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Optimization of the PML Efficiency In
3-D TLM Method

Jean-Lou Dubard and Dominique Pompei

Abstract—in this paper, the complete derivation of the new per- symmetrical condensed node will be given. It will then be
fectly matched layer symmetrical condensed node (PML SCN) re- shown that the numerical behavior of the PML in TLM simu-
cently proposed for the implementation of the Berenger's PML’s lations is very close to the one observed by Berenger in FDTD

in the three-dimensional transmission-line matrix (TLM) method . ts. In the last i f thi PML’ il b
is given. Several comparisons between TLM and finite-difference experiments. In the last section or this paper, S will be

time-domain experiments are performed in order to better under- Used to simulate the wave propagation on an infinite waveguide
stand the behavior of PML's in TLM simulations. In particular, ~ and to calculate the radiating properties of a microstrip antenna.
the way to implement the numerical conductivity values with the
PML SCN is considered. TLM simulations of waveguide and mi-
crostrip antennas are finally presented to prove that the use of this Il. DERIVATION OF THE PML SCN

new PML SCN improves the absorbing boundary conditions in the PML media are described by modifying Maxwell equations
TLM. with the six electromagnetic-field components split into 12 sub-
Index Terms—Absorbing boundary, perfectly matched layer, components and with anisotropic electric and magnetic conduc-
TLM method. tivities [8]. For example, in a usual media with isotropic electric
conductivity o, the first Maxwell's equation can be written as
I. INTRODUCTION follows:

ERFECTLY matched layers (PML’'s) are layers espe- de, oh. 9h,

cially designed by Berenger [1] to simulate free space R T T @
at the boundaries of a finite-difference time-domain (FDTD)
computational domain. The PML was first implemented in In Berenger's PML media, each electromagnetic field is split
the transmission-line matrix (TLM) [2], [3] method using arinto two subcomponents
interface between the FDTD and the TLM network. However,
it was shown that the use of a nonuniform TLM—FDTD mesh ¢ = €zy + 2z hy =lye +hyz he =hea +hzy (2)
provides more inaccurate absorbing conditions than obtained _
by Berenger with the FDTD method. A uniform type of §nd (1) is replaced by
two-dimensional (2-D) TLM mesh, which can simulate usual

and PML media at once, was then developed in [4] and, 505,,% + T ey :W

recently, we have proposed a new symmetrical condensed node Y

(SCN) for the implementation of the Berenger's PML's in a 5051,% +o.e,. :_M (3)
three-dimensional (3-D) TLM method [5]. Two other types of It 9z

3-D PML-TLM nodes were developed at the same time Rjfheres, ando. are the electric conductivities along theand
other authors [6], [7]. They are, however, different from the_ayes Equation (3) can be rewritten in the following forms:
one presented in [5], as there are many degrees of freedom

to built a PML-TLM node. It was shown in [5] that a PML ey — ey2) Oh.

implemented with this modified node provides 30 dB more f0Er o5 T OyCry = 3y
accurate boundary conditions than Higdon’s conditions and Oew — uy) oh
matched termination. We propose here to give a complete coer———— " L 5ey, = ——Y 4)
derivation of this new PML SCN from Maxwell’s equations in ot 9z
PML media and to provide additional evaluations of the PMbr
efficiency by performing comparisons between the TLM and
y by p g comp . ; Y, +4 8E, OH. Y,+40E,.
FDTD methods. From these comparisons, the optimal way to = + — GopyFory
implement the numerical conductivity values in the new PML 2 or 24 2 or
Y.+40E, OH, Y,+40E, G E 5
> or oz T2 ar CGwbe O
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whereu, v, andw are the sizes of the TLM SCN shown in Fig. 1Fig. 1. TLM SCN.

