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Analysis of a Nonconfocal Suspended Strip in an Elliptical
Cylindrical Waveguide

Hassan A. Ragheb

Abstract—The separation of variables method along with an addition
theorem of Mathieu functions are employed in this paper to analyze the
problem of a nonconfocal suspended strip in an elliptical waveguide. An
infinite-dimensional determinant is obtained, which represents the charac-
teristic equation of the proposed structure. To obtain the cutoff wavenum-
bers for both TE and TM cases of such a structure, the infinite determi-
nant is truncated. Convergence when truncating was observed. Numerical
results for the special case of a confocal structure is discussed first for com-
parison with published data. Results of other interesting cases are also pre-
sented.

Index Terms—Elliptical waveguide, strips.

I. INTRODUCTION

Elliptical waveguides have been the subject of many investigations
due to their wide applications in radar feed lines, multichannel commu-
nication, and accelerator beam tubes. Chu [1] presented the theory of
the transmission of the electromagnetic waves in elliptical waveguide.
The propagation of the electromagnetic waves in elliptical waveguide
and the results of the cutoff wavelength of 19 successive modes were
presented by Kretzschmar [2]. Bulley [3] introduced a theory for the
analysis of an arbitrarily shaped waveguide by a polynomial approxi-
mation. This theory was improved and implemented for analyzing el-
liptical waveguides [4]. The fields associated with theTM01 mode of
the elliptical waveguide were corrected by Goldberget al.[5]. Recently,
Zhang and Shen [6] calculated the cutoff wavelengths of the lowest 100
successive modes, as well as the curve-fitting expressions for the lowest
ten-order modes.

Another line of research [7] investigated elliptical waveguide loaded
with ridges or a suspended strip. It was assumed that the ridges ex-
tended from the walls to the focal points. Recently, Rozziet al. [8]
reported a complete analysis for a suspended strip in an elliptical cylin-
drical waveguide. He considered that the suspended strip extended be-
tween the focal points of the elliptical waveguide. He obtained the
cutoff wavelengths for different TEM, TE, and TM modes using the
separation of variables.

The objective of this paper is to extend Rozzi’s analysis for the more
general case of a strip of arbitrary width. The strip width could be
greater or less than the focal length of the elliptic cylinder. This problem
will be more general and will accommodate some important special
cases such as a circular cylinder with a suspended strip.

II. THEORY

Consider the two-dimensional cross-sectional geometry shown in
Fig. 1. It consists of an infinitely long perfectly conducting elliptic
cylinder, with focal length2b. A perfectly conducting strip of width
2a and infinite length is placed along the line joining the focal points
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Fig. 1. Geometry of the problem.

of the elliptic cylinder such that its axes coincide with that of the ellip-
tical waveguide. The strip width can take any value greater or less than
2b. In order to facilitate our analysis, two elliptical coordinate systems
are considered. The local coordinates (uo, vo, z) are at the center of the
strip while the global coordinates (u, v, z) are considered at the center
of the elliptic cylinder. The solution of the scalar Helmholtz wave equa-
tion in elliptical coordinates can be written as

 (�o; �o) =

1

n=0

Aen Jen(co; �o) +Ben Nen(co; �o)

�Sen(co; �o)e
�j�z (1)

for the even modes, while for the odd modes, it is

 (�o; �o) =

1

n=0

Aon Jon(co; �o) +Bon Non(co; �o)

�Son(co; �o)e
�j�z (2)

where� = cosh u, � = cos v, co = kca (k2c = k2 � �2, and
kc is the transverse component, whilek = 2�=� is the free-space
wavenumber,� is the wavelength, and� is the propagation constant).
Jen andNen are even modified radial Mathieu functions of the first
and second kinds, respectively, whileJon andNon are their corre-
sponding odd functions.Sen andSon are the even and odd angular
Mathieu functions.Aen, Aon, Ben, andBon are coefficients to be
calculated by imposing the boundary conditions.

A. TE Case

These modes must satisfy the boundary condition of vanishing tan-
gential components of the electric field (Ev = 0) on the perfectly con-
ducting surfaces, i.e.,

@ 

@uo
ju =0 =0; 0 � vo � 2�

and
@ 

@u
ju=u =0; 0 � v � 2� (3)

whereuk = constant represents the surface of conducting the elliptic
cylinder. Since we have even and odd modes in each case, one can
consider them individually as follows.
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TABLE I
COMPARISONBETWEEN OUR RESULTS AND ROZZI et al. [8]. (a) FOR THETM MODES. (b) FOR THETE MODES

1) TE Even Modes:Applying the first boundary condition
(@ =@uo)ju =0 = 0; 0 � vo � 2�, one can obtainBen = 0,
which, when substituting in (1), yields

 (�o; �o) =

1

n=0

Aen Jen(co; �o)Sen(co; �o)e
�j�z : (4)

Now, in order to apply the second boundary condition, (�o; �o) must
be transferred to the global coordinate system(�; �). This can be done
using the addition theorem of Mathieu functions [10], which is simpli-
fied for this case as

