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Abstract—In this paper, a new computationally efficient fre-
quency-domain transmission-line matrix (FDTLM) approach is
introduced. The new approach combines the superior features of
both the time- and the frequency-domain transmission-line matrix
(TLM). It is based on a steady-state analysis in the frequency
domain using transient analysis techniques and, hence, is referred
to as the transient frequency-domain transmission-line matrix
(TFDTLM). On the contrary, of all other frequency-domain tech-
niques, the TFDTLM has the advantage of being able to extract
all the frequency-domain information in the frequency range
of interest from only one simulation. This special feature of the
TFDTLM makes it computationally more efficient as compared to
any other FDTLM method. The TFDTLM employs digital filter
approximations for modeling wave propagation in inhomogeneous
frequency dispersive media. The filters can be thought of as some
type of compensation equivalent to the stubs in a time-domain
transmission-line matrix (TD TLM), yet more accurate and more
capable of modeling a wide variety of frequency-dependent ma-
terial parameters. In addition, the TFDTLM has proven to have
superior dispersion behavior in modeling lossy inhomogeneous
media as compared to the TD TLM.

Index Terms—Computational efficiency, frequency-domain
techniques, TLM.

I. INTRODUCTION

T HE transmission-line matrix (TLM) method was initially
formulated and developed in the time domain. One key

issue in a time-domain analysis approach is the computational
efficiency where a single impulsive excitation could yield
information over a wide frequency range. Also, it may be more
natural and realistic to model nonlinear and frequency disper-
sive properties in the time domain rather than in the frequency
domain. However, in some circumstances, frequency-domain
analysis may be more appealing. This might be due to the fact
that traditional electromagnetics emphasizes frequency-domain
concepts as frequency-dispersive constitutive parameters,
complex frequency-dependent impedances, and reflection
coefficients. It might be even easier and more direct to be able
to model these parameters in the frequency domain rather than
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trying to synthesize an equivalent time-domain model. For
these reasons, some work has been devoted to the development
of a frequency-domain transmission-line matrix (FDTLM).
One of these methods was developed by Vahldieck in 1992 [2]
for the selective -parameter computation of three-dimensional
(3-D) waveguide discontinuities. Another FDTLM method
was introduced by Johns and Christopoulos in 1992 [3], [4].
In both approaches, the simulation has to be repeated at every
frequency point as in the case of most frequency-domain
methods, to compute the response over the frequency band of
interest. The two FDTLM approaches mentioned above are
different in their natures and abilities. The first one [2] was,
in fact, a time-domain transmission-line matrix (TD TLM)
dealing with a steady-state analysis in the time domain. The
method was claimed to reduce the computational time if the
response is only required at distinct frequency points. The
second approach [3], [4] was a true FDTLM with a steady-state
analysis in the frequency domain. In this paper, a novel FDTLM
approach is introduced based on a steady-state analysis in the
frequency domain using transient analysis techniques and,
hence, will be referred to as the transient frequency-domain
transmission-line matrix (TFDTLM). In this approach, the link
line parameters are derived in the frequency domain, as in [4],
to satisfy all the medium parameters, including frequency-de-
pendent parameters as well as electric and magnetic losses.
The scattering matrix is derived in a way similar to any 3-D
TLM node [5]. The connection between two adjacent cells,
expressed in the form of delay in the time domain, is accounted
for through multiplication by a propagation factor ,
where is the propagation constant in the medium and
is the equivalent cell dimension. The steady-state solution is
obtained through a process described in Section II. To make
the TFDTLM approach computationally efficient as compared
to the other FDTLM approach in [4], it was critical to maintain
some relationship between the mesh response at one frequency
point and any other frequency point. The goal was to be able
to extract all the frequency-domain information in a wide
frequency range by performing only one simulation. To achieve
this, the connection between two adjacent cells expressed
by in each and every medium in the problem under
consideration has to be expressed in terms of the propagation
factor of some reference medium chosen to be the medium
with the least propagation delay. This was done with the aid of
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digital filter approximations that can be implemented iteratively
in the TLM mesh. The filters can be thought of as some type of
compensation equivalent to the stubs in a TD TLM, yet more
accurate and more general in modeling frequency-dependent
material parameters. In Section II, the TFDTLM will be de-
rived. Section III will discuss the technique used to overcome
the problem of inhomogeneous media, multiple propagation
factors, and frequency-dependent reflection coefficients. In
Section IV, the dispersion behavior of the TFDTLM will be
analyzed and compared to the hybrid symmetrical condensed
node (HSCN) and the symmetrical super condensed node
(SSCN). In Section V, the TFDTLM will be implemented in
a 3-D mesh and a lossy rectangular cavity will be simulated.
Section VI will discuss the intensity of computations and
memory storage requirements in the TFDTLM as compared to
TD TLM schemes. Section VII will include a summary and
conclusions.