The node is located in the TLM network by indexési( £). Al

- - i - Yy +2 1. 1.
is the smallest cell size over the network and the time step is set w2 |:Eacy <n+_7 i 4, k) —E,, <n_§7 i J, k)}

asAt < Al/2¢. Zy andc are the characteristic impedance and

the wave velocity of free space, respectively.
As described by Jiet al. [9], (5) is reformulated as

1[O(E, — H.) (E,+H.)
2\ 04, B,

_ OE,. Y,+20E,,

=or 2 ar Cwbs (@
1 a(Ew +Hy) _ a(Ew — Hy)
2 0A. 0B,

aE"L‘y Y’L‘ + 2 aETZ
= _ — Gy Ey

2

1 1
—\E.. il S Bz i
[ Tz <n+27 L? J? k) Tz <n 27 L? J? k)}

In TLM formulation, each elementary plane waves pene-
trating into the cell along the-, %-, andz-directions of space is
associated with a voltage impulse travelling toward the center
of the cell through one of the 12 transmission lines linking the
node to its six neighbors. For example, aipolarized plane
wave propagating in the-y-direction is related to the incident
voltage impulsg, V;' on port number 1 at the cell boundaty (
Jj—1/2, k) and time stegn — 1/2)At as follows:

1 1 1 1 i
using the following new coordinate system where time ande. <n—§, ERAa k) —H. <n—§7 BN k) =2,V

space are mixed:

A, =X +T

A, =Y +T

A, =Z+T

B, =X-T

B, =Y T

B.=Z-T. (8)

(10a)

According to the Huygens’ principle, these incident voltage
impulses are scattered at the center of the node and at time
stepnAt into reflected voltage impulses associated with out-
going plane waves. For example, for arpolarized outgoing
wave propagating in they-direction, the relation between the
E .- andH .-field components and the reflected voltage impulse
» V15 on port number 12 at the cell boundagy{+ 1/2, k) and
time step(n + 1/2)At is

A set of finite-difference equations can be obtained from (7); <n+1 i j+1 k) _H <n+1 i j+1 k) =2, V7,
xr 27 ) 27 z 27 ) 27 - mn .

by using centered differencing at point £, £) and timen At in
the new coordinate system (8). For example, (7a) gives

1 1.1 1 1
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(10b)
Open and short stubs connected at the center of the node allow
to model the permittivity and permeability of various materials.
In the case of-polarized waves, for example, it is necessary to
add two open stubs with normalized characteristic admittance
Y, (humbered 13 and 14), to take into account the two subcom-
ponentsE,., and £, as follows:

1 .
Ea;y <7’L - 57 iv jv k) :271‘/173

1 .
£ <7’L - 57 iv jv k) :2nvi4 (10C)
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1 Fa
E.. <” + 500 J; ’f) = 2,00, (tod)  Heu(n: i, K)
) ) 2 . 2 .
) 2 <nV5Z - nV7Z + <1 + _> TLVZLZQ - _TLVQZO>
Using (10a)—(10d), (9) can be reduced to _ Lz Lz
, , o , 4 Zy+ Ry +4
WV Vi = Vi = o Vi + (Ye +2) (an?) - nVlZ?)) (149)
Another set of finite-difference equations can be obtained Ho.(n, i, j. k)
from (3), which can be rewritten using (2) and (6) as w2\ 4 s 5 5
Y, +4 dE,, OH, 2 <nV§ —a Vit <1 + Z—) nVa0 — Z—an9>
Y = — GuyEyry (12a) - x @
2 or oY Zy+ Ry +4
(14h)
Y, +40E,. OH,
By using centered differencing and averaging at paing ( Hyo(n, 4, j, )
k) and time stefin + 1/2)At in the coordinate system (6), and 2 <ano — Vi <1 + i) WV — inVﬁ)
by using (10a)—(10d), (12a), for example, gives _ Zy Zy
Z,+ R, +4
Y+ Gay +4 Y v :
= n—l—l‘/li + n+1‘/1i2 - n‘/f - nWQ - Gwaacy(nv iv j? k)
3 Hyn, i g, k)
ituti i in fi ) . 2 . 2 )
Substituting (11) into (13), we obtain finally 5 <,,,V5 Vit <1 4 Z_> Vi, - Z_"V211>
i i i i = Y Y
Byl iy, 1) = 2o ¥ o Vo ¥ 00 420 Vg = 20Vis) Z, + Ry +4
Yo +Gry +4 14j
(14a) (14)
Performing the same procedure for the other 11 modified
Maxwell equations provide the following expressions:
Hza;(na i? j? k)
Ey.(n, 4, j, k) . . 2 .2
_ 2(nV2’ =+ nV97 =+ (Ym =+ 2)an’4 — Qan’g) (14b) 2 nV?, - nvll + 1+ Z nV23 - Z_va24
B Yy + Gy + 4 - Z.+R.,+4
(14k)
Eya;(nv iv jv k)
= 2(71‘/3Z + n‘/lzl + (Yy + 2)"W5 B 2"‘/116) (14C) H;,/y(nj i; 17 k)
Y, +Gyo +4 4 , 2 2
B 2 <nV172 - an + <1 + Z) nV274 - Z_,,nv273>
2(n Vi 4 0V + (Yy +2)n Vi — 2.V75)
— (14d)
Y, +Gy. +4 where
v, :4<5,,v_w g
Eoo(n, i, . ) uil