Rxn(co; �o)Sxn(co; �o) =

1

l=0

Kxn; lRxl(c; �)Sxl(c; �) (5)

whereRxn could beJen, Jon,Nen, orNon, Sxn could beSen or
Son; also,Kxn; l could beKen; l orKon; l andc = kcb while

Ken; l =
�(�j)l�n

M
(e)
l (c)

1

r=0

"rDe
n
r (co)De

l
r(c)

"r =
2; r = 0

1; otherwise
(6)

Kon; l =
�(�j)l�n

M
(o)
l (c)

1

r=1

Donr (co)Do
l
r(c) (7)

whereM (e)
l (c) andM (o)

l (c) are normalization constants for even and
odd functions, respectively, which are defined in [9]. The summation
over r in (6) and (7) extends over even values ofr if n is even and
odd values ofr if n is odd. The constantsDenm andDonm are coef-
ficients of the infinite series of angular Mathieu functions in terms of
trigonometric functions defined in [9]. To apply the second boundary
condition, (5) is employed in (4) as

 (�; �) =

1

n=0

1

l=0

AenKen; lJel(c; �)Sel(c; �)e
�j�z: (8)

Applying the second boundary condition and using the orthogonal
property of the triangular Mathieu functions, one obtains

1

n=0

AenKen; lJe
0

l(c; �k) = 0: (9)

Equation (9) can be written in the matrix form

[Zl; n][Aen] = 0: (10)

A nontrivial solution can be obtained if the determinant of theZ matrix
vanishes. The solution of the resulting determinant will give the values
of kc corresponding to the first, second,. . ., andnth cutoff wavenum-
bers. Once the value ofkc is obtained for theith cutoff wavenumber,
the coefficients can be obtained, and the field distribution inside the
waveguide is then completely defined.
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TABLE II
THREECUTOFFWAVELENGTHS FORDIFFERENTCASES OFTM AND TE MODES

2) TE Odd Modes:Following the same procedure described for the
TE even modes, but with (�o; �o) represented in terms of odd func-
tions [see (2)], one ends up with a matrix equation similar to that in
(10), where the elements of the matrix are given by

Zl; n = Kon; l Jo
0

l(c; �k)�
Jo0n(co; 1)

No0n(co; 1)
No

0

l(c; �k) (11)

and the coefficient vector is denoted asAon. Again, the determinant of
the matrix is equal to zero to obtain the cutoff wavenumbers.

B. TM Case

These modes must satisfy the boundary condition of vanishing tan-
gential components of the electric field (Eu = 0) on the perfectly con-
ducting surfaces, i.e.,

 ju =0 =0; 0 � vo � 2�

and

 ju=u =0; 0 � v � 2�: (12)

Even and odd modes can be considered individually as follows.

Fig. 2. First cutoff wavelength versus strip width for: (a) the even TM mode
and (b) the odd TE mode.

Fig. 3. First cutoff wavelength versus elliptic guide eccentricity for: (a) the
even TM mode and (b) the odd TE mode.

1) TM Even Modes:Applying the first boundary condition along
with the orthogonal property of Mathieu functions yields

 (�o; �o) =

1

n=0

Aen Jen(co; �o)�
Jen(co; 1)

Nen(co; 1)
Nen(co; �o)

�Sen(co; �o)e
�j�z

: (13)

Employing the addition theorem of the Mathieu functions and applying
the second boundary condition along with the orthogonal property of
the triangular Mathieu functions, one can get a matrix equation similar
to (10) with elements of theZ matrix given by

Zl; n = Ken; l Jel(c; �k)�
Jen(co; 1)

Nen(co; 1)
Nel(c; �k) : (14)

2) TM Odd Modes:Following the same procedure described for
the TM even modes, but with (�o; �o) represented in terms of odd
functions [see (2)], one ends up with a matrix equation similar to that
in (11), where the elements of the matrix are given by

Zl; n = Kon; lJol(c; �k) (15)

and the coefficient vector is denoted asAon.
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III. RESULTS AND DISCUSSION

To check the accuracy of our computations, the cutoff wavelengths of
the confocal cases reported by Rozziet al. [8] were recalculated using
our method. Table I shows our results compared with those in [8]. As
can be seen from Table I, there is excellent agreement. A maximum
deviation of 1.8% in the results only occurs in a few cases.

