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Abstract—A K-band receiver terminal has been designed for
=77-K operation to support the NASA Glenn Research Center’s
direct-data-distribution (D?3) space experiment. TheD?* exper-
iment involves a 256-element phased-array antenna, aboard the
space shuttle, transmitting dual 622-Mb/s beams to the ground ter-
minal. The beams are left- and right-hand-side circularly polarized
for isolation. The terminal consists of a Cassegrain reflector an-
tenna with a corrugated feed horn, a six-pole YBaCuz O _s mi-
crostrip bandpass filter, a three-stage InP high electron-mobility
transistor monolithic-microwave integrated-circuit amplifier, and
a 1-W at 80-K Stirling cycle cryocooler.

Index Terms—Cryogenic electronics, receiving antennas, super-
conducting filters, MMIC amplifiers.
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|I. INTRODUCTION Cryocooier

HE NASA Glenn Research Center (at Lewis Field), Cleve-
land, OH, is developing the space-based phased-arre
and ground segment technologies to demonstrafeé-laand
622-Mb/s direct-data-distributio(nD3) system from spacecraft Fig. 1. 18.8-19.3-GHz cryogenic receiver terminal. The Cassegrain antenna
. . . - is 0.9 m in diameter.
in low Earth orbit (LEO) to strategically placed tracking grouncf

terminals [1]. Operational systems based on this approach ma ) _
help alleviate problems associated with relaying informatidh® M- The beamwidth of the 0.9-m antenna is about.1Al

from remote sensing and other scientific spacecraft ovéiawing of the cryo-terminal is shown in Fig. 1. A system noise
geostationary links. An immediate advantage occurs becal@@perature of about 167 K is predicted at thé 4fevation
of the 30 dB or so savings in power from reduced path los¥gle.
and propagation delay is almost negligible by comparison.
However, for such a scenario to be competitive, the downlink Il. Low-NOISE AMPLIFIER
data rate must be commensurately higher because of the briefne radio astronomy community is very familiar with
contact times, and the data usage must be latency tolerant. Wﬁﬁid-helium—cooled maser amplifiers, superconducting
ground antenna must track the spacecraft frs#6° off the  mixers, cooled bolometric detectors, etc. However, the com-
horizon, and pointing may be accomplished in an open-logRercial satellite imaging and communications industry has
mode using spacecraft ephemeris data. The angular trackijagn, less receptive to cryogenically cooled electronics because
rate is about s for a 285-km orbit. Given the requiréd/T"  of perceived inconvenience or marginal benefits and high cost.
of 20.6 dB/K, a 1.8-m reflector would be required to sUppORjevertheless, some specialized highly integrated microwave
the link using a conventional receiver. The correspondingceivers have been developed (e.g., see [2]-[4]). THe
antenna beamwidth is 0.61n order to simplify tracking, a recejver uses a three-stage InP high electron-mobility transistor
cryogenic ground terminal is under development. By using(@®&gmT) monolithic-microwave  integrated-circuit (MMIC)
cryogenically cooled low-noise receiver and carefully designggly-noise amplifier (LNA) at the front-end [5]. The advantages
Cassegrain reflector system, the sa@l” can be maintained of an InP HEMT over GaAs include higher gain, lower power
while allowing the antenna diameter to shrink from 1.8 tBonsumption, and lower noise figure, especially at cryogenic
temperatures.
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Fig.2. K-bandthree-stage InP MMIC LNA. Chip size is 2.70 nx.46 mm.
Fig. 3. Open-cycle cryogenic on-wafer probe station for measuring
S—par_ameters anq noise parameters throfigtand tox30 K if helium is
time to failure (MTTF) of 16 h at a channel temperature of!sed instead of nitrogen.
100°C [6]. A three-stage InP MMIC LNA has been designed
to provide the flexibility for a broad-band and high-gain
i . ) TABLE |
amplifier. Source feedback has been used in the first-stage . Resuirs oFON-WAFER MEASUREMENTS ATROOM TEMPERATURE
device to provide good noise match and input VSWR match AND 82 K
simultaneously. The MMIC LNA is fully monolithic, with
on-board bias decoupling elements, thus allowing complete
on-wafer testing while simultaneously minimizing the requirec
. . . . . Vei23 Vo Vpz Vs Ipy Iz Ips G.  Frin
number of off-chip components. Extensive in-depth circui G D o) D) (mA)  (mA)  (mA)  (dB) (dB)
ili ici i i i 299 -0.2 242 1.82 1.80 14.8 15.8 15.1 27 1.1
stability analysis is performeqionthese MMIC circuit designs ti - | ook e s Y Ne a
ensure that they are unconditionally stable from low megaher..
to 100 GHz. Proper coplanar-to-microstrip transitions were
incorporated at both input and output ports to facilitate the
on-wafer RF testing. A photograph of this MMIC amplifier is
shown in Fig. 2. The chip size is 2.70 mm1.46 mm. 521 SCALE  5.2a TN . B12 SCRCE