2(n Vi +nVip+ (Y + 200 Vi — 2, Vi) ww
Y. +G.p+4 (14e) Yy =4 1

Ezy(nv iv jv k)
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- N — [Hye(n, i, 4, k) + Hy-(n, 4, §, k)] — o Vg
ol W Vi = [Eyz(n, i, §, k) + Ey.(n, 4, j, k)] |
v oAl T = [Healn, &4, ) + Hoy(n, 4, 5, B)] = 2 Vi)
. VI = [Ey,,(n, t, J, k) + Ey.(n, 1, 4, k)]
Z. =4\ pr g~ 1 + [Hay(n, i, j, k) + Hoo(n, i, §, k)] — o V&
G —0 7 U_w TL‘/()? = [Ezw(nv iv jv k) + EZy(nv iv jv k)] ]
zy = Oy ouw — [ny(n, t, J, k) + Hzo(n, 4, J, k)] — V7
Gye =0:Z,~~ WVe = [Eaa(n, i, 4, k) + Eoy(n, i, §, k)]
G’/m :amzoﬂ + [Hyl‘(nv iv jv k) + Hyz(nv iv jv k)] - TLVIZO
Gz =020~ + [Hay(n, i, j, k) + Hyo(n, i, §, k)] — o V2
zy =0y wvw Vi = [Exy(n, i, j, k) —i—Em(n, i, J, k)]
ny—O' Z_l " + [Hyac(nv iv jv k)+HyZ(n7 i’ j’ k)] _n‘/;
R, =0tz wVio = [Eza(n, i, j, k) + Eoy(n, i, j, k)] |
R... = *Z—IU’% - [Hy"l‘(nv ia ja k) + HyZ(TL, ia ja k)] - n‘/ﬁZ
s =030, WV = [Eye(n, 4, 4, k) + Ey(n, i, 4, k)]
Rmz :a:ZO_lv_w + [sz(nv iv jv k) +sz(”7 iv jv k)] - n‘/?f
R _O*Z_lu—w n‘/112 = [Eacy(nv 0 k) +E Z(nv 0 k)]
uzq}} - [sz(nv ¢ T, k) +HZy(n7 4 D k)] - TL‘/l
* r7—1 - .
Rey =027 3 Vi =Euy(n, i, 4, k) - g
VI —Ew,, , 7,
In (15),03, 0}, ando? are the magnetic conductivities along e (m, 4, 3, k) =
the z-, y-, andz-axes. Note that, to prevent the termlifZ to 5 = Eyaln, 4,5, k) = Vlo
go to infinity in (14g)—(14l) when, = v = w = Al andp, = Vls =Ey:(n, i, j, k) — VlG
1, it is necessary to takat slightly lower than the maximum WVie =FE.z(n, 4, 3, k) —
time stgpAl/2g. Futhermore, in the case _qf usual Tedla with WV =E.y(n, i, J’ k) —
isotropic electric and magnetic conductivitiesand o*, (14a) -
and (14b) can be reduced to "Vl? :"V19 (” i J; k)
n‘/210 :n‘/27:0 4(” 7J7 )
E.’L‘ :ETy + E.’L‘Z n‘/271 = ‘/211 39(717 L? 17 k)
2(71‘/1Z + anliQ + n,V; + 71‘/9Z + Y"L‘(nvvl% + anliAL)) HV%Q - VYQQ Z(H L J’ )
(16) n‘/214 :n‘/274 Z sz( 7J7 ) (17)