II. DERIVATION OF THE TFDTLM

The TFDTLM was originally inspired by the concept of
bounce diagram in the time domain and the equivalent fre-
quency-domain bounce diagram. The time-domain bounce
diagram is a representation of the back-and-forth travel of a
pulse through a structure with discontinuities causing reflec-
tions. The bounce diagram representation can be demonstrated
by the following example. Consider a section of transmission
line with characteristic impedance and length having
discontinuities at both ends, as shown in Fig. 1. An impulse
incident at time and propagates to the end of
the line in time . When it reaches the end discontinuity, it
reflects back and propagates toward the excitation point, hits
the discontinuity and reflects again, and so on. The steady-state
positive-going waveform at the source position can be ex-
pressed as

(1)

where and are the reflection coefficients at the two end dis-
continuities shown in Fig. 1. It is important to note that in (1),
the reflection coefficients are assumed to be frequency indepen-
dent. Otherwise, all the multiplication operations in (1) should
be converted to convolution operations. The bounce diagram can
also be formulated in the frequency domain by expressing every
delay by the appropriate propagation factor where is the
length of the line and is the wavenumber or propagation con-
stant. The frequency response of the positive-going waveform
can then be expressed as

(2)

The frequency-domain expression in (2) holds whether or
not the reflection coefficients are frequency dependent. In this
problem, it appears from the above expression that if the reflec-
tion coefficients and are frequency independent and for

(a) (b)

Fig. 1. (a) Bounce diagram in the time domain. (b) Equivalent
frequency-domain model.

only one homogeneous medium or one transmission-line sec-
tion, the frequency response at any frequency point can be calcu-
lated from only one simulation. This can be done as follows: the
scattering coefficients, given in this simple problem by ,
are stored at every iteration of only one simulation, then the fre-
quency response at any frequency point can be calculated by
summing up the products of the scattering coefficient at itera-
tion and the propagation factor raised to the power .
The TFDTLM is basically inspired from the same concept dis-
cussed in the above simple example. However, the special fea-
ture of the TFDTLM approach introduced in this paper is that it
makes it possible to extract all the frequency-domain informa-
tion of interest over a relatively wide frequency range by per-
forming only one simulation even if the reflection coefficients
are complex frequency dependent and/or when dealing with in-
homogeneous media with different propagation constants. In
a TFDTLM mesh, the link-line impedances are derived in the
frequency domain as in [4] and are chosen to model the fre-
quency-dispersive material parameters. The electrical proper-
ties of each line are indicated by three subscripts: the first sub-
script indicates normalized quantities per unit length and the
two following subscripts indicate the line direction and polariza-
tion, respectively. , , , and represent series inductance,
resistance, shunt capacitance, and conductance, respectively. In
terms of these quantities, the characteristic impedance of a line
along the -direction carrying an polarization is given by

(3)

and the propagation constant along the line is given by

(4)

The overall capacitance and conductance of all lines responsible
for an polarization should satisfy the medium permittivity
and conductivity as follows:

(5)
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where substitution from (3) and (4) into (5)
yields

(6)

Setting the condition

(7)

The condition in (7) is equivalent to the synchronization con-
dition in the TD TLM, is the propagation constant in the
medium, and is an equivalent cell dimension, substituting
from (7) into (6) gives

(8)

is the intrinsic impedance of the medium given by
, and the permeability can be complex in

case magnetic losses exist. Similar expression for the char-
acteristic impedance of lines responsible for an or an
polarization can be obtained using expressions similar to (5).
The inductance and resistance of all the link lines responsible
for an current must satisfy

