedance. The surface current
J on the central strip is expanded using a set of basis functionsThe quantitiesZr;; in (7) are the moments of the total field
with unknown coefficients; produced by théth basis current with thgth basis current, and

7 are computed using a Fourier-plane integrathij(ky) are the

N
T Flae—dkem — - F —jkew _ o
J = f(y)e = Z a;J; = Z aifi(y)e () Fourier transforms of the space functiofis;(y), Ggy is the
=t =t spectral-domain dyadic Green'’s function for the electric field,
produced due to electric currents [5]. When leakage exists, be-

_ N cause of the exponential growth of the leakage field, the required
fly) = Z ai f;(y) ®3) spectral-integration contour should be properly deformed along
=1 C around surface-wave singularities, as shown in Fig. 2. After
Zri;'s are computed, the determinant equation (6) can be solved
_ BN A for the unknown propagation constaht, = k..
I= /Smp fly)-2dy=1. @)t the total currentf (y) is known, at least approximately, then

o ) ] the solution of the matrix equation in (7) can be simplified to
Just for simplicity of formulation, we have normalized SUCQolving for the zero of a single moment function

that the total currenf along the longitudina()-direction is

unity. The normalization should not affect our final results. Th%T(k'ac = k)= / Er(y; ko =ke) - T(y)dy =0
tangential component of the electric field should be zero ev- strip, z=0 ’ T
erywhere on the central strip. This boundary condition is en- (8)
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and Distributed Sy(X = Az)
Radiation Impedance

Zr(ks) = / Ealys ko) Tdy
strip, z=

= [ T Geslota, ) Th) d
©

The above procedure only finds the propagation characteristic

of the line. In the following, we establish a new theory for the

complex characteristic impedance of the leaky line. The new

theory relates the characteristic impedance of the line to th fx

above moment computations, based on a dual field-circuit for- /

malism. The procedure will allow derivation of the character-

isticimpedance, together with the propagation constant, withou.

additional computation. (@
Under an ideal situation, when a transmission line is infin-

itely long in the direction of propagatiof, the growing fields

E; and H, increase indefinitely in transvergg)-directions,

to infinity at large(y = too) distances. This makes the line

electrically unbounded in the transverse plane. One can tran

form the electrically unbounded structure of Fig. 1 to an equiv-

alent transmission line with a bounded transverse section. Thi

is shown in Fig. 3(a), consisting of only the bounded fiekls

and H. The leakage from the central strip is a distributed ra-

diation process, which carries power away from the line, anc ¥ e

is responsible for the “unbounded” leakage fieldsand H,. ke + Ak,

This distributed radiation process may be equivalently mod- ¢

eled using a distributed radiation impedanggper unit length, (X

along the strip. One may visualize this as having distributed an oyter Boundary /

tennas loaded along the transmission line, which produce th

leakage radiation fields. Since we assume a total current of a

unit amplitude,Z; is the negative of the complex reaction per ®)

unit length due to the leakage field. Therefore, we may expré‘sgﬁ 3 (Z) Eguwglent boundc(ejd g(%ometry of a %ener:allstrll(p type Leaky line
with distributed radiation impedancg; to account for the leakage radiation.
Z usmg the foIIowmg reaction Imegral‘ The outer boundary; is chosen on a metal wall (when there is a ground
plane on top and/or bottom) or sufficiently far away where open (sides and
— = top/bottom, depending if there is a metal wall or not) such that the electric and
Zy = — _ E-Jdy. (10) magnetic fieldsz, H ~ 0. (b) The modified bounded geometry of (a), when the
strip, =0 strip current] is perturbed toJ”’ with a slightly different propagation constant
) ) ) ) ] k. + Ak.. The corresponding field&', H, powerP, and distributed leakage
The central strip of Fig. 3(a) is electrically different from thempedanceZ; are perturbed t&”, #', P’, andZ;, respectively.
metal strip in the original transmission line. This may be seen

by comparing the required boundary conditions of the electiign apply the following reaction (not power) integral to the
fields in the two cases. In the original transmission line, the tagquivalent transmission line of Fig. 3(a) [14]:

gential component of the total electric field; is zero every- .
where on the strip (assume for now a perfectly conducting stn?// ExH-dS=—juw /// €E-EdV
Whereas, the equivalent transmission line of Fig. 3(a) consists:s.

of only thg bounded electric fields, the tanggnnal component M/// GH-Hav - // 5.7dS

Az =1 Unit

Outer Boundary

Central Strip

Distributed S(X =
Radiation Impedance 2( Az)

E..+0

Erian 20 >
BT P M

Az =1 Unit

Central Strip

of which is no longer zero on the central strip.