whereG, = G,, = G.,.. Equation (16) is the,-field ex- Then, scattering with the PML SCN requires 108 addi-

pression for the standard SCN. This new PML SCN can th@ﬁnS/SUbStraCtlonS 42 muItIpllcatlons and 12 divisions in

simulate at once PML layers and the usual media as vacuunPéce of 54 additions/substractions and 12 multiplications with

conductive media. It can be used in all the computational défe standard SCN. This higher computational cost may be

main leading to a uniform algorithm. prohibitive. Thus, it is recommended to use the standard SCN
As described in [9], the scattering process can finally be ot the domain of interest and the PML SCN in the PML layers.

tained by using averaging in Space_time coordinate System (g)ﬁ can be done without difficulties. Since the 12-link lines

from field expressions, + H,, where superscript andb are are the same for the two nodes, they can be directly connected

z,y, Or z. The 24x 24 scattering matrix of this new PML SCNtogether at the interface vacuum-PML medium.

has already been given in [5] and can be formulated as follows

for a practical point-of-view of computation: [ll. COMPARISONSBETWEENTLM AND FDTD METHODS

. o o We have presented in [5] some numerical results that have
wVI = [Eay(n, i, §, k) + Exz(n, 4, J, k)] ‘ proven the ability of the PML SCN to absorb outgoing waves.
+ [Hza(n, @, 4, k) + Hoy(n, 4, 4, k)] — o Vis Nevertheless, the numerical behavior of the PML layers has
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been studied intensively in FDTD simulations. To better eval- @ —999

uate the efficiency of the new PML SCN, additional TLM sim- a(2) '

ulations were then performed and compared to the results ob- o(L+1) (2L+3)*— (2L +1)3

tained with the FDTD method. o(L) ~ (2L+1®—(2L—1)3" (21)

A. Efficiency of the PML with a Parabolic Conductivity Profile  The PML with a higher conductivity ratio gives more numer-
We have first considered the well-known benchmark test co} al reflections, as reported by Berenger in [11]. Consequently,

stituted by a simple point source radiating in a free space gfe numerical errors computed with the TLM method are 20 dB

51 x 51 x 51 cells, as in [10]. This computational domain iStugher than those obtained in [10] with the FDTD method. To

surrounded by PML layerdZ at the center of the domain is oy obtain better results in the TLM, it is necessary to reduce the

cited with a smooth compact pulse and the response at time-sggagugt'yr';y Irg;[:](;fnot_rr;the grrsatbt\gﬁiecilns dlnct?e_ tPM:‘()'fIQ'SS(?in ?hee
100 is observed along the ling (, 1) wherei = 1-51. This re- y 1mp Ing p ' ucltivity profile using

sponse is compared to a reference solution obtained with a Iafr%UeOW'ng expressions.