This MMIC LNA has a noise figure of 1.1 dB with 33-dB gain
at 20 GHz at room temperature. Better than 10-dB input an
output return losses can be achieved from this MMIC amplifiet
from 17 to 22 GHz. Under normal operation, it can handle inpu
power up to+20 dBm without any degradation. The output
1-dB compression point i-6 dBm at 20 GHz.

The LNA's were characterized using an on-wafer cryogenic
probe station. The cryogenic probe station consists of a
on-wafer probing system, vacuum pumps, open-cycle coolin
apparatus, and a microscope. The vacuum chamber contai
the copper sample stage, refrigerator cooling head, temperatu
sensors, and microwave probes attached to precision manipul
tors through a metal bellows [7]. A helium cylinder is used to
pressurize a liquid-nitrogen Dewar. The coolant is transferre:
via a flexible line to the sample stage and monitored with a flown
meter at the outlet. A temperature of 82 K was attained in thit
manner, though temperatures near 30 K can be achieved usi
liquid helium as the coolant. The station is used in conjunctior
with a Hewlett-Packard 8510C automatic network analyzer
and an ATN NP5 automated noise-figure system. A solid-stdti§- 4. Impedance data, optimal source termination, and constant noise-figure

. . circles at 82 K. The frequency sweep is from 18.5 to 19.5 GHz.
noise source and impedance tuner are placed as close as physi-
cally possible to the input port. Calibration is performed using
on-wafer standards at the operating temperature. A photogrdgghused. Since the receiver is to be cooled with a 1-W miniature
of the entire cryogenic probe system is shown in Fig. 3. cooler, eliminating heat conduction paths is an important con-

In addition to determining the performance of the LNA'ssideration. At 82 K, E,;,, was within the measurement uncer-
the purpose of evaluating the LNA's near the temperature tafinty of the system, estimated at 0.2 dB. Table | summarizes
liquid nitrogen was to determine the optimum source termintie results, and Fig. 4 shows impedance datalapgdat 82 K.
tion (I, ) and whether or not a single gate and drain bias couldhe sweep range was from 18.5 to 19.5 GHz.

T(E)




1218 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 48, NO. 7, JULY 2000

-5F

dB -15

Relative Power (dB)

-20

-l -8 -6 4 -2 0 2 4 6 8 10

Angle (Degrees)

17 17.53 18 185 1o 195 20 205 21
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19 GHz.
Fig. 5. Modeled insertion and return loss of the ¥BasO; s six-pole

