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Optimization of the PML Efficiency in
3-D TLM Method

Jean-Lou Dubard and Dominique Pompei

Abstract—In this paper, the complete derivation of the new per-
fectly matched layer symmetrical condensed node (PML SCN) re-
cently proposed for the implementation of the Berenger’s PML’s
in the three-dimensional transmission-line matrix (TLM) method
is given. Several comparisons between TLM and finite-difference
time-domain experiments are performed in order to better under-
stand the behavior of PML’s in TLM simulations. In particular,
the way to implement the numerical conductivity values with the
PML SCN is considered. TLM simulations of waveguide and mi-
crostrip antennas are finally presented to prove that the use of this
new PML SCN improves the absorbing boundary conditions in the
TLM.

Index Terms—Absorbing boundary, perfectly matched layer,
TLM method.

I. INTRODUCTION

PERFECTLY matched layers (PML’s) are layers espe-
cially designed by Berenger [1] to simulate free space

at the boundaries of a finite-difference time-domain (FDTD)
computational domain. The PML was first implemented in
the transmission-line matrix (TLM) [2], [3] method using an
interface between the FDTD and the TLM network. However,
it was shown that the use of a nonuniform TLM–FDTD mesh
provides more inaccurate absorbing conditions than obtained
by Berenger with the FDTD method. A uniform type of a
two-dimensional (2-D) TLM mesh, which can simulate usual
and PML media at once, was then developed in [4] and,
recently, we have proposed a new symmetrical condensed node
(SCN) for the implementation of the Berenger’s PML’s in a
three-dimensional (3-D) TLM method [5]. Two other types of
3-D PML–TLM nodes were developed at the same time by
other authors [6], [7]. They are, however, different from the
one presented in [5], as there are many degrees of freedom
to built a PML–TLM node. It was shown in [5] that a PML
implemented with this modified node provides 30 dB more
accurate boundary conditions than Higdon’s conditions and
matched termination. We propose here to give a complete
derivation of this new PML SCN from Maxwell’s equations in
PML media and to provide additional evaluations of the PML
efficiency by performing comparisons between the TLM and
FDTD methods. From these comparisons, the optimal way to
implement the numerical conductivity values in the new PML
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symmetrical condensed node will be given. It will then be
shown that the numerical behavior of the PML in TLM simu-
lations is very close to the one observed by Berenger in FDTD
experiments. In the last section of this paper, PML’s will be
used to simulate the wave propagation on an infinite waveguide
and to calculate the radiating properties of a microstrip antenna.

II. DERIVATION OF THE PML SCN

PML media are described by modifying Maxwell equations
with the six electromagnetic-field components split into 12 sub-
components and with anisotropic electric and magnetic conduc-
tivities [8]. For example, in a usual media with isotropic electric
conductivity , the first Maxwell’s equation can be written as
follows:

(1)

In Berenger’s PML media, each electromagnetic field is split
into two subcomponents

(2)

and (1) is replaced by

(3)

where and are the electric conductivities along the- and
-axes. Equation (3) can be rewritten in the following forms:

(4)

or

(5)

using
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(6)

where , , and are the sizes of the TLM SCN shown in Fig. 1.
The node is located in the TLM network by indexes (, , ).
is the smallest cell size over the network and the time step is set
as . and are the characteristic impedance and
the wave velocity of free space, respectively.

As described by Jinet al. [9], (5) is reformulated as

(7a)

(7b)

using the following new coordinate system where time and
space are mixed:

(8)

A set of finite-difference equations can be obtained from (7)
by using centered differencing at point (, , ) and time in
the new coordinate system (8). For example, (7a) gives

Fig. 1. TLM SCN.