strip

Er-p=0, E-p=—E-p#0 (11) :—jw///€E-EdV
wherep is any unit vector along the surface of the strip, which v
may be eithet: or 7. — jw /// pH-HdvV
Besides the boundary condition on the strip, it can be
shown that the bound field& and H independently satisfy _ _ _ _
the Maxwell's equations everywhere inside the enclosure of + // Ey-JdS - // Er-JdsS.
Fig. 3(a), and also have zero tangential electric and/or magnetic strip strip

fields on the enclosure surfacy. Under this condition, we (12)
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Equation (1) is used to deduce the last step of (12). In the //4 //
right-hand side of (12), the first two terms may be interpreted, AV, AVd_

respectively, as the negative of the complex electric readtion
and the complex magnetic reactidt), stored in the enclosed
element volumé’” of Fig. 3(a)./i and¢ are the magnetic per-

meability and electric permittivity of the medium, respectively, Yo —
which may be complex quantities in order to handle any mag- —4—— Unit Length——»

netic or electric loss in the medium. If the top or/and bottom
layer of a transmission line is a lossy ground plane, then the rg. 4. Circuit equivalent of the perturbed stripline geometry of Fig. 3(b)

sulting metal loss can be modeled in (12) by treating the groufeth propagation constarit. + Ak.). For the unperturbed case of Fig. 3(a)
| | dielectri terial (with propagation constaift, ), the changes necessary in the equivalent circuit
p ane(s) as a lossy dielectric material. areAV, = 0 andAZ; = 0. Z andY ideally remain unchanged with the

The third term in the right-hand side of (12) involvig may perturbation. Wherea, is the distributed series impedance due to the leakage
be identified as the negative of the power radiated per unit leng@iation, which is strongly changed by the perturbation.
P, from the transmission line in the form of the leakage field.
P, is equal to the distributed radiation impedari&eper unit and the same boundary conditions everywhere on the surfaces
length, as defined earlier in (10). Let us call the last term in (1891 + S2 + S3). However, the perturbed boundary conditions
a driving term, i.e.P;, which for now is zero, because the totaPn the strip will change. The total electric fielt in the per-
electric fieldE'r is zero on the central strip turbed problem will no longer be zero on the strip. The leakage

radiation fieldsE; and H; and, henceZ;, are also strongly
/ ExH-dS= —-P.—P,—P+P, affected by the change .. As the total field changes, as well
& is, as the leakage field (which is only a part of the total field), the
—_P_P,— 2 remaining bound fieldz will also change accordingly. On the
(13) strip, we have

AEr-p=(AE+AE)-p#0 (18)

Pl:—/ E-idsz—/ E -Jdy=2. (14)
trip, =0

)

AEﬁ#()v _AEl'ﬁ#()v
Since the total strip current is initially assumed to be unity, AE-p# —ALy - p, p=a, 9 (19)

the integration oft) x H over the transverse cross secti®n nder these conditions, we can reapply the reaction equations

in Fig. 3(a) is equal to the negative of the complex charagr2) (17) to the new perturbed situation of Fig. 3(b). The final
teristic impedanceZ. [11]. This is based on a power-currenegyits may be expressed as follows:

(or alternately reaction-current) definition of the characteristic

strip

impedance, where the reaction is definedds= P = 1?2, =  —2j(Z. + AZ:)(ke + Ake)
Z. (becausd = 1), andP is cross-sectional powes(reaction, = —(P.+AP.) — (P, + AP,) — (Z; + AZ)) + AP,
I = 1) due to the bound fields [11] (20)
//Exﬁ~%:—zc. (15)
] ) S o Pd—‘rAPd:APd:—//(ET—i-AET)7dS
The contribution to the reaction integral from the surfagean /
be derived from that 0F; by including the incremental phase strip
shifts of the field quantities over the element length = 1 = _/ AEp - Jdy= AV, (21)
strip, =0
// ExH-dS=Z.e %" = Z,(1-2jk.).  (16) The equation (17) may be subtracted from (20), keeping only
S, the first-order differential terms
Adding (15) to (16), and then using the results in (13), we get —2§(ZeAke + keAZ,) = —AP. — APy, — AZ + AV,
_2chke = _Pe - Prn - Zl' (17) (22)

Consider a perturbation in the equivalent geometry of Fromthe above field analysis, it may be useful to derive a dual
Fig. 3(a), where the propagation constapt= k. is changed circuit representation for the bound-mode transmission line of
to k, = k. + Ak.. The perturbed situation is shown inFig. 3(a). This is shown in Fig. 4, where the four terms in (13),
Fig. 3(b). Let us represent all new quantities with prime(l7), (20), (22),i.e.P., P,., P, andP,, respectively, correspond
variables, with the corresponding change with a preéXixThe to the four circuit elementy¥, 7, Z;, andAV; of Fig. 4. The an-
perturbed field components are in general different from tradytical relationships between the corresponding elements can
corresponding original fields. However, like the unperturbege established via simple circuit theory [15]. Careful attention
case, the bound fields in the perturbed case also independently be given to the signs of different field components asso-
satisfy Maxwell's equations inside the enclosed volulge ciated with the four parts. Some specific points may be ob-
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served, which are of particular significance to the new pertusther words, by properly extracting the part only due to the
bation field-circuit treatment. The distributed driving voltagdound fields. A simple method of pole extraction can be used