For the general case, the effect of two parameters (strip width and
cylinder focal length) on the cutoff wavelength was studied. First, the
focal length of the elliptic cylinder was fixed, while the strip width is
varied. Fig. 2(a) illustrates the change of the cutoff wavelength versus
the strip width at some selected values of the focal length for the even
TM case. As one can see from Fig. 2(a), the cutoff wavelength de-
creases when the strip width increases. On the other hand, one can see
that, for the odd TE case, the cutoff wavelength increases with the strip
width, as shown in Fig. 2(b). Second, the effect of the focal length on
the cutoff wavelength at some selected values of strip width is illus-
trated in Fig. 3(a) for the even TM case, and in Fig. 3(b) for the odd TE
case. In both cases, the cutoff wavelength decreases with an increase
in the focal length of the elliptic cylinder, but the decrease in the even
TM case is more rapid than in the odd TE case. Finally, values corre-
sponding to the first three cutoff wavelengths for some selected param-
eters for both TM and TE cases are tabulated in Table II. It was found
that, for the odd TM, cutoff wavelengths and even TE are independent
of the strip width.

IV. CONCLUSION

The cutoff wavelengths for both TE and TM cases of an arbitrary
strip width suspended in an elliptical cylinder have been calculated in
this paper. It is found that the cutoff wavelength increases with the strip
width for the odd TE case, while for all the other cases, it decreases.
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Scattering from Multiple Grooves in the Inner
Conductor of a Coaxial Line

Hyo J. Eom, Young C. Noh, and Jong K. Park

Abstract—A problem of electromagnetic-wave scattering from multiple
grooves in the inner conductor of a coaxial line is theoretically solved. Si-
multaneous equations for the discrete modal coefficients are formulated
by utilizing the Fourier transform. The reflection and transmission coeffi-
cients are obtained in numerically efficient fast-convergent series. Numer-
ical computations are performed to show the frequency characteristics of
the reflection and transmission coefficients in terms of the groove geometry.

Index Terms—Bandpass filter, coaxial line, Fourier transform, multiple
grooves.

I. INTRODUCTION

Electromagnetic-wave scattering from multiple grooves in the inner
conductor of a coaxial line is of practical interest due to its frequency
characteristics and the filter applications. A gap in the inner conductor
was considered in [1]–[4], but a rigorous theoretical analysis for scat-
tering from multiple grooves in a coaxial line seems to be little. In this
paper, we intend to provide a rigorous theoretical analysis for scattering
from multiple grooves in the inner conductor of a coaxial line by ex-
tending the Fourier transform technique, as used in [5]–[7]. In partic-
ular, we note that this paper is in continuation of [7], where scattering
of a coaxial line terminated by a gap was considered. The rigorous so-
lution presented in this paper is represented in a rapidly convergent
series, which are simple and numerically efficient. The mathematical
notations and analytical formulation closely follow those in [5]–[7].

II. FIELD REPRESENTATION

Assume an incident TEM mode propagating from the left-hand side
along a coaxial line whose inner conductor hasN number of multiple
grooves (see Fig. 1). In region I(b < � < a), theH-field is a sum of
the incident and scattered fields as

Hi
�I(�; z) = eik z=(�1�) (1)

H�I(�; z) =
i!�1
2�

1

�1

1

�
~E(�)R0(��)e�i�z d� (2)

where� = k2
1
� �2; �1 = �0=�1; R(��) = J0(��)N0(�a) �

N0(��)J0(�a); k1 = !
p
�0�1 = !

p
�0�r1�0, R0(��) =

(dR(��)=d(��)), andJ0(:) is the zeroth-order Bessel function and
N0(:) is the zeroth-order Neumann function. Note that the scat-
tered-field representation (2) accounts for the continuous TM-mode
contribution in the spectral domain. In region II(c < � < b) of
permittivity �2

H�II(�; z) = i!�2

N

n=1

1

m=0

pnm
�nm

R00(�
n
m�) cos a

n
m z � s(n)
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Fig. 1. Geometry of a coaxial line with multiple grooves in the inner conductor.

Fig. 2. Comparison of� for a single gap (N = 1, c = 0) in the inner
conductor whena = 0:714 cm; b = 0:310 cm; d = d, � = 1, and
� = 1. Note that� is the conjugate of� and the result ofd = 0:1143,
[3] includes experimental data for 0.5�2 GHz.

� u z � s(n) � u z � e(n) (3)

where

R0(�
n
m�) =

J0(�
n
m�)N0(�

n
mc)�N0(�

n
m�)J0(�

n
mc);

for c 6= 0

J0(�
n
m�); for c = 0

(4)

s(n) =

n

t=1

(dt + wt)� dn (5)

e(n) =

n

t=1

(dt + wt) (6)

Fig. 3. Behavior of� for the different� for a single groove (N = 1; c 6=
0) in the inner conductor whena = 0:714 cm; b = 0:310 cm; c = b=8; d =

0:2a, and� = 1.

Fig. 4. Frequency characteristics of� andT for multiple gaps (N = 4,
c = 0) in the inner conductor whena = 0:714 cm; b = 0:310 cm; d =

0:05 cm; d = d = 0:133 cm; d = 0:05 cm; w = 0; w =

4:96 cm; w = 5:32 cm; w = 4:96 cm,� = 1, and� = 1.