domain of 151x 151 x 151 cells by computing the local error © goc Ln(R)
o) =—

9 3
error(i) = |E.(i, 1, 1) — Ezrer(d, 1, 1)|,  fori=1, 51. 2 AN 5 5
18 o(L)=o(0) [(L—i—l) (L) } forL=1,2,---, N—1.
PML layers used to troncate the computational domain (22)

are denote®ML(N—-P-R). N is the number of cells in the

layer andR is the theoretical reflection factor expressed in Now the conductivity ratio varies approximately as in the
percentage” means that the conductivity increases in thEDTD sinceo(1)/0(0) = 7. However, the numerical conduc-

layer as a parabolic progression. In a FDTD algorithm, sudlity o(0) increases by a factor of eight, leading still to high

numerical conductivities are implemented [11] using averagifigmerical reflections, as predicted by Berenger. To obtain the
in the Ce” around the index |Ocatidh as fo”ows: same numerical ConductiVity(O) in the TLM as in the FDTD,

it is necessary to increasé or R. In order to not increase the

(0) = _toc Ln(R) computational cost, it is recommended to modifyather than
2t AIN® N. Since higher values d& mean lower values of ., at the
o(L) =0(0) [(2L +1)% — (2L — 1)3}, end of the PML, the PML needs to be backed by matched ter-
1 1 minations in TLM simulations rather than perfectly conducting
for L = g bgi2 N - > (19) conditions as used in the FDTD method. Then, with such condi-

_ _ o _ tions, PML's provide as good absorptioninthe TLM asin FDTD
In (19), (0) is the numerical conductivity at the interfacesimulations, as observed in Fig. 2. Nevertheless, especially for
between the last cell in the vacuum and the first cell in th@inner layers, it seems to be necessary to add one cell to the

PML. Due to the shiftAl/2 between the electric- and mag-PML to obtain as good of a performance in the TLM as in the
netic-field component in the Yee cell, the numerical condu¢&pTD method.

tivities o and ¢* are not implemented at the same index lo-
cation L. In the TLM scheme, a parabolic conductivity proB. Efficiency of the PML with a Geometric Conductivity
file can be implemented using (19), except that the numeridaitofile

conductivitiess ands* are located at the same inde>§ location gjnce a geometric conductivity profile has been extensively
L =1,2,---, N —1. However, although the numerical cony,gied by Berenger, we have also considered the case of a ra-
qu'CtI\./Itle'Sa are the same for both methodS, the ratp C_Jf condugfating dipole located at a corner of a computational domain of

tivity is different. In the FDTD, the ratio of conductivity from 14 . 714 «

] : 14 cells, as in [8]. The electric dipolB. was im-
one index location to the next decreases as follows:

plemented by superposing to ti& field at node (2, 2, 2) the

o(1/2) _s following excitation:
o(0) At dP.(nAf)
B, .(nAT) =——— e m
o(1) =3.25 sea(nAT) eoAl3 dt
o(1/2)
o(3/2) i where
o1y 2 t— 37>
_ —10 —
o(L+1/2) (2L +2)* — (2L)? (20) Felt) =107 exp <_ < T ) )
o(L) (2L +1)3— (2L —1)3
with
while in TLM, we have
o(1) .y T=2ns (23)
o(0) The cubic cell size\l was 50 mm and the time stej was
o(2) 377 83.333 ps. The&Zz—field is observed at only two cells from the

opposite corner, at point (2, 12, 2). The computational domain
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l FDTD referezllce
TLM reference
FDTD with PML(4-G2.15-1%) .....

TLM with PML(5-G1.9-6%) -

error (Log)
Ez (V/m)

X position (number of cell) %o s m s prS " 30

Time (ns)

Fig. 2. Local error computed with the TLM and FDTD for various PML's

using a parabolic profile. Fig. 3. E=—field obtained in the time domain with the TLM and FDTD using

a PML with a geometric profile.
was surrounded lyML(N-Gg—R). Gg means that a geometic

profile of conductivity with a ratigy was used. Such a profile is 140 - ————— —
implemented in the TLM using TLMreference ..
145 | FDTD with PML(4-G2.15-1%) .-
(0) goc Ln(R) ¢g—1 TLM with PML(5-G1.9-6%)
o = —— e Y
2 Al gVN-1 ’ |
o(L)=0(0)g%, forL=1,2,---, N—1 (24) & [ S L
£
while in FDTD simulations, Berenger used % A58
Ln(R -1 2
o(0) = _coc Ln(R) \/ﬁ ol
2 Al gV -1
O'(L) — 0_(0) 9— 1 gL, sl Thioretical cutoff frequency
\/g (\/g _ 1) fe = 0(0)/2ne0 = 50 MHz 1
1 3 1 T
for L==-,1,-,2,---, N—=. (25 ol ‘ 1 .
27772 2 : m