(9)

substituting from (3), (4), and (7) into (9) yields

(10)

similarly, for the link lines responsible for and , expressions
similar to (10) can be obtained. Equations (11a) and (11b) rep-
resent a general formulation of the set of equations that need to
be satisfied in order to completely model all the constitutive pa-
rameters of the medium. The following equations include com-
pensating open-circuit stubs added to equations similar to (8)
and short-circuit stubs added to equations similar to (10):

(11a)

(11b)

where denotes an impedance normalized to the complex
intrinsic impedance of the medium. The equations above are
similar to the set of equations for the link-line inductances
and capacitances required to satisfy the medium permeability
and permittivity, respectively, in a TD TLM node. The only
difference is that the link-line impedances as well as those of
the compensating stubs, if any, in the TFDTLM are allowed to
be complex. In addition, the equations above not only satisfy

the medium permeability and permittivity, but the electric
and magnetic losses as well. The above set of equations can
be satisfied in more than one way. One way is to choose the
link-line impedances to satisfy (11a) with no open-circuited
stubs, thereby exactly modeling the medium permittivity and
conductivity. Compensating short-circuited stubs with complex
characteristic impedance in (11b) are then used to compensate
the deficiency in satisfying the medium permeability and mag-
netic losses. This would be the frequency-domain equivalent
of type II HSCN [6]. Another alternative is to satisfy (11b)
with no short-circuited stubs for the medium permeability and
magnetic losses and the deficiency in satisfying the medium
permittivity and electric losses can then be compensated by
open-circuited stubs of complex characteristic impedance
in (11a). A third alternative is to satisfy the six equations
simultaneously in a way similar to the SSCN, as in [7] and
[8], with no compensating stubs. This alternative is always
recommended in the TFDTLM to reduce computations. It
is worth mentioning that for a uniform cell, the normalized
impedance of all link lines will be identical and equal to unity.
Moreover, the equivalent cell dimension will be equal

, the factor of 1/2 confirms
that the velocity of the bulk waves on the transmission-line
mesh is one-half the velocity of the waves on the individual
transmission lines, which agrees with the slow-wave nature
of a TD TLM mesh that was also demonstrated for John’s
FDTLM [4]. Irrespective of the method used to solve for
the link-line impedances, (11a) and (11b) show that, for one
homogeneous medium, the link-line normalized impedances
are all frequency independent and, consequently, so is the
scattering matrix of the TFDTLM. The scattering procedure
will be identical to the TD TLM. In the connection procedure,
however, transition from one node to the next is accounted
for through multiplication by the factor , which means
that, from one iteration to the next, the scattered pulses are
modified by the factor to become incident on the next
neighboring cell. In a TFDTLM node, the multiplication by the
propagation factor is not actually performed at every iteration.
Instead, only the scattering coefficients at the observation point
are stored at every iteration. The scattering coefficients are
equivalent to the impulse response of a TD TLM mesh at the
same position and the corresponding iteration, except for the
fact that these coefficients in the TFDTLM can be complex.
The TFDTLM frequency response at the observation point at a
particular frequency can then be obtained from these scattering
coefficients as follows: the value stored at the first iteration
is multiplied by . The value at the second iteration is
multiplied by , and so on. The final result can then be
obtained by summing. It is important to note that the frequency
dependence of the frequency response at the observation point
is only contributed by multiplication by the factors ,
a procedure that is only done at the end of the simulation to
calculate the response at a particular frequency. This indicates
that even though the TFDTLM is a frequency-domain method,
performing only one simulation is enough to calculate the
frequency response at any frequency of interest as long as there
is only one homogeneous medium. Even in case of problems
having inhomogeneous regions with different propagation
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Fig. 2. Implementation of the approximation filter in a TFDTLM mesh.

constants in different regions as well as frequency-dependent
reflection coefficients, the TFDTLM approach can still be
applied to extract all the frequency information of interest from
only one simulation. This will be discussed in Section III.