�nm = k2
2
� (anm)2; k2 = !

p
�0�r2�0; a

n
m = m�=dn; w1 = 0,

u(:) is a unit step function,N is the number of the grooves, andpnm is
an unknown coefficient of the modem in thenth groove. Note thatdt
denotes thetth groove width andwt denotes a distance between the(t�
1)th andtth grooves. Applying the Fourier transform1

�1

(� � �)ei�z dz
to theEz boundary conditions at� = b

EzI(b; z)

=
EzII(b; z); for s(n) < z < e(n); n = 1; 2; 3; � � � ; N
0; for otherwise

(7)
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gives

~E(�) =

N

n=1

1

m=0

pnmR0(�
n
mb)

R(�b)
Gn
m(�) (8)

where

Gn
m(�) =

�i� (�1)mei�d � 1

�2 � (anm)2
ei�s(n): (9)

TheH� field continuity at� = b over the groove gives

Hi
�I(b; z) +H�I(b; z) = H�II(b; z): (10)

Multiplying (10) by cos apl [z � s(p)] (where l = 0; 1; 2; � � � and
p = 1; 2; 3; � � � ; N ) and integrating with respect toz from s(p) to
e(p), we obtain

N

n=1

1

m=0

R0(�
n
mb)I

np

ml �
dn�r2�m
2�r1�nm

R00(�
n
mb)�ml�np pnm

=
i

k1b
Gp

l (k1) (11)

where�m = 2(m = 0); 1(m = 1; 2; � � �), �ml is the Kronecker delta
and

Inpml =
1

2�

1

�1

R0(�b)

�R(�b)
Gn
m(�)Gp

l (��)d�: (12)

Using the residue calculus, it is possible to transform (12) into rapidly
converging series, which are efficient for numerical computation. From
(11), we calculate the unknown coefficientspnm. After performing the
residue calculus, we obtain the reflection coefficient� at z = 0 and
the transmission coefficientT at z = e(N) as

� = �H�I

Hi
�I

= �L�0 (13)

T =
Hi
�I +H�I

Hi
�I

= 1 + L+
0 (14)

L�0 = �
N

n=1

1

m=0

pnmR0(�
n
mb)ik1 1� (�1)me�ik d

2 ln
b

a
(k21 � (anm)2)

e�ik s(n):

(15)

In a dominant-mode approximation (k1d1 � 1) for a single groove
(N = 1) in the inner conductor, (11)–(14) are simplified substantially
with m = 0, thereby yielding

� =
i 1� eik d

2

2bk31 ln(b=a) I0000 �
�r2d1R

0
0(k2b)

�r1k2R0(k2b)

(16)

T = 1 +
i 1� eik d 1� e�ik d

2bk31 ln(b=a) I0000 �
�r2d1R

0
0(k2b)

�r1k2R0(k2b)

(17)

R0(k2b) =
J0(k2b)N0(k2c)�N0(k2b)J0(k2c); c 6= 0

J0(k2b); c = 0:

(18)

III. N UMERICAL COMPUTATIONS

Fig. 2 shows the comparison of� for a single gap (N = 1; c = 0)
in the inner conductor between our and other results [3], [4] versus the
frequency whena = 0:714 cm, b = 0:31 cm; d1 = d, �r1 = 1,
and�r2 = 1. Note that�� is the conjugate of�. Our solution agrees
well with the result of Sen and Saha [4]. In our computation, we use
m = 0 in (11) to obtainpnm, indicating that our solution is numeri-
cally efficient. Our computational experience shows that a single mode
(m = 0) solution satisfies the energy conservation to better than 0.1%
error. Fig. 3 shows the behavior for a single groove (N = 1; c 6= 0) in
the inner conductor versus�r2 whena = 0:714 cm,b = 0:31 cm; c =
b=8; d1 = 0:2a, and�r1 = 1. As �r2 increases from 1 to 10, the reso-
nant frequency corresponding toj��j � 1 decreases. Fig. 4 illustrates
the designed filter characteristics of reflection and transmission coef-
ficients for four gaps (N = 4 andc = 0) in the inner conductor. The
frequency characteristics in Fig. 4 are those of the 0.5-dB equal-ripple
bandpass filter with the center frequency at 2.4 GHz and 20% band-
width. When regions I and II are filled with a dielectric medium (�r1 =
�r2 = �r > 1), all physical dimensions (a; b; d1; � � � ; w4) of the de-
signed filter should be accordingly normalized by

p
�r . In other words,

if �r1 = �r2 = 2, thena = 0:714=
p
2 cm, b = 0:310=

p
2 cm, . . .,

etc.