AVyin Fig. 4 representa P, in (20), which, as shown in (21), in the expression of 7 in (9) to deriveZ,

is related to the tangential total electric field (not bound elec- 1 [~

tric field) E7 on the strip. Consistent with the conditions of Zv(ke) = Zr(ke) — 5— / fky)

tangentialE on the strip, as discussedV; is zero without ¢

the perturbation, but nonzero under the perturbation. Next, the Res{éE(—km i )} 1
leakage-radiation impedancg relates to the leakage fiell,, Y ky =k, (ky — k;})
and is strongly affected by the perturbationiin This is be- o ' 1
cause the power associated with a leakage radiation is strongly +ReS{GE(—km, ky)} 7_]
dependent on the phasing of the source of radiation or, equiva- ky=kyp (ky = kyp)

lently, k.. In contrast ta7Z;, the distributed series impedanZe ) ?(—k ) die (28)
and shunt admittance are determined only by the geometrical vy

structure and physical medium, not by the mode of excitation

of the strip current or, equivalently, by the phasing dué&dto kffp R, Im(k;;q) =0 (29)

Strictly speaking, the last condition is valid for TEM-type fields,
but can be treated as a good approximations for quasi-TEMhereks,, is the propagation constant of the characteristic wave
lines, or for leaky transmission lines where the “bound fieldg5urface-wave or parallel-plate wave) of the surrounding struc-
closely resemble TEM or quasi-TEM fields. Fortunately, this isre to which power leaks from the transmission line. When the
the case for many practical geometries. Under these constraistep width is electrically small (most practical cases,) it can be
we can make approximations in the dual field-circuit equatiorshown that the second part of (28) may be approximated by
of (22) residues of the integrand dfr in (9)

P,=I"Z=2, AP,=AZ~0 23)  Zy(ks) = Zp(ky) + 7 [Res{ZT(kw, ky = kb)Y
—Res{ Zr(ka, ky = ky—p)}} (30)

_ 12 _ 72
Fe=V7Y _QZCY whereRes{ Zr(k., k, = k,)} means the residue of (9) at
AP =YA(Z7) = 2(2:.Y )AZe = 2jkeDZ.. (24) |, = kE . Itis of mathematical significance that in the above

. . . expression of,, we haverj, and not27 7. This means, in order
Equations (23) and (24) may be used to simplify (22) to I2)btain the ‘l‘)bound moéle” mome;ril functidfy, one needs

9§ 7. Ak, =—AZ + AVy = / AE; - Tdy to ;ubtract fr(_)m t_he total moment functidfy gnly half of its
strip, #=0 residue contribution around the polesigt= k.
- — If the transverse variation of the strip current is expanded
N /Stm =0 AEr-Jdy using a basis set, as in (2, can be expressed as a superpo-
- sition of moment testing function&Zy; ;|1 ). The moment
= - / . A(Er — Er)-Jdy testing function$Z,;;](1 .y can be derived/extracted from the
strip, £=0 corresponding total testing functiofr;;] 1 . v of (7)
_ / AE.-Tdy=-AZ,  (25) v N
strip, #=0 Zb(k'm) = Z aj aiZbij(km) = [ai]T [wa(k'm)] [az]
j=1 i=1
_ 1 AZy _ 1 92y (k=) (26) (31)

© 25 Ake 25 Ok, kn,=kp'

The expression oA Z, in (25) may be compared with that of _ . 4
Zr in (8) and (9). It should be recognized that(k,) is equal Zij(ka) = Zrij(ka) + 7] [ReS{ZT“(k"“ by = kp)t

to the part ofZr(k,) after excluding the contribution from the — Res{ Zri; (ke ky = K, )}}
leakage field. In other words, is the moment function of the JNTER T e
bound electric fieldE (instead ofE'r for Z;) on the source/ (32)
atz = 0. The results of (26)—(32) may now be summarized as follows.
= - The characteristic impedance of a strip-type transmission line
Zy(ks) = /mp 0 E(y; ke) - Jy)dy is 1/2j times the derivative of the moment (reaction) function
’ . _ Zy(ks), computed ak,, = k.. TheZ,(k,) needed for this com-
= /mip L E(y; k) - f(y) dy. (27)  putation can be derived from the total moment functitn|or,

alternately from moment testing functiofdg;; (k)] by just ex-
When the transverse variation of the strip currgfi) is tracting out the singular contribution at the surface-wave poles.
knowna priori, at least approximately;, can be derived from Itis important to note that the same moment functar(%..) is
the total moment functior of (9) by properly excluding the also used to search for the complex propagation constaoft
contribution due to the leakage field via residue theory or, the line, whereZr (%, = k.) = 0. In other words, the zero of
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Z7 gives the complex propagation constant, while the deriv Sy(X = Az)