(9)

In TLM formulation, each elementary plane waves pene-
trating into the cell along the-, -, and -directions of space is
associated with a voltage impulse travelling toward the center
of the cell through one of the 12 transmission lines linking the
node to its six neighbors. For example, an-polarized plane
wave propagating in the -direction is related to the incident
voltage impulse on port number 1 at the cell boundary (,

, ) and time step as follows:

(10a)
According to the Huygens’ principle, these incident voltage

impulses are scattered at the center of the node and at time
step into reflected voltage impulses associated with out-
going plane waves. For example, for an-polarized outgoing
wave propagating in the -direction, the relation between the

- and -field components and the reflected voltage impulse
on port number 12 at the cell boundary (, , ) and

time step is

(10b)
Open and short stubs connected at the center of the node allow

to model the permittivity and permeability of various materials.
In the case of -polarized waves, for example, it is necessary to
add two open stubs with normalized characteristic admittance

(numbered 13 and 14), to take into account the two subcom-
ponents and as follows:

(10c)
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and

(10d)

Using (10a)–(10d), (9) can be reduced to

(11)

Another set of finite-difference equations can be obtained
from (3), which can be rewritten using (2) and (6) as

(12a)

(12b)

By using centered differencing and averaging at point (, ,
) and time step in the coordinate system (6), and

by using (10a)–(10d), (12a), for example, gives

(13)

Substituting (11) into (13), we obtain finally

(14a)
Performing the same procedure for the other 11 modified

Maxwell equations provide the following expressions:

(14b)

(14c)

(14d)

(14e)

(14f)

(14g)

(14h)

(14i)

(14j)

(14k)

(14l)

where
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(15)

In (15), , , and are the magnetic conductivities along
the -, -, and -axes. Note that, to prevent the term in to
go to infinity in (14g)–(14l) when and
, it is necessary to take slightly lower than the maximum

time step . Futhermore, in the case of usual media with
isotropic electric and magnetic conductivitiesand , (14a)
and (14b) can be reduced to

(16)

where . Equation (16) is the -field ex-
pression for the standard SCN. This new PML SCN can then
simulate at once PML layers and the usual media as vacuum or
conductive media. It can be used in all the computational do-
main leading to a uniform algorithm.

As described in [9], the scattering process can finally be ob-
tained by using averaging in space-time coordinate system (8)
from field expressions , where superscript and are

, , or . The 24 24 scattering matrix of this new PML SCN
has already been given in [5] and can be formulated as follows
for a practical point-of-view of computation:

(17)

Then, scattering with the PML SCN requires 108 addi-
tions/substractions, 42 multiplications, and 12 divisions in
place of 54 additions/substractions and 12 multiplications with
the standard SCN. This higher computational cost may be
prohibitive. Thus, it is recommended to use the standard SCN
in the domain of interest and the PML SCN in the PML layers.
This can be done without difficulties. Since the 12-link lines
are the same for the two nodes, they can be directly connected
together at the interface vacuum–PML medium.

III. COMPARISONSBETWEENTLM AND FDTD METHODS

We have presented in [5] some numerical results that have
proven the ability of the PML SCN to absorb outgoing waves.
Nevertheless, the numerical behavior of the PML layers has
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been studied intensively in FDTD simulations. To better eval-
uate the efficiency of the new PML SCN, additional TLM sim-
ulations were then performed and compared to the results ob-
tained with the FDTD method.

A. Efficiency of the PML with a Parabolic Conductivity Profile

We have first considered the well-known benchmark test con-
stituted by a simple point source radiating in a free space of
51 51 51 cells, as in [10]. This computational domain is
surrounded by PML layers. at the center of the domain is ex-
cited with a smooth compact pulse and the response at time-step
100 is observed along the line (, , ) where – . This re-
sponse is compared to a reference solution obtained with a large
domain of 151 151 151 cells by computing the local error

for
(18)

PML layers used to troncate the computational domain
are denoted – – . is the number of cells in the
layer and is the theoretical reflection factor expressed in
percentage. means that the conductivity increases in the
layer as a parabolic progression. In a FDTD algorithm, such
numerical conductivities are implemented [11] using averaging
in the cell around the index locationas follows:

for (19)

In (19), is the numerical conductivity at the interface
between the last cell in the vacuum and the first cell in the
PML. Due to the shift between the electric- and mag-
netic-field component in the Yee cell, the numerical conduc-
tivities and are not implemented at the same index lo-
cation . In the TLM scheme, a parabolic conductivity pro-
file can be implemented using (19), except that the numerical
conductivities and are located at the same index location

. However, although the numerical con-
ductivities are the same for both methods, the ratio of conduc-
tivity is different. In the FDTD, the ratio of conductivity from
one index location to the next decreases as follows:

(20)

while in TLM, we have

(21)

The PML with a higher conductivity ratio gives more numer-
ical reflections, as reported by Berenger in [11]. Consequently,
the numerical errors computed with the TLM method are 20 dB
higher than those obtained in [10] with the FDTD method. To
obtain better results in the TLM, it is necessary to reduce the
conductivity ratio for the first two cells in the PML. This can be
done by implementing parabolic conductivity profile using the
following expressions:

for

(22)

Now the conductivity ratio varies approximately as in the
FDTD since . However, the numerical conduc-
tivity increases by a factor of eight, leading still to high
numerical reflections, as predicted by Berenger. To obtain the
same numerical conductivity in the TLM as in the FDTD,
it is necessary to increase or . In order to not increase the
computational cost, it is recommended to modifyrather than

. Since higher values of mean lower values of at the
end of the PML, the PML needs to be backed by matched ter-
minations in TLM simulations rather than perfectly conducting
conditions as used in the FDTD method. Then, with such condi-
tions, PML’s provide as good absorption in the TLM as in FDTD
simulations, as observed in Fig. 2. Nevertheless, especially for
thinner layers, it seems to be necessary to add one cell to the
PML to obtain as good of a performance in the TLM as in the
FDTD method.

B. Efficiency of the PML with a Geometric Conductivity
Profile

Since a geometric conductivity profile has been extensively
studied by Berenger, we have also considered the case of a ra-
diating dipole located at a corner of a computational domain of
14 14 14 cells, as in [8]. The electric dipole was im-
plemented by superposing to the field at node (2, 2, 2) the
following excitation:

where

with

ns (23)

The cubic cell size was 50 mm and the time step was
83.333 ps. The –field is observed at only two cells from the
opposite corner, at point (2, 12, 2). The computational domain
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Fig. 2. Local error computed with the TLM and FDTD for various PML’s
using a parabolic profile.

was surrounded by – – . means that a geometic
profile of conductivity with a ratio was used. Such a profile is
implemented in the TLM using

for (24)

while in FDTD simulations, Berenger used

for (25)

The results plotted in Fig. 3 were computed with the FDTD
using and with the TLM using

. With such conditions, the numerical value of con-
ductivity in the interface vacuum–PML is the same for both
simulations ( S/m). These results are very close
to the corresponding reference solution calculated in a computa-
tional domain of 150 150 150 cells. It can be observed that
oscillations appear for both methods. According to Berenger,
theses oscillations are caused by the evanescent waves, which
cannot be correctly absorbed in the first cells of the PML. Con-
sequently, oscillations can also be observed in the frequency do-
main. Fig. 4 shows the radiated field in the frequency domain
obtained after a Fourier transform of the time responses com-
puted up to 5000 ns. All the results are superimposed on the ref-
erence above a frequency, which is approximately 80 MHz with
the FDTD and 60 MHz with the TLM. This is in accordance
with the theoretical cutoff frequency bounding the domain of
validity of the PML and computed in [8] using

(26)

In conclusion, these results show that the implementation of
the PML in TLM and FDTD simulations is subject to similar
numerical reflections. From our works, some guidelines for
building optimal PML layers in TLM simulations can be given.

Fig. 3. Ez–field obtained in the time domain with the TLM and FDTD using
a PML with a geometric profile.

Fig. 4. Ez-field observed in the frequency domain with the TLM and FDTD
using a PML with a geometric profile.

Fig. 5. Reflection error computed in a WR28 waveguide with the TLM and
FDTD using PML terminations.

It is recommended to use a geometric profile of conductivity
with a ratio of approximately two in place of a parabolic
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Fig. 6. Radiation patterns (E(�) in decibels) for a microstrip patch antenna on a1:5�� 1:5� ground plane.

profile, which provides higher conductivity ratio. The number
of cells in the PML should be chosen in order to set the

numerical value of in (24) according to the frequency
domain of interest bounded by (26). Of course, this also
depends on the theoretical reflection factor, which are not
too small for the practical purpose of stability of the algorithm.
Indeed, instabilities can arise in some situations [5], as also
noticed by other authors [7] for waveguide problems including
discontinuities. However, we have observed that occurrence
of instabilities can be sufficiently delayed in main TLM
simulations by choosing . Futhermore, as shown
with the above numerical results, a value of about 1% seems
to be sufficient to obtain good absorption and, consequently, to
insure stability.