IV. CONCLUSION

In this paper, a rigorous solution for scattering from multiple grooves
in the inner conductor of a coaxial line is obtained in closed form. Nu-
merical computations are performed to illustrate the frequency charac-
teristics for the reflection and transmission coefficients. Our theoret-
ical results are useful for the filter design using the coaxial line with
the multiple-grooved inner conductor.
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Accurate Characterization of the Interaction Between
Coupling Slots and Waveguide Bends in

Waveguide Slot Arrays

Giuseppe Mazzarella and Giorgio Montisci

Abstract—In a waveguide slot array, it is sometimes required to intro-
duce bent short-circuit terminations in the feeding network. This signifi-
cantly affects the behavior of the coupling slots used in this network, with
a very large variation in the coupling coefficient with respect to the stan-
dard case. A procedure to accurately evaluate the effect of such bends is
presented, thus allowing to include them without any loss in the overall de-
sign accuracy. It is based on the method of moments, using a magnetic-field
integral equation expressed in terms of the vector potential, which appears
to be the most efficient way for waveguide problems. The development is
aimed at a very effective implementation, which allows to include it in de-
sign tools for waveguide slot arrays without increasing the total computa-
tional load, and has been assessed through comparison with experimental
results.

Index Terms—Slot array, slot coupler.

I. INTRODUCTION

Through their use dates back to the 1940’s, slot arrays are still quite
popular as high-performance antennas, mainly in the higher part of the
microwave band. Such antennas guarantee a very high efficiency, usu-
ally a very low crosspolar level and a compact realization. Moreover,
their design can be done with a great accuracy.

The basic array (or sub-array) structure consists of a main waveguide
which feeds, through a rotated slot [1], a number of crossed branch
waveguides containing the radiating slots. The coupling slot is a series
one, thus, the feeding guide must be terminated with a short-circuit a
half-wavelength beyond the center of the last coupling slot and, there-
fore, juts out of the radiating waveguides [see Fig. 1(a)]. This causes
an enlargement of the array that cannot be always tolerated. Moreover,
when a slot array is used as a monopulse radar antenna, with the four
quadrants separately fed, there is absolutely no room to accommodate
this long short-circuit section. In all these cases, the best solution is to
bend the waveguide end with a 90� or a 180� curve, as in the trans-
verse section of Fig. 1(b) and (d) (see also Fig. 1(c) for a three-dimen-
sional (3-D) view of the single-bent short-circuit termination). Both an
isolatedwaveguide bend [2] and anisolatedcoupling slot [3] can be
analyzed by known techniques, but those techniques cannot be used in
our case since the slot is not isolated, except inside the curved section.
Therefore, it interacts with the bend through itsnear field. In this paper,
we describe an accurate modeling technique for such anear-fieldinter-
action, fully taking into account also the waveguide wall thickness. This
is obtained with a full-wave method of moment (MoM) procedure. A
set of coupled integral equations are obtained by forcing the continuity
of the tangential magnetic field at both slot apertures and at the input
section of each bent waveguide stub [see Fig. 1(b) and (d)]. The mag-
netic field in the waveguide is expressed through the Fitzgerald vector
potentialFFF computed using its Green function expressed as modal se-
ries. Discretization of the unknown magnetic currents and the Galerkin
procedure then lead to a linear system whose solutions give the mag-
netic currents and the scattering matrix of the junction.
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Fig. 1. (a) Geometry of the coupling slot and standard short-circuit termination
� is the feeding guideTE wavelength. (b) Transverse section of the coupling
slot and of the single-bent short-circuit termination. (c) Perspective view of the
coupling slot and of the single-bent short-circuit termination. (d) Transverse
section of the coupling slot and of the double-bent short-circuit termination.

This strategy is surely able to get a very accurate analysis of the
coupler, but its use must be carefully assessed in an array design pro-
cedure. As a matter of fact, array design procedures usually require a
very large number of slot analysis and, therefore, the computational
weight of a full-wave approach can be too large to prevent its use.
Therefore, an analysis procedure that must be both accurate and ef-
fective for use in array design, is needed to overcome this problem.
To this end, the strategy proposed here have been developed into an
analysis procedure in which all steps have been carefully devised and
implemented to reach the goal of a very effective and accurate charac-
terization of a slot in a bent termination. First, an entire domain basis
function representation for the unknown currents has been used. As
discussed, e.g., in [4], this requires a very small number of unknowns.
The resulting linear system is, therefore, small and can also be well
conditioned. Moreover, the matrix elements, which are no more than
field–current reactions computed over surfaces whose size is compa-
rable with the wavelength, varies very smoothly with the frequency or
the geometrical parameters. This suggests that a polynomial interpola-
tion of the matrix elements [5] will significantly reduce the matrix fill
time by more than an order of magnitude, and the same reduction is
obtained in the total analysis time since the system solution requires a
very small fraction of the total computational time. The interpolation
error involved is negligible even for three-point Lagrange interpolation
used here (for details, see [6]).