tive of Zr (after simple removal of the singular contribution

provides the characteristic impedance of the line without ai

additional computation or analytical formulation. The derivativ

may be numerically computed &t = k. by incrementing the

k. along any convenient direction on the complex plane, whic Medium (1)

is already performed anyway in the process of searching fort  (Above Slot)

propagation constant [1]. Ground
It is also important to observe that, in a spectral-domain s Plane

lution of the propagation constant of a leaky line, one niust

cludethe pole contribution [1] in the computation. Whereas fc (g

the computation of the characteristic impedance of the lea

Distributed
Radiation Admittance

line, the present process requirestaludethe pole contribu- 3, Y,

tion for a correct result. This conclusion follows from the thec

retical derivation we have presented, the validity of which wi Outgrgﬁgfgm

be demonstrated through independent comparisons in the Central Slot

| . : Medium (2) (Hy=Ha)ian =0

owing section. (Below Slot)

B. Slot-Type Leaky Lines Fig. 5. Equivalent bound geometry of a general slot-type leaky line, with

i _ ; ; istributed radiation admittance; to account for the leakage radiation. The
The results are similar for a slot-type line, except that in ﬂﬁ%ster arbitrary boundary is chosen on a outer metal wall (when there is a

final equations, the characteristic impedateshould be re- ground plane) or sufficiently far away (on sides or on top/bottom when open)
placed by characteristic admittankg of the slotline, and the such thate, H ~ 0. Only one slot is shown here. For coplanar waveguides,
various electic-feld moment functon, Zr, Z,, andZi, et ¢ 450 Ueeen o= sttype s, e snge Sot 1 s aure can be
be replaced by appropriate magnetic-field moment funciQns — 5. as in Fig. 3(b), the perturbed case here for the slotiine would require
Yr, Yii;, andYr;, respectively. Fig. 5 shows the geometryhe following changest, — E, 1 — E,, H1 — H,, E; — E,,
of a slot-type leaky transmission line, indicating changes r%,_‘ Hyy ke = ke = ke + Ake, Py — P{, P, — P;, Y1 — ¥/, and

. . . H, — H,)tan # 0 across the slot.
quired when the complex propagation constanis perturbed.
The corresponding circuit model is shown in Fig. 6. In contrast .
to the electric currents used to model the central strip of a = Unit Length_?/ /1/
strip-type leaky line, here, two equivalent magnetic surface cur- I Z L
rentsM = E, x 2 and—M are placed, respectively, slightly
above and below the slot plane in order to model the slot-elec-
tric field E,. In the above equivalent magnetic-current formu- Rl
lation, one needs to fill in the slot region by continuation of Y=Y +AY,
the surrounding ground plane. In addition, the boundary condi-
tion that needs to be enforced now is the continuity of the magjg. 6. Circuit equivalent of Fig. 5 for the perturbed case. For the

in f ; 3 corresponding unperturbed case/, = 0 andAY; = 0. As in the stripline
netic fields across the two sides of the slot (ol across the equivalent circuit of Fig. 4Z andY” are ideally unchanged with perturbation.

slot = 0). Based on the above changes, and following simil@fhereas the distributed shunt admittarikg due to leakage radiation is
steps as for strip-type leaky lines in Section II-A, we presentrongly affected by the perturbation.

here only the key expressions for the characteristic admittance,
Y, of a slot-type leaky line

1 AY, 1 9Y(ky)
2 Ak, 2§ Ok,

G Aly Y Y/C Al

—

(33) YTvtj(/fm)I%/Cﬁ(ky)[éﬁw(—km’ ky)

+ Gron (e, ky):| ?J(—ky) dk,

ky=ke

N N
Yilka) = 3 a5 ai¥i(ke) = ai] [Yiyho)] ] (39) 37)
j=1 =1
Yothe) = 5. [ F0) | Gunas(~Fa. )
YE)(kT):YT(I{T)—FWJ[RES{YT(ky:If;;q)} T\ Iz ~on’ o Y H1M zy vy
— Res{Yy(k, = k;p)}} (35) + EHQJW(_/%, ky)} Sf(=ky) dk,.
(38)
Yoij(ky) = Yrij(ke)+7j [Res{YTij(ky =k} In (37) and (38)5H1M(km, k,) is the spectral dyadic Green’s

B function for magnetic field observed above the slot plane, pro-
—Res{Y7i;(k, = kyp)}:| (36)  duced due to a magnetic current placed on top of the slot plane,
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whereas? ;25 (k. k) is the same, but observed below the slot 80
plane, produced due to a magnetic current placed below the slot
plane.G 1y and Gy may be derived as in [5], [16], and 60}
[17]. f(y) is the transform of the transverse variatif( ) of the
equivalent magnetic current placed on top of the slot (negative < s
for below the slot).f(y) is expanded usingv basis functions L\§’
with unknown coefficients; and normalized such that the total
slot voltage is unity. 20k -
AP 2( I%:/z:?(t)xre:&o%&ethod
C. General Comments
l I I