III. TFDTLM IN AN INHOMOGENEOUSMEDIUM

The technique used to overcome the problem of inhomoge-
neous media, multiple propagation factors, and frequency-de-
pendent reflection coefficients involves approximating all prop-
agation factors in each and every medium in a TFDTLM mesh
in terms of the propagation factor of some reference medium
chosen to be the medium with the least propagation delay. Con-
sider having two media 1 and 2 with propagation constants
and , respectively, and effective cell dimensions and ,
respectively, and medium 1 has the least propagation delay. The
propagation constant in medium 2 is then approximated in terms
of the propagation constant in medium 1 as

(12)

The filter coefficients and are then obtained by mini-
mizing the mean square error between the actual propagation
factor of the medium and the approximated propagation factor
over the frequency range of interest. It is important to note that
the filter coefficients can be complex, but are not frequency de-
pendent. The integer is chosen to provide extra phase change
(increase filter order) that can be implemented with significantly
fewer computations than by increasing the integer. Assuming

, this technique is implemented in a TLM mesh in a way
similar to the implementation of a digital filter in a digital filter
processing application [9]. Fig. 2 shows two possible ways of
implementing the filter. Direct form II involves less computa-
tions than direct form I and less storage as well. For this reason,

direct form II was chosen to be implemented in the TFDTLM
scheme. Consider a link line in medium 2 between cellsand
. In a TD TLM mesh, the connection between the two adjacent

cells is implemented as follows:

(13)

In the TFDTLM, the equivalent expression will be in the form

(14)

where is the iteration number. Assuming medium 1 is the ref-
erence medium, the propagation constant in medium 2 is ap-
proximated in terms of that of medium 1. For , then from
direct form II realization of (12), the incident voltage at node
at iteration can be obtained in terms of the reflected voltage
at node at iteration as follows:

(15)

(16)

In an actual simulation, the multiplication by the factor ,
which accounts for the transition from one iteration to the next,
is not performed at every iteration. Instead, only the term in-
side the bracket in (16) is stored at each iteration. It is impor-
tant to note that this term can be complex, but is not frequency
dependent. Again, the frequency dependence of the frequency
response at the observation point is only contributed by multi-
plication by the factors . These multiplications are only
done at the end of the simulation, where the frequency response
at the observation point at a particular frequency is obtained by
multiplying the value stored at iteration 1 by and that
at iteration 2 by , etc. These terms are then summed to
obtain the overall frequency response at the frequency point of
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interest. The values of the intermediate variablesare first
initialized to zero and then updated at each iteration by pushing
them one step downwards to simulate the multiplication by the
factor

(17)

By the same token, complex frequency-dependent reflection co-
efficients at the interface between two different media can also
be approximated by a similar filter and implemented the same
way.

IV. DISPERSION INTFDTLM

The dispersion behavior of the TFDTLM scheme can be an-
alyzed in the same way as in TD TLM [10]–[13], where the
dispersion characteristic of a general TLM mesh can be derived
by solving an eigenvalue equation given by

(18)

The matrix has a similar form to that in the TD TLM, except
for the fact that propagation constants or wavenumbers along the
three coordinate directions can be complex for a lossy medium.
These propagation constants are written as, , and for the

-, -, and -directions, respectively. The matrixis a diagonal
matrix with nonzero elements equal to where is the ap-
proximated propagation constant of the medium. To simplify
the analysis, (18) is solved numerically for a two-dimensional
(2-D) propagation case in the -plane and only for the modes
associated with the three field components, , and . The
dispersion relation of conventional stub-loaded TD TLM nodes
can be derived from the general condition in (18). The disper-
sion equation is solved numerically for both the TFDTLM and
TD TLM and the error in the propagation vector is compared.
The dispersion error refers to the error between the mesh prop-
agation constant and the actual propagation constant of the
medium . The dispersion error is calculated at a frequency
where the cell dimension is 0.1 times the corresponding wave-
length.

A. Dispersion in a Lossless Inhomogeneous Medium

The cell is assumed to be uniform having
cm. In the TFDTLM, a first-order approximation

filter is used. The reference medium is considered free space
with . The filter coefficients are optimized in a
frequency range where the maximum cell dimension is less than
or equal to 0.125 times the corresponding wavelength. The filter
is denoted by and has the form

(19)

Fig. 3 compares the percentage dispersion error calculated for
a type-II HSCN and the TFDTLM in a lossless medium with

. The dispersion error is plotted versus the angle from
the -axis . From Fig. 3, it appears that dispersion error of
the TFDTLM has a minimum of 0% and a maximum of 0.42%
and an average of 0.1%, whereas that of the type-II HSCN has
a minimum magnitude of 0.2% and maximum magnitude of

Fig. 3. Comparison between the dispersion properties of the TFDTLM and
HSCN II for a uniform cell with� = 4.