II. PROBLEM FORMULATION

According to the equivalence theorem, all apertures in the structures
shown in Fig. 1(b) and (d) can be replaced by the suitable equivalent

0018–9480/00$10.00 © 2000 IEEE
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Fig. 2. Modulus of the coupling coefficientS between: (a) two WR90
guides (A = 22:86 mm,B = 10:16 mm),B = B ; L = 12:80 mm
(measured: experimental data, Simul-1:K = 96:2 cm , three expansion
functions on the slot, 24 modes on� , Simul-2:K = 41:2 cm , five
expansion functions on the slot, 60 modes on� ), (b) two half-height WR90
guides (A = 22:86 mm,B = 5:08 mm),B = B = B ; L = 6:35
mm,L = 6:1 mm (measured: experimental data, Simul:K = 41:2 cm ,
three expansion functions on the slot, 24 modes on� , and� ). In both
cases,� = 33 , slot length= 15:6mm, slot width= 3:0 mm, waveguide wall
thickness= 1:0 mm, andD = A =2.

magnetic currentMiMiMi on�i, MeMeMe on�e, andMciMciMci on�ci. These cur-
rents are unknowns and can be computed by enforcing the continuity
of the tangential magnetic field at the apertures themselves. As a matter
of fact, taking the wall thickness into account requires to use an equiv-
alence theorem on both slot apertures and, therefore, two different un-
knowns and equations are needed. Including an incidentTE10 in the
radiatingguide field as forcing term, we get a set of magnetic-field in-
tegral equations (MFIE’s) whose solution allows to compute all entries
of the scattering matrix. There is a continuity equation for each aper-
ture (�e, �i, �c1, etc.). For the 90� bend, these equations are

HSHSHS =HRGHRGHRG +HincHincHinc; on �e

HFGHFGHFG =HSHSHS ; on �i

HBHBHB =HFGHFGHFG; on �c1 (1)

where
HincHincHinc IncidentTE10.
HFGHFGHFG Magnetic field in the feeding guide region, which depends

onMiMiMi andMMMccc1.
HSHSHS Magnetic field in the slot region, which depends onMiMiMi and

MeMeMe;

HRGHRGHRG Magnetic field in the radiating guide region, which depends
onMeMeMe.

HBHBHB Magnetic field in the waveguide bend region, which de-
pends onMMMccc1.

For the 180� bend, a further equation on�c2 is required. SinceHFGHFGHFG,
HSHSHS ,HRGHRGHRG, andHBHBHB depend upon the unknown currents, (1) can be seen
as a set of integral equations, which can be transformed by the MoM
into a set of linear algebraic ones.

All unknown currents are expressed as a linear combination of suit-
able basis functions. The slot is usually narrow enough to neglect the
longitudinal component of the electric field on it [3]. Therefore, only
the axial-directed magnetic current is used as an unknown.

Since all computational surfaces have a rectangular shape, entire do-
main basis functions have been used everywhere. The slot currents are
expressed as truncated Fourier series with respect to the axial coordi-
nate� (centered on the slot), as

MMM =

N

p=1

ap sin
p�

L
(� +

L

2
) iii� =

N

p=1

apfffp(�) (2)

whereinap are the expansion coefficients, which are different on the in-
ternal and external surfaces of the slot,fffp are the expansion functions,
andL is the slot length. The bent termination can be considered as a
“stub” waveguide. The magnetic current upon its aperture section�c1
is discretized in a way similar to (2), but using as basis functions the
currents corresponding to the well-known [7] tangential electric field
of the stub waveguide modes. The section�c2, if present, is dealt with
in the same way.

To compute the unknown currents, (2) is substituted into (1) and the
resulting MFIE equations are scalar multiplied by the test functions
and integrated over the corresponding aperture� to get a linear system
in the unknown coefficients. Since the basis functions form a com-
plete set on each aperture, they are also the best choice for test func-
tions (Galerkin procedure) because the resulting linear equations are
the most accurate approximation, in the mean square norm, of the inte-
gral equations for a given number of test functions. A few terms in (2)
are needed to compute the response over a quite wide frequency range
around the resonant frequency of the slot so that the resulting linear
system is small. Moreover, since we have chosen orthogonal basis func-
tions, the system is also quite well conditioned.

Now theHHH-field Green function has a Dirac delta singularity at the
source location [7], whatever the magnetic current direction, while its
modal series expansion contains only an axial impulsive term. The
other singular components arehidden into the modal series and this
causes a poorer convergence of the series and, in some cases, even a
divergent behavior. As a consequence, the MoM matrix elements com-
putation is quite difficult, whatever method is used. To simplify the
computation, the waveguide magnetic field can be expressed through
the vector potentialFFF , which has only a mild singularity at the source
location.

SinceHHH = j!"FFF +1=(j!�)rr �FFF , wherein! is the angular fre-
quency and",� are the permittivity and permeability of the medium in
whichHHH is computed, we need both theFFF potential and its divergence.
In a waveguide, these can be computed in terms of the magnetic current
MMM as a modal series (see [8]), in the same way as theH-field Green
function can [7]. Use of those Green functions forFFF andr �FFF , there-
fore, lead to a modal series representation for the matrix term. These
series are truncated, retaining all modes whose cutoff wavenumber is
smaller than a given valueK.