IV. A PPLICATIONS

PML’s were applied to the TLM simulation of the WR28
rectangular waveguide considered in [3]. The computational
domain of 36 18 60 cells was terminated at both ends with

in order to provide S/m.
The dominant mode is generated using a Gaussian pulse
(15-GHz bandwidth) modulated with a sinusoid (frequency:
32.5 GHz). The excitation plane is located at one node from
one of the PML–vacuum interfaces and the output point is set
one node from the opposite interface. The reflection coefficient
plotted on Fig. 5 was computed using a reference solution ob-
tained with a larger domain of 36 18 410 cells terminated
with . As observed, the return
loss is below 63 dB over the full operating range. These
results are better than those obtained in [3] with a nonuniform
TLM-FDTD mesh. However, the level of reflection is still
higher with our full TLM scheme than with a full FDTD

algorithm. As mentioned above, this can be explained by the
higher value of in TLM simulation. Unfortunately, since

in the PML region must be kept to an high value in order
to attenuate enough the propagating waves at the end of the
waveguide, it seems to not be possible to decrease by
modifying , as in the case of a radiating dipole in a free space.
Then, for a waveguide problem, the PML with the TLM needs
more cells to provide as good performance as with the FDTD.

PML’s were also tested in TLM simulation of microstrip
antennas. A rectangular radiated element on a finite substrate
backed by a ground plane [12] was surrounded by vacuum with
two cells on the sides and four cells on the top and bottom. The
vacuum was then surrounded by
terminated by matched conditions. In such a situation, the
complete computational domain was constituted by 5120

50 cells and the edges of the antenna were set from
the end of the TLM network. The factor was set to 0.01%
in order to allow the results to be valid above the theoretical
cutoff frequency GHz. The radiation patterns were
computed using the equivalence principle from the tangential

- and -fields simulated on a rectangular surface surrounding
the antenna. Thus, the output points were set one cell from
the PML on the sides and three cells from the PML on the top
and bottom. Fig. 6 shows the copolar radiation pattern (in
the -plane) obtained at 5 GHz. As observed in Fig. 6(a), the
TLM result is very close to the theoretical and experimental
data given by Bokhari in [12]. This result is also compared,
in Fig. 6(b), to the radiation pattern obtained with the TLM
by using an extended computational domain. In this case, the
antenna was first surrounded by a three-cell vacuum and then
by . This extended domain allows
the edges of the antenna to be located at more thanfrom
the end of the TLM network. It provides a solution that can be
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considered as a TLM reference solution for this problem. We
have also plotted in Fig. 6(b) the radiation patterns obtained
with the TLM by using the reduced domain of 5120 50
cells terminated either by Higdon’s conditions or by matched
terminations. We can see that the radiation pattern given by the
TLM with is superimposed on the
TLM reference solution. In comparison, results given by the
TLM with Higdon’s conditions or matched termination differ
from the reference, especially for the back radiation pattern,
although the computational domain was the same.

V. CONCLUSION

As mentioned by Berenger for FDTD experiments, we have
shown that the numerical reflections of PML’s in TLM simu-
lation are mainly subject to the numerical conductivity value
implemented in the interface vacuum–PML and to the conduc-
tivity ratio from one cell to the next in the PML. As a conse-
quence, with a correct numerical implementation of conduc-
tivity profiles in the new PML symmetrical condensed node
taking into account theses two constraints, PML’s provide as
good performances in TLM as in FDTD simulations of open
structures. It was also shown that the frequency domain of va-
lidity of the PML technique is the same for both methods. Fi-
nally, it was confirmed that the new PML symmetrical con-
densed node greatly improves the absorbing boundary condi-
tions in TLM simulations of waveguides and microstrip an-
tennas. Radiation patterns can be accurately simulated by the
TLM with PML layers of four cells located at only two cells
from the antenna and with a surrounding computational domain
reduced to .
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