As described in the derivation, the new theory models the % 1 2 3 4

leakage loss, in addition to any material loss that may be W (mm)

present [dielectric or magnetic loss, and metal loss in the

ground plane(s)]. The same general procedure will also apply. 7. Characteristic impedance of a standard nonleaky microstrip line
when there is metal loss in the strip. In this case, an appropriagputed usigg the new wavenumber pert#rtéation megohd, as c%mpared with
; " ; at computed using a power-current method. Strip widthi?’. Substrate:
|mpedance boundary condmop Is to be_ ,USEd [1] 0!’1 the Str_mlative dielectric constant e, = 10.2, thickness= d = 0.127 cm, no
which can be shown to result in an additional reaction term ifaterial loss. Frequency 10 GHz.

(17) and (20). The additional term can be treated as an extra

distributed impedance in the circuit model. Assuming that this

new strip-loss element is independent of any perturbatidn in LY\ W L B A B
(similar to the case foZZ andY), the final expression for the EET Bovenivode 7
characteristic impedance in (26) will remain unchanged. 15 Civeuit-Extraction Method. | 3
Clearly, as a simpler special case, the method will also apply - c
when there is no leakage. In this case, the treatment is actually R PR
simplified by havingZr = Z, andYy = Y, without the need ’NG 10 —2 ﬁ
for any special pole extraction. This is, however, significant, < g
considering that unlike the conventional methods (power-cur- & T
rent or voltage-current) [5], [18], [19] used in the past, no addi- 5+ 7t
tional theoretical or computational effort will be needed in order
to obtain the characteristic impedance. It may also be mentioned ob . 1 T 0
that, though the theory is explicitly developed for printed-type 1 3 5 7 9
transmission lines, itis applicable in principle to nonplanar lines €r2

as well. Except, for nonplanar lines the formulation only in the

spatial domain would be meaningful, while the spedtkg) for-  Fi9- 8- (a) Real and (b) imaginary parts of the complex characteristic
! impedance of a leaky two-layer stripline calculated using the new method and

mulation will no longer be relevant. compared with the “bound..” method [11] and the “circuit extraction” method
[12]. Strip width= W = 0.3 cm, frequency= 10 GHz. Lower substrate:
relative dielectric constant., = 10.2, thickness= d; = 0.127 cm. Upper

IIl. RESULTS substrate: relative dielectric constante, .o, thickness= d; = 0.0254 cm.

A. Strip-Type Lines

We first check the correctness of the theory for the special which case, the present method may be analytically and/or
case of a nonleaky strip-type line, for which data for the chatemputationally superior.
acteristic impedance are well established. We chose a standand/e then apply the theory to a leaky stripline, consisting of
microstrip line without any material loss. Here, the charactemwo different substrates above and below the central strip. In a
istic impedance is a real number because there is no leakatendard stripline, the same substrate is used above and below
or material loss. The characteristic impedance using the néwve strip, which results in having the central strip placed in a
wavenumber perturbation theory is compared in Fig. 7 with thahiform medium, placed symmetrically between the top and
from a commonly used power-current definition [5], [18], [19]bottom conducting planes. In contrast to the standard stripline,
[20]. Fig. 7 shows practically no difference in the two sets dbr the stripline we consider here the top substrate is thinner than
results. As we have discussed in Section Il, in the new methdlde bottom substrate, and the dielectric constant of the top sub-
we obtain theZ. from information already available in a mo-strate €,.2) is lower than thatd,.;) of the lower substrate. Under
ment-method solution of the propagation constant of the linkhis condition, itis known that the stripline can leak power to the
Whereas in the power-current method, one needs a separat@agallel-plate mode [1], [3], [21]. The characteristic impedance
formulation in order to find the cross-sectional power from as well as the propagation constant of the line becomes a com-
which the characteristic impedance is derivedZas= P./I?. plex number, with both real and imaginary parts. Fig. 8 shows
For a standard single-layer microstrip line, the additional effattie real and imaginary parts of the characteristic impedance of
needed may not be that significant. However, the effort coutthe such leaky stripline as a function of the dielectric constant
significantly increase for complex multilayering arrangements,. of the upper substrate. The results are compared with two
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40 I T T T 0.8 40 T T T T
XXX ’Present Methogl .
el %?;::ﬁ?gf\ézg:aéion Method X XX Present Method
301 -lo.6 30 ® o o Voltage-Current Method
G
S . c Re(Zc)
<20 S 520 .
S 04N o
& S
10 —0.2 | 10| -
Im(Z¢)
0 ] i | | 0 0 ] | ] |
] 1 2 3 4 5 0 2 4 6 8 10
W (mm) tané