microstrip filter on 0.25-mm-thick LaAl@ and 0.3-mm-thick MgO. TABLE Il

CRYOGENIC RECEIVER THERMAL BUDGET

. FILTER Coazial Cables 412 mwW
. . . . MMIC LMNAs 104 mW
Due to the high gain and wide bandwidth of the LNA, a Radiation 57 mW
high-temperature superconductor edge-coupled microstrip %21&;::5 12270“;“\;,
bandpass preselect filter is used ahead of the LNA. This pre- Margin 280 mW
vents the LNA from being driven into saturation by powerful
out-of-band sources and reduces interference. Filters, similar TABLE Il
to the style presented .in [4], were quigned On.mhiCk ESTIMATED NOISE CONTRIBUTIONS TO SYSTEM PERFORMANCE
LaAlOs and 300gm-thick MgO. While film quality is gen-
erally superior on the former because of the close lattice Antenna T emperature (@295 K) 53 (K)
. . . . . OMT andFeed Loss (@295 K) 0.9 (dB)
match, for a given impedance, linewidths are wider and, hence, Band Pass Filter Loss (@77 K) 0.6 (dB)
conductor loss is smaller for the latter. For each filter, a six-pole Low Noise Amplifier Gain (@ 77K) 28 (dB)
. . . . LINA Noise Temperature (@ 77K) <20 (K)
design was chosen as a compromise between insertion [0Ss and  ~Receiver Noise Temperature (@ 77K) 38 (1)
rolloff. Fig. 5 shows theoretical results based on a full-wave System Noise T emperature 167 (K)

electromagnetic simulation using Zeeland Software Inc., Fre-

mont, CA, IE3D. The surface resistance of the ¥8&0:—s  main reflector is constructed from graphite and the hyperbolic
film was assumed to be 1¢nat 75 K and 19 GHz in both cases.g preflector is machined aluminum. The edge taper produces
Also, both the strip and ground plane are superconductingqelobes that are 18.7 and 20.2 dB down in tHe and
The in-band insertion loss of the filter on the LaAl@nd p_pjanes, respectively. The measufgdand H-plane patterns
MgO substrates is 0.9 and 0.6 dB, respectively. An equivalefiy shown in Fig. 6. A waveguide polarizer and orthomode
gold filter would have a loss of 2 dB. The400-nm-thick yansqucer (OMT) separate the two beams. The axial ratio of
superconducting films were grown by Neocera Inc., Beltsvillgne polarizer is 0.6 dB and the maximum insertion loss through
MD, using pulsed laser deposition. The best films had ge OMT is 0.3 dB. The two orthogonal signals are connected
critical temperature transition onset of 89.4 K and a transitiqq e receiver via waveguide-to-coax transitions. Gold-plated
width of about 0.5 K with a difference between front-sidgyin|ess-steel center conductor and thirlQ xm) Au plated
and backside films of less than 0.5 K. Initial tests showed@u jacketed coaxial cables are used for the two RF inputs.

higher than predicted in-band ripple that is believed due tog,injess-steel cables are used for the two IF outputs of the
higher than anticipated penetration depth. Modeling suggestedaiyer.

that if the zero-temperature London penetration dépth(0))
was allowed to deteriorate 300 nm, instead of 200 nm as
expected, most of the measured characteristic was explained.
The performance of passive microwave circuits can be stronglyThe cooler, which uses a dual-opposed piston design,
dependent on;,, and tests to confirm the foregoing hypothesigrovides 1 W of cooling capacity at 80 K with a 40 mW/K
using microstrip resonators are underway [8]. de-rating and was manufactured by Texas Instruments Incorpo-
rated, Dallas, TX. It weighs less than 4 Ibs and consumes less
than 55 W of power. Most of the heat load comes from the RF
cables, although internal heat dissipation from the two MMIC
The customized 0.9-m Cassegrain parabolic reflector welsips and radiation are significant as well. Nine manganin bias
manufactured by the Millitech Corporation, Northamptorieads are used to power the chips. The MMIC'’s and filters are
MA, and provides a gain of 43 dBi and half-power beamwidthsoused in a polished oxygen-free high-conductivity copper
of 1.11° and 1.14 in the FE- and H-planes, respectively. The package that has a thin Ni/Au finish. A vacuum can, machined

V. COOLING

IV. ANTENNA
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with a diamond lathe, surrounds the package and attacheg
the cooler flange using a neoprene O-ring. The can is evacua >
to a pressure of about 10 mT. A thermal budget for the desif"
is listed in Table II. ;
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