Frequency (MHz )

The results plotted in Fig. 3 were computed with the FDTL
i _ =_ 10 i i -
u3|ngP1\/£L(4 G2.1o 1%) a.n.d with the TLM l_JSInQDML(o Fig. 4. E=-field observed in the frequency domain with the TLM and FDTD
G1.9 - 6%). With such conditions, the numerical value of cONgsing a PML with a geometric profile.
ductivity #(0) in the interface vacuum—PML is the same for both
simulations &(0) = 0.0028 S/m). These results are very close 0

to the corresponding reference solution calculated in a computa- ! ' ' I I ' l
tional domain of 150< 150 x 150 cells. It can be observed that . -20 |- -
oscillations appear for both methods. According to Berenger, &
theses oscillations are caused by the evanescent waves, which ?E’ -40 - TLM&EDTD 7]
cannot be correctly absorbed in the first cells of the PML. Con- .2 o -
sequently, oscillations can also be observed in the frequency do- & ~ W
main. Fig. 4 shows the radiated field in the frequency domain 8 _gq |- TLM _
obtained after a Fourier transform of the time responses com- § S
puted up to 5000 ns. All the results are superimposed ontheref- § -100} - .. o
erence above a frequency, which is approximately 80 MHz with E AN W RN
the FDTD and 60 MHz with the TLM. This is in accordance -120 ‘' EDTD -
with the theoretical cutoff frequency bounding the domain of : . . ) . \ | |
validity of the PML and computed in [8] using -140 26 28 30 32 34 36 38 40

= ﬂ (26) Frequency ( GHz )

e 27?60 ’

) ) _ Fig. 5. Reflection error computed in a WR28 waveguide with the TLM and
In conclusion, these results show that the implementation & TD using PML terminations.

the PML in TLM and FDTD simulations is subject to similar
numerical reflections. From our works, some guidelines fdris recommended to use a geometric profile of conductivity
building optimal PML layers in TLM simulations can be givenwith a ratio g of approximately two in place of a parabolic
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180°
A © ( degrees ) B O ( degrees )

—— TLM with PML(10-G2.15-0.01%)
----- TLM with PML(4-G2.15-0.01%)
""" TLM with Higdon’s conditions
""" TLM with matched terminations

~—— Bokhari simulation
————— Bokhari experiment
----- TLM with PML(4-G2.15-0.01%)

Fig. 6. Radiation pattern€(¢) in decibels) for a microstrip patch antenna oh.a\ x 1.5 ground plane.