III. EXPERIMENTAL ASSESSMENT ANDRESULTS

In order to assess the procedure described in the previous sections,
we have compared for both structures in Fig. 1(b) and (d) the results of
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Fig. 3. Difference inS between a coupler with a standard short circuit and a
coupler with: (a) a single-bent or a (b) double-bent short circuit forB (= B
varying from0:2B andB. Frequency= 28:4 GHz, slot length= 5:112 mm,
slot width= 0:625 mm, waveguide wall thickness= 1:016 mm, andD =
A =2; L = � =2.

Fig. 4. Variation inS with respect to the values for a slot isolated from the
termination. All data as in Fig. 3(a).

our simulations with some experimental data. Of course, the accuracy
of our procedure depends on the number of expansion functions on
each section and on the truncation level of the modal series. In Fig. 2(a),
two different configurations of these parameters are considered. From
it can be observed thatK = 41:2 cm�1, three expansion functions on
the slot, and 24 modes on�c1 are enough to get an accurate response.

These values will, therefore, be used for all subsequent results. Larger
values are required only for highly accurate design. It is worth noting
that such a few expansion terms are needed not only at the resonance, as
claimed in [3], but over all the wide frequency range considered here.

The experimental comparison presented in Fig. 2(a) (coupler with a
single-bent short-circuit termination) and in Fig. 2(b) (coupler with a
double-bent short-circuit termination) shows that our procedure is in-
deed able to deal accurately with thenear-fieldinteraction between the
slot and bend. Of course, it is also important to quantitatively evaluate
the impact of that near-field interaction. The best way to do this is to
consider the coupling coefficientS31 between the feeding and radiating
guides and to evaluate its percentage variation due to the bend with re-
spect to a straight short circuit spaced�g=2 from the coupling slot [6].
To get a meaningful comparison, theunfoldedlengthLU of the bent
short circuit must be the same as the length of the standard short circuit,
i.e.,�g=2 in our case, and this requires a rule to unfold the termination.
A reasonable assumption, supported by our test, is that the unfolded
length must be evaluated along the center line of the waveguides. This
leads, for the unfolded length, toLU = LS + BF =2 + D � BS=2
andLU = LS1 + LS + BF =2 + D � BS1=2, respectively, for the
90� and 180� bends [the symbols are defined in Fig. 1(b) and (d)]. Any
other value forLU causes a larger difference with respect to the stan-
dard short-circuit termination.

A typical case is shown in Fig. 3(a) for a single bend and in Fig. 3(b)
for a double bend. There, a coupling slot between two WR28 guides
(A = 7:112 mm,B = 3:556 mm), rotated to from an angle� with
respect to the feeding waveguide axis, is considered. The slot length
allows the slot to resonate at the chosen test frequency (28.4 GHz) for
a tilt angle� = 45

�. Since the resonant length of the isolated slot does
not vary very much with the tilt angle for our standard guides [3], we
decided to use the same slot length for all the cases shown.

From the results shown in Fig. 3, it appears that the difference in the
coupling coefficient is significant. Of course, this difference is partly
due to the near-field interaction and partly to the bend itself. In order
to evaluate only the near-field interaction effect, we have computed
the variation of the coupling coefficient with respect to the case when
slot and termination are independent [6]. The difference, for the same
case as Fig. 3(a), is shown in Fig. 4. It appears that this difference can
be as high as 15% and the near-field interaction, therefore, cannot be
neglected. The double-bent termination [as in the case of Fig. 3(b)]
gives almost exactly the same curves.

IV. CONCLUSION

A full wave MoM procedure to take into account the near-field in-
teraction between a series slot and a bent waveguide short-circuit has
been described, which allows to use such bends in waveguide slot ar-
rays without any loss in the design accuracy.

All the procedure steps have been carefully devised to get a very
good accuracy and, at the same time, a very effective implementation.
This allows its use in array design procedure. It is also worth noting that
the samenear-field interaction between an aperture and a 90� wave-
guide curve analyzed here also appears or can be used in other mi-
crowave devices. For instance, a more compact waveguide directional
coupler can be realized using 90� curves centered at the first and last
coupling holes location instead of the standard rounded curves. To an-
alyze such a device, thenear-field interaction must be taken into ac-
count.
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A Varactor-Tuned RF Filter

Andrew R. Brown and Gabriel M. Rebeiz

Abstract—An electronically tunable filter at 1 GHz is presented in this
paper. The filter uses a suspended substrate design and commercially
available varactors for filter tuning. The filter has a 60% tuning range
from 700 MHz to 1.33 GHz with a low insertion loss (better than 3 dB
from 1 to 1.33 GHz). This paper discusses the effects of the varactor
series resistance and the electrical length of the distributed resonator on
the overall resonator quality factor and filter insertion loss. The input
third-order intermodulation product intercept point was measured to be
better than 17 dBm across the entire tuning range.

Index Terms—Frequency control, tunable filters.