) ) ) o ) Fig. 10. Example of a standard stripline case with large substrate
Fig. 9. Results for Fig. 8 as a function of strip widti with €, = 5.0. material loss (dielectric only) for which the characteristic impedance is
calculated as a function of the substrate loss tangentan 6 using the
new wavenumber perturbation method, and compared with that using a
independent set of results computed using: 1) a power—curragit-known voltage-current method. Strip width W = 0.12 cm. Substrate:

definition based on the bound-mode power [11] and 2) a cffa™® doiel'ggtg;céfgﬁ”;égsggffb;b; t;g'igrlip)_ Jl':rt‘ezrtg;é;h[ifénﬁjs
cuit-extraction method [12]. All three methods agree well with;s exarﬁple validated the new method when material loss exists (srﬁall or
each other. As can be seen from Fig. 8, whenis equal to large loss).
e-1 (= 10.2), the characteristic impedance becomes purely real.
This is expected because, in this limiting case, the transmission
line becomes a purely TEM structure and, hence, nonleaky. In
the absence of the leakage, and also in the absence of any mate-
rial loss as assumed here, the propagation constant and the char- 200+ .
acteristic impedance of the limiting TEM line are purely real
quantities. As,.» deviates from,.;, the line becomes increas-
ingly leaky with a nonzero value for the imaginary part of the
characteristic impedance. The real part of the impedance (and
the magnitude) reduces with increase:jn, as expected from
basic impedance principle. It may be noticed that the imaginary
part of the characteristic impedance is negative. This is consis-
tent with the circuit model of Fig. 4, wheté andY and purely 50 XXX Plzrx%ohgig;o&emod _
imaginary numbers, and; is a series impedance with a positive
real part.

The results for the same leaky geometry of Fig. 8, but as a 00 { '2 ;1; 2
function of the strip widthi?” (while keepinge,. = 5.0), are W (mm)
plotted in Fig. 9, showing similar comparison with the methods

of [11] and [12]' The magthde of Impedance is seen to redu 8. 11. Comparison of the characteristic impedance of a standard nonleaky

with increasingW’, which is a normal behavior for strip-typesiotiine computed using the new wavenumber perturbation method, with that

lines. using the standard power-voltage method. Slotline wigthi1”. Substrate:
Next, we need to validate the new theory for cases wim';te“r’; Idl'oes'gcg'r"egggsg"iz; 10.2, thickness= d = 0.127 cm, no

material loss, particularly when the loss is high. We compute

the characteristic impedance of a uniform stripline, which does o )
not exhibit any leakage, but is now lossy with a relatively largé POSitive, whereas that of a leaky stripline in Figs. 8 and 9 is

loss tangent of the dielectric substrate. Like a stripline lifgative. These are consistent with the circuit model in Fig. 4,
with leakage, the propagation constant and the characteridtftere the leakage introduces a positive real part to the series
impedance for the lossy line are also complex numbefgpedance, while the' dielectric loss mtroducgs a positive real
However, it may be recognized that the present theory of tR8t to the shunt admittance of the transmission line.
characteristic impedance treats the leakage loss differently from .

the material loss. It is important to see how the method works Slot-Type Lines

for the case with lossy materials as opposed to a case withAs a first check of the theory for slot-type lines, we apply the
leakage loss. We have independent computations of the charamsy method to a standard nonleaky slotline. Fig. 11 presents the
teristic impedance for the lossy stripline using a voltage-currectmputed results from the new method, as compared with those
approach. The results are compared in Fig. 10, showing gdoom a standard power-voltage methgd = 2/ P. [18]-[20].
agreement that further supports the fundamentals of the thedrye comparison of the results continues to be good, though not
Notice that the imaginary part of the lossy stripline in Fig. 18@s good as in the case of a nonleaky microstrip line in Fig. 7.

250 I T ]

150 .

Ze, 2

100 [~ ]
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IV. CONCLUSION

200 I I T 6.0
We have presented a new derivation for the characteristic
150 4.5 impedance of general printed transmission lines, applicable to
o o conditions when power leaks to a background mode. The theory
"~ = was numerically implemented for both slot- and strip-type
’N3100 3.0 \Ni lines that may include dielectric and metal loss. Using this
< g approach, the characteristic impedance is computed together
w ~ with the propagation constant in a single process, employing
50 X X X Dresent Method 1.5 information obtained by perturbing the propagation constant
cee “Pé?fcl&?{.MEiffacZ{a:m Method of the transmission line. The method applies to nonleaky
0 | | | 0 printed lines as well and, in principle, would also apply to

0 2 4 6 8

nonplanar transmission lines. When leakage exists, the deriva-
d(mm)

tion of the characteristic impedance requires proper removal
of the pole contributions (due to background surface-wave or
Fig. 12. (a) Real and (b) imaginary parts of the complex characterist?caralIel_'plate_type modes) from var.lou-s spectral 'megratlo_ns'
impedance calculated using the new method as compared with #& an interesting contrast, the derivation of the propagation
‘f‘g?:f}g;‘fco%egé;nvﬁvetgﬁﬂ alfl éi}hl:] ?‘Qdih% 1C'£%J'tciﬁ{:figgemgtrh§: gfrigﬁilnconstant requires inclusion of the pole contributions in order to
=5= Ué cm, freq.uency: 10 GHz,;ub.strate,thickness d, and sugstrate properly model the leakage. o

e = 6.0. We demonstrated the validity and accuracy of the theory
through case studies of strip-type as well as slot-type lines. We