0.59% and an average of 0.21%. Hence, it appears that even
for a lossless medium, the TFDTLM scheme still showed some
improvement over type-II HSCN. It is worth mentioning that,
in the results predicted in Fig. 3, the fact that the dispersion be-
havior for stub-loaded TLM nodes is polarization dependent,
and has not been taken into consideration. For stub-loaded TLM
nodes, different modes of propagation will be associated with
different dispersion errors. For the case considered, we have
looked into the three field components , , and and be-
cause type-II HSCN employs short-circuited stubs that directly
affect the -fields, it is expected that, for the three field com-
ponents chosen, the error associated with this node should be at
a minimum. On the other hand, for the modes associated with

, , and , the error should be at a maximum. Hence, the
average error should be higher than that predicted in Fig. 3. On
the other hand, because the TFDTLM in the above analysis did
not employ any stubs, the dispersion error is unique irrespective
of the mode of propagation. This property as in the SSCN would
make it easier to correct for the dispersion error [8]. Fig. 4 shows
similar results to those in Fig. 3, but with . The filter
approximation used with the TFDTLM has the same form in
(19). This figure shows that the behavior of the HSCN continues
to degrade by increasing the relative dielectric constant. The
TFDTLM, on the other hand, almost maintains the same order
of accuracy. It is worth noting that even for such a relatively high
relative dielectric constant, a first-order approximation filter in
the TFDTLM can still provide almost the same order of accu-
racy as with lower relative dielectric constants. This conclusion
can have a significant effect on improving the computational ef-
ficiency of the TFDTLM.

B. Dispersion in Lossy Inhomogeneous Medium

In this section, the dispersion behavior of the TFDTLM in a
lossy inhomogeneous medium with a uniform cell is analyzed.
First- and second-order approximation filters are used. The ref-
erence medium is free space and the filter coefficients are opti-
mized in a frequency range where the maximum cell dimension
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Fig. 4. Comparison between the dispersion properties of the TFDTLM and
HSCN II for a uniform cell with� = 16.

Fig. 5. Comparison between the dispersion properties of the TFDTLM, SSCN,
and HSCN II in a lossy inhomogeneous medium with� = 5,� = 0:2 S/m for
a uniform cell.

is less than 0.125 times the corresponding wavelength. The fil-
ters are denoted by and for a first- and second-order ap-
proximation, respectively, and are given by

(20)

Fig. 5 shows a comparison of the dispersion characteristics of
the SSCN, the HSCN II, and first- and second-order TFDTLM
in a lossy medium with and S/m (a loss tangent
of about 0.3 at the considered frequency). This figure shows
that the SSCN has a relatively poor dispersion characteristics
for a lossy inhomogeneous medium. The first-order TFDTLM
provides significant improvement over the SSCN, and a little
improvement over the HSCN II. A second-order TFDTLM, on
the other hand, has a superior performance over both the SSCN

TABLE I
COMPARISONBETWEEN THEDISPERSIONPROPERTIES OF THETFDTLM,

HSCN II, AND SSCNIN A LOSSYINHOMOGENEOUSMEDIUM WITH � = 5

and� = 0:2 S/mFOR A UNIFORM CELL

Fig. 6. Comparison between the dispersion properties of the TFDTLM and
HSCN II in a lossy inhomogeneous medium with� = 8, � = 1 S/m for a
uniform cell.

and HSCN II. Table I compares the minimum, maximum, and
average magnitude error in the SSCN, HSCN II, and first- and
second-order TFDTLM.

Fig. 6 shows a comparison of the dispersion behavior of the
HSCN II and a second-order TFDTLM for a higher loss tangent.
The relative dielectric constant is chosen to be eight with a con-
ductivity of 1 S/m, a loss tangent of about one, at the operating
frequency. This figure shows that the behavior of the HSCN is
significantly degraded. The TFDTLM, on the other hand, almost
maintains the same order of accuracy as in a lossless homoge-
neous medium with a very slight degradation. Another impor-
tant conclusion can also be derived from the results in Fig. 6.
It has been shown that a second-order approximation filter can
provide an acceptable order of accuracy for a lossy inhomoge-
neous medium with relatively high losses. This conclusion was
verified for different combinations of medium parameters with
relatively high loss tangents.