I. INTRODUCTION

Low-loss tunable frequency filters are often used as tracking filters
for multiband telecommunication systems, radiometers, and wide-band
radar systems. Typically, tracking filters are mechanically tuned by ad-
justing the cavity dimensions of the resonators or magnetically altering
the resonant frequency of a ferromagnetic YIG element [1], [2]. Neither
of these approaches can easily by miniaturized or produced in large vol-
umes for wireless communication products. The filters must be custom
machined, carefully assembled, tuned, and calibrated. An alternative to
the mechanically tuned and YIG filters is based on solid-state varactor
diodes. Varactor filters have previously been developed using two– to
three-pole filters [3]–[5]. However, the effects of the varactor series re-
sistance and electrical length of the distributed portion of the resonator
have not been investigated.

An electrically tunable capacitively loaded interdigital filter is pre-
sented in this paper. The tuning element is a reverse-biased varactor
diode. The resonators of the tunable filter are shortened interdigital
fingers with varactor diodes at the ends. The coupling is carefully con-
trolled by the geometry of the fingers and the tuning is performed by
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(a)

(b)

Fig. 1. (a) Topology of the varactor loaded interdigital bandpass filter. (b)
Cross section of suspended substrate stripline.

changing the bias on the varactor diodes. Since both the interdigital
fingers and diodes are carefully controlled and fabricated in batch, this
filter can be easily produced in large quantities. The varactor-controlled
tunable filter is based on a suspended substrate stripline technology.
The suspended substrate allows for a very low effective dielectric con-
stant, resulting in very wide low-loss transmission lines.

II. CENTER FREQUENCY OF A VARACTOR-LOADED

TRANSMISSION-LINE RESONATOR

The design of a varactor-loaded interdigital filter is similar to the
capacitively loaded combline filter presented in [1], but is adapted for
the interdigital topology. The interdigital filter is a symmetric filter of
coupled resonators. The first finger at the input and output ports is a
shorted line that acts as an impedance transformer for the filter. This
is the only line with a fixed termination. The interior coupled lines are
shorted at one end and loaded with varactor diodes at the other end
(Fig. 1). To allow for biasing, large capacitors are added (Cbias). When
the bias voltage is changed, the thickness of the depletion region of
the varactor diodes changes. This alters the capacitance of the varactor
tuning the resonant length of fingers. The width and separation of the
interior lines are determined only by the bandwidth of the normalized
filter response function, and is independent of the center frequency. The
center frequency of the filter is determined by the resonant lengths of
the lines, which is tuned by the varactors. The tuning range for the filter
is limited by the fixed lengths of the input and output finger lengths,
internal impedance of the filter, range of capacitance of the varactor
diodes, and electrical length of the fingers.

The electrical length of a single finger� without the capacitive
loading is given by

�(Vbias) = 2�fl
p
�e�=c (1)

0018–9480/00$10.00 © 2000 IEEE
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Fig. 2. Theoretical resonant frequency tuning range for a varactor with a
capacitance range of 0.2–1.0 pF as a function of transmission-line physical
length.

wheref is the frequency,l is the length of the fingers,�e� is the ef-
fective relative dielectric constant (approximately 1.05 for membrane
supported microstrip), andc is the speed of light. If the finger is loaded
by a shunt capacitance, the effective length of the transmission line in-
creases. If the amount of capacitance added increases the overall effec-
tive length to�=2, and the transmission line is shorted at one end, as in
the case of the interdigital filter, then the capacitively loaded transmis-
sion line behaves as a quarter-wave resonator. In order to achieve reso-
nance, the reactance of the transmission line and varactor must cancel
(XVaractor + XT�Line = 0). By using a lossless transmission-line
approximation (XT�Line = Zak tan � whereZak is the intrinsic
impedance of thekth finger), the necessary capacitance is given by

Cvar =
1

Zak2�f0 tan �0
(2)

wheref0 and�0 are the frequency and electrical length of the finger at
resonance. Conversely, the resonant frequency of the varactor-loaded
finger for a given capacitance is

f0(Vbias) �
1

Zak2�Cvar(Vbias) tan �0(Vbias)
(3)

wheref0,Cvar, and�0 are now functions of the bias voltage. Note that
this is a transcendental.

From (3), a larger tuning range is obtained by makingZak small.
An internal impedance of 60
 was chosen. This is a relatively low
impedance line while still maintaining a reasonable conductor width
for loss considerations.

The resonant frequency [see (3)] was solved graphically for the
upper and lower tuned center frequencies as a function of physical
length of the transmission lines assuming a varactor with a capacitance
range of 0.2–1.0 pF (Fig. 2). This is a typical varactor value for an
X-band tunable filter. This can be scaled in frequency by the trans-
mission-line physical length and the capacitance value. According
to Fig. 2, the length of the transmission-line segment should be as
short as possible for the widest tuning range. However, the series
resistance of the varactor has a stronger influence on the quality factor
of the resonators, as the transmission-line section decreases where
the quality factor is taken as the combination of the transmission-line
segment and varactor.

Fig. 3. Model of a varactor-loaded transmission-line resonator.