. . ) resented only selected cases to demonstrate the theory for

We tm to a slot-type transmission line with poweFe resentative situations. However, we have performed other
leakage. We selecte_d a cqndl_Jctor-backed copla_nar wavedUities for strip- and slot-type lines with different substrate
(CBC.:PW) for the investigation. The mechanical S”F’pOE}nd physical parameters, and with increased number of layers.
prov_lded by thg conduptor backm_g (.)f a C.BC'.DW 'S A observations are generally consistent with those we have
particular attraction for integrated-circuits applications. U sresented here, together establishing significant confidence

fortunately, the geometry is known to suffer from the pow h the validity of the new “wavenumber perturbation” theory

leakage problem [2]. The results of the real and imagina.[g diverse conditions. Together with [1] for the propagation

parts_ of the complex characteristic impedance of a CB.CP odeling, the present theory of the characteristic impedance is
obtained from the present theory, are compared in Fig.

. . pected to provide a unified analytical/computational frame-
with two sets of _mdependent results from [11] and [1211\/ rk for a complete modeling of general printed transmission
Good agreement is seen between the independent methﬂﬁ)

35,
which demonstrates the applicability of the new method to
slot-type leaky lines as well. It should be observed that the
imaginary part of the characteristic impedance is positive.

This is consistent with the circuit model of Fig. 6, where ) ) ) )
7 and Y are purely imaginary numbers arid is a shunt The author acknowledges useful technical discussions with

impedance with a positive real part. Further, the impedanB&°f- D- Youla, Polytechnic University, Farmingdale, NY, par-
is zero when the conducting back plane is placed tigularly on related analytical developments in his circuit theory
zero distance from the coplanar waveguide=f 0). This work.
happens due to the short-circuiting effect of the conductor
back plane. This is a trivial limiting situation. As the back
plane is displaced away from the top plane, the leakage
level is expected to sharply increase désncreases, due to [l N. K. Das and D. M. Pozar, *Full-wave spectral-domain computation
li h llel-l field of material, radiation and guided wave losses in infinite multilayered
strong COUS 'Bg to dt € paral_e -tpl E(iteS IeW) ngelvek ds printed transmission lines|EEE Trans. Microwave Theory Teghol.
is increased beyond certain limi + W), the leakage

ACKNOWLEDGMENT

REFERENCES

39, pp. 54-63, Jan. 1991.

should reduce due to eventual weakening of the interactionf2l H. Shigesawa, M. Tsuji, and A. A. Oliner, “Conductor backed slot-
between the coplanar waveguide fields on top and the

conducting back plane at the bottom. The above trend[3]
may be seen with the imaginary part of the characteristic
impedance in Fig. 12. Accordingly, the imaginary part first 4]
exhibits a sharp increase from zero é@t= 0, and than
gradually reduces ad is increased. The real part, on the
other hand, increases sharply from a short circuit/at 0,

but it quickly saturates due to weak coupling with the
back plane. Other studies involving change in the dielectric
constant, S and W have also been conducted, showing
similar comparison with the independent methods.

(5]

(6]

line and coplanar waveguide: Dangers and full-wave analysel5EE
MTT-S Int. Microwave Symp. Digl988, pp. 199-202.

L. Carin and N. K. Das, “Leaky waves in broadside-coupled mi-
crostrips,”IEEE Trans. Microwave Theory Tec¢hvol. 40, pp. 58—66,
Jan. 1992.

D. Nghiem, J. T. Williams, and D. R. Jackson, “Leakage of the dominant
mode on stripline with a small air gagEEE Trans. Microwave Theory
Tech, vol. 43, pp. 2549-2556, Nov. 1995.

N. K. Das and D. M. Pozar, “A generalized spectral-domain Green'’s
function for multilayer dielectric substrates with applications to mul-
tilayer transmission lines,/EEE Trans. Microwave Theory Teglhvol.
MTT-35, pp. 326—335, Mar. 1987.

R. W. Jackson, “Considerations in the use of coplanar waveguide for mil-
limeter-wave integrated circuitsiEEE Trans. Microwave Theory Tech.
vol. MTT-34, pp. 1021-1027, Dec. 1986.



DAS: THEORY OF CHARACTERISTIC IMPEDANCE OF GENERAL PRINTED TRANSMISSION LINES 1117

[7] E. J. Denlinger, “A frequency dependent solution for microstrip trans-[21] J. T. Williams, N. Nghiem, and D. R. Jackson, “Proper and improper
mission lines,"EEE Trans. Microwave Theory Techol. MTT-19, pp. modal solutions for inhomogeneous stripline, "EEE MTT-S Int. Mi-
30-39, Jan. 1971. crowave Symp. Dig1991, pp. 567-570.