C. Dispersion in a Lossy Inhomogeneous Medium with a
Nonuniform Cell

In this section, a lossy inhomogeneous medium with a
nonuniform cell will be considered. The TFDTLM can handle
the situation of a nonuniform cell in a simple and direct way.
Equations (11a) and (11b) are functions of the normalized
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Fig. 7. Comparison between the dispersion properties of the TFDTLM, SSCN,
and HSCN II in a lossy inhomogeneous medium with� = 5,� = 0:2 S/m for
a nonuniform cell.

link-line impedances (normalized by the complex intrinsic
impedance of the medium) and the equivalent cell dimension

. In order to account for nonuniform cells, the set of equa-
tions are solved simultaneously with no stubs as in the SSCN
for the normalized link-line impedances and the equivalent
cell dimension . The reason they are chosen to be solved
the same way as in the SSCN is that the SSCN proved to have
superior dispersion characteristics in a homogenous lossless
medium with nonuniform cells [8]. The set of equations can,
in general, be solved as in a general symmetrical condensed
node (GSCN), as illustrated in [14], for optimum dispersion
behavior in a nonuniform cell. The solution of (11a) and
(11b) implicitly assumes that the propagation delay along
any cell dimension is equal to the propagation delay in the
medium. The role of the TFDTLM becomes significant in
approximating the propagation constant in different media with
different frequency-dependent material parameters in terms of
the propagation constant of some reference medium. Fig. 7
compares the dispersion behavior of a second-order TFDTLM,
SSCN, and the HSCN in a lossy inhomogeneous medium
having and S/m. The cell is assumed to be
nonuniform having cm. It is important
to mention that there is no limitation to the use of a graded
mesh in the TFDTLM. In the TFDTLM, the set of link-line
impedances are chosen to account for the nonuniform cell
dimension by solving the set of equations in (11a) and (11b)
with no stubs. A second-order approximation filter is then used
to approximate the medium propagation factor in terms of that
of the reference medium. The reference medium is taken to be
free space. The filter coefficients are optimized in a frequency
range where the maximum cell dimension is less than 0.125
times the corresponding wavelength. In the SSCN, the link-line
impedances are chosen to account for the nonuniform cell and
satisfy the medium dielectric constant. Lossy stubs are added to
account for losses. The SSCN, as shown in Fig. 7, has the worst

TABLE II
COMPARISON OF THEPERCENTAGEERROR IN THEQ-FACTOR ESTIMATION

OBTAINED FROM THE HSCNAND TFDTLM FOR� = 5, � = 0:05 S/m

dispersion behavior, followed by the HSCN. The TFDTLM
shows significant improvement over the HSCN even when
both are operating at the maximum permissible equivalent cell
dimension, the maximum equivalent cell dimension that would
guarantee all normalized link-line impedances are positive. The
maximum permissible equivalent cell dimension in the HSCN
is simply the maximum permissible time step multiplied by the
speed of light in air. It is worth mentioning that the maximum
permissible equivalent cell dimension in the TFDTLM is equal
to almost 1.2 times that required by the HSCN, i.e., the number
of iterations required by the TFDTLM is less than 85% of that
required by the HSCN. When the equivalent cell dimension is
dropped to 0.25 , which is the same as that required by the
HSCN, Fig. 7 shows that the dispersion of the TFDTLM is
significantly improved.

V. SIMULATION RESULTS

A lossy cavity of size 5 cm 5 cm 5 cm was simulated with
a uniform grid using the TFDTLM. The cavity is filled with a
dielectric with and conductivity equals 0.05 S/m. The
quality factors are calculated for the HSCN and the TFDTLM
approach and compared with the theoretical values. A second-
order approximation filter was used for the TFDTLM. The filter
coefficients were optimized up to a frequency where the max-
imum cell dimension is in the order of 0.18 times the wavelength
in a medium with . This range is guaranteed to cover
the frequency range over which the TLM is always operated for
a given cell dimension. Table II shows a comparison between
the accuracy of the type-II HSCN and TFDTLM. The results in
Table II prove that the TFDTLM provides improved accuracy
in calculating the quality factor and, consequently, in modeling
the losses in the medium. Both the TFDTLM and HSCN have
an acceptable order of accuracy in the low-frequency range, al-
though the TFDTLM is still better. As the frequency increases,
the HSCN significantly degrades, whereas the TFDTLM almost
maintains the same order of accuracy with very slight degrada-
tion.