profile, which provides higher conductivity ratio. The numbealgorithm. As mentioned above, this can be explained by the
N of cells in the PML should be chosen in order to set theigher value ofs(0) in TLM simulation. Unfortunately, since
numerical value ofs(0) in (24) according to the frequencyo .., in the PML region must be kept to an high value in order
domain of interest bounded by (26). Of course, this aldo attenuate enough the propagating waves at the end of the
depends on the theoretical reflection factor which are not waveguide, it seems to not be possible to decreg$e by
too small for the practical purpose of stability of the algorithrmmodifying R, as in the case of a radiating dipole in a free space.
Indeed, instabilities can arise in some situations [5], as al$ben, for a waveguide problem, the PML with the TLM needs
noticed by other authors [7] for waveguide problems includingore cells to provide as good performance as with the FDTD.
discontinuities. However, we have observed that occurrencePML's were also tested in TLM simulation of microstrip
of instabilities can be sufficiently delayed in main TLMantennas. A rectangular radiated element on a finite substrate
simulations by choosing? > 0.01%. Futhermore, as shown backed by a ground plane [12] was surrounded by vacuum with
with the above numerical results, a value of about 1% seetag cells on the sides and four cells on the top and bottom. The
to be sufficient to obtain good absorption and, consequently,tacuum was then surrounded BWL(4 — G2.15 — 0.01%)
insure stability. terminated by matched conditions. In such a situation, the
complete computational domain was constituted by>x520
x 50 cells and the edges of the antenna were0s&t from
the end of the TLM network. Thé& factor was set to 0.01%
PML's were applied to the TLM simulation of the WR28in order to allow the results to be valid above the theoretical
rectangular waveguide considered in [3]. The computationaitoff frequencyf. = 2.5 GHz. The radiation patterns were
domain of 36x 18 x 60 cells was terminated at both ends witltomputed using the equivalence principle from the tangential
PML(25— P—9.10"*%) in order to provider,,,., = 25 S/m. E- andH -fields simulated on a rectangular surface surrounding
The dominant modd&'E is generated using a Gaussian pulsthe antenna. Thus, the output points were set one cell from
(15-GHz bandwidth) modulated with a sinusoid (frequencyhe PML on the sides and three cells from the PML on the top
32.5 GHz). The excitation plane is located at one node froamd bottom. Fig. 6 shows the copolar radiation pattéfs ia
one of the PML—vacuum interfaces and the output point is gk F-plane) obtained at 5 GHz. As observed in Fig. 6(a), the
one node from the opposite interface. The reflection coefficieMtM result is very close to the theoretical and experimental
plotted on Fig. 5 was computed using a reference solution atata given by Bokhari in [12]. This result is also compared,
tained with a larger domain of 38 18 x 410 cells terminated in Fig. 6(b), to the radiation pattern obtained with the TLM
with PML(25 — P — 9.10713%). As observed, the return by using an extended computational domain. In this case, the
loss is below—63 dB over the full operating range. Thesantenna was first surrounded by a three-cell vacuum and then
results are better than those obtained in [3] with a nonuniforoy PML(10 — G2.15 — 0.01%). This extended domain allows
TLM-FDTD mesh. However, the level of reflection is stillthe edges of the antenna to be located at more @t from
higher with our full TLM scheme than with a full FDTD the end of the TLM network. It provides a solution that can be
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considered as a TLM reference solution for this problem. We[s]
have also plotted in Fig. 6(b) the radiation patterns obtained
with the TLM by using the reduced domain of 5120 x 50 [6]
cells terminated either by Higdon’s conditions or by matched
terminations. We can see that the radiation pattern given by th%]
TLM with PML(4 — G2.15 — 0.01%) is superimposed on the
TLM reference solution. In comparison, results given by the
TLM with Higdon’s conditions or matched termination differ
from the reference, especially for the back radiation pattern,
although the computational domain was the same.

(8]

[9]
V. CONCLUSION

As mentioned by Berenger for FDTD experiments, we haV‘?m]
shown that the numerical reflections of PML's in TLM simu-
lation are mainly subject to the numerical conductivity value
implemented in the interface vacuum—PML and to the condu 11
tivity ratio from one cell to the next in the PML. As a conse-
guence, with a correct numerical implementation of conduc-
tivity profiles in the new PML symmetrical condensed nodel?
taking into account theses two constraints, PML's provide as
good performances in TLM as in FDTD simulations of open
structures. It was also shown that the frequency domain of va-
lidity of the PML technique is the same for both methods. Fi-
nally, it was confirmed that the new PML symmetrical con
densed node greatly improves the absorbing boundary cor
tions in TLM simulations of waveguides and microstrip an
tennas. Radiation patterns can be accurately simulated by
TLM with PML layers of four cells located at only two cells
from the antenna and with a surrounding computational domz
reduced tad).2\.
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