[8] D. Mirshekar-Syahkal and J. B. Davies, “Accurate solution of mi-
crostrip and coplanar structures for dispersion and for dielectric and
conductor lossesJEEE Trans. Microwave Theory Techkol. MTT-27,
pp. 694-699, July 1979.

[9] F. Arndt and G. U. Paul, “The reflection definition of the characteristic
impedance of microstripsJEEE Trans. Microwave Theory Techvol.
MTT-27, pp. 724-731, Aug. 1979.

[10] J. C. Rautio, “A new definition of characteristic impedance, |BHEE
MTT-S Int. Microwave Symp. Digrol. 2, June 1991, pp. 761-764.

[11] N. K. Das, “Power leakage, characteristic impedance and mode-cc
pling behavior of finite-length leaky printed transmission lindEEE
Trans. Microwave Theory Teghvol. 44, pp. 526-536, Apr. 1996.

[12] ——, “Spectral-domain analysis of complex characteristic impedangg From 1985 to 1990, he was with the Department
of a leaky conductor-backed slotline,” IEEE MTT-S Int. Microwave A of Electrical and Computer Engineering, The Univer-
Symp. Dig. 1996, pp. 1791-1794. _ sity of Massachusetts at Amherst, first as a‘Graduate

[13] T. Itoh, “Spectral domain immitance approach for dispersion charactdfesearch Assistant and then as a Post-Doctoral Research Associate. In 1990,
istics of generalized printed transmission lindEEE Trans. Microwave he joined the Department of Electrical Engineering, Polytechnic University of

Nirod K. Das (S’87-M'88) was born in Orissa,
India, on February 27, 1963. He received the B.Tech
degree in electronics and electrical communication
engineering from the Indian Institute of Technology
(IIT), Kharagpur, India, in 1985, and the M.S. and
Ph.D. degrees in electrical engineering from The
University of Massachusetts at Amherst, in 1987
and 1989, respectively.

Theory Tech.vol. MTT-28, pp. 733-736, July 1980. New York, Farmingdale, where he is currently an Associate Professor since
[14] R.F. HarringtonTime Harmonic Electromagnetic FieldsNew York: ~ 1997. He co-editetlext Generation of MMIC Devices and Systéhew York:

McGraw-Hill, 1984. Plenum, 1997). He also authored a computer-aided design (CAD)/instructional
[15] D. M. Pozar, Microwave Engineering Reading, MA: Ad- tool, i.e., PCAAMT, for microwave multilayer printed transmission lines, and

dison-Wesley, 1990. another simulation tool, i.e., UNIFY, for unified modeling of multilayer printed

[16] N. K. Das, “A study of multilayered printed antenna structures,@ntennasand arrays. His research interests have been in the general areas of elec-
Ph.D. dissertation, Dept. Elect. Comput. Eng., Univ. Massachusettstgmagnetics, antennas, and microwave and millimeter-wave integrated circuits.
Ambherst, Amherst, MA, 1987. His recent research activities include numerical-analytical methods for electro-

[17] N.K.Das and D. M. Pozar, “A generalized CAD model for printed antagnetics, multilayered integrated circulits, leaky waves and applications, and
tennas and arrays with arbitrary multilayer geometries,Computer ~advanced materials for microwave circuits and antennas.

Physics Communication, Thematic Issue on Computational ElectromagDr. Das is a member of the IEEE Antennas and Propagation Society (IEEE
netics L. Safai, Ed. Amsterdam, The Netherlands: Elsevier, 1991, vofP-S), the IEEE Microwave Theory and Techniques Society (IEEE MTT-S),

68, pp. 393-440. and the New York Academy of Sciences. He currently serves on the Editorial
[18] K. C. Gupta, R. Garg, and I. J. BahMicrostrip Lines and Slot- Board of the IEEE RANSACTIONS ONMICROWAVE THEORY AND TECHNIQUES

lines Norwood, MA: Artech House, 1979. and the Technical Program Committee of the IEEE MTT-S International
[19] T. Itoh, Planar Transmission Line Structures, Edited Volumdlew Symposia. He was the co-chair of the 1996 International WRI Symposium,

York: IEEE Press, 1987. Brooklyn, NY. For his doctoral research work on multilayer printed antennas,

[20] N.K.Das and D. M. PozaPCAAMT—Personal Computer Aided Anal-he received a Student Paper Award (Third Prize) in 1990 from the U.S. National
ysis of Multilayer Transmission Lines—Version.1.0everette, MA: Council of the International Scientific Radio Union (URSI), and the R. W. P.
Antenna Design Associates, 1990. King Paper Award (below 35 age group) in 1993 from the IEEE AP-S.