VI. ON THE COMPUTATIONAL EFFICIENCY OF THETFDTLM

It has been mentioned earlier that as compared to a FDTLM
scheme, where the intensity of computation per frequency is ap-
proximately of the same order, the TFDTLM would be compu-
tationally more efficient. The reason is that, in the TFDTLM, all



1096 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 48, NO. 7, JULY 2000

TABLE III
COMPARISON OF THENUMBER OF MULTIPLICATION AND ADDITIONS IN A TD

TLM AND FIRST- AND SECOND-ORDER TFDTLM

the frequency-domain information in the entire frequency range
of interest can be extracted from only one simulation. In a tra-
ditional FDTLM, on the other hand, the simulation has to re-
peated at every frequency point. As compared to a TD TLM
scheme, the TFDTLM is less efficient. The reason is that, in a
TFDTLM, all the computations must be complex. Also, more
complex computations are used for the implementation of the
approximation filter. In what follows, the number of multiplica-
tions and additions in the TFDTLM will be compared to that re-
quired in a TD TLM. The storage requirement will be compared
as well. The following calculations for a TD TLM will be based
on a general node having six different link-line impedances for
different coordinate directions and polarizations, six stubs, and
six lossy stubs. For the TFDTLM, six different link-line imped-
ances are considered with neither lossy, inductive, nor capacitive
stubs. For the TFDTLM, all the filter coefficients are normal-
ized to in (12), i.e., is taken to be unity. It is important to
note that, in the following calculations, every full complex mul-
tiplication, i.e., multiplication of two complex numbers, is con-
verted to four equivalent real multiplications and two equivalent
real additions. On the other hand, multiplication of a real and a
complex number is equivalent to two real multiplications. The
complex class developed in C could actually differentiate
between these two types of multiplications and, hence, improve
the computational efficiency of a TFDTLM code. Table III sum-
marizes the total number of real multiplications and additions
for a first- and second-order TFDTLM as compared to a TD
TLM. The numbers for the TD TLM are based on the efficient
computation algorithm for the GSCN given in [15].

It is important to note that, in the region that is treated as
a reference medium in a TFDTLM, the connection procedure
does not involve any approximation filter. This would drop the
equivalent number of real multiplication in this region to 30 and
the number of equivalent real additions to 84. Consequently, the
overall number of multiplications and additions will be reduced.
Concerning the memory storage requirement of a TFDTLM, a
first-order TFDTLM will require 24 complex memory locations
per node, as opposed to 18 real memory locations in a TD TLM
with six stubs. A second-order TFDTLM, on the other hand, will
require 36 complex memory locations per node.

VII. SUMMARY AND CONCLUSIONS

In this paper, a novel FDTLM approach was introduced.
The new approach is based on a steady-state analysis in the
frequency domain using transient analysis techniques. The
TFDTLM has the advantage of being able to extract all the
frequency-domain information in the frequency range of
interest from only one simulation. This special feature of

the TFDTLM makes it computationally more efficient as
compared to any other FDTLM. The TFDTLM was found
to have less dispersion error than the TD TLM in modeling
lossless as well as lossy inhomogeneous media with uniform
and nonuniform cells. For the TFDTLM, it has been shown that
a first-order approximation filter can perfectly model lossless
inhomogeneous media, whereas a second-order approximation
filter can provide an acceptable order of accuracy even for
a lossy inhomogeneous medium with a relatively high loss
tangent. The TFDTLM was tested in a simple lossy cavity
simulation and was able to better estimate the quality factors
than traditional TD TLM. The computational intensity and the
storage requirement of the TFDTLM were also estimated. It is
important to note that one interesting property of the TFDTLM
is that it can easily be interfaced with any TD TLM method.
Therefore, in lossless regions with relatively low relative
dielectric constants and/or permeabilities, a traditional TD
TLM technique can be used. The TFDTLM can then be used
only for regions with frequency-dependent material properties,
relatively high permittivities, permeabilities, and/or high loss
tangents. This would consequently save a lot of computations
and help improve the overall computational efficiency of the
TFDTLM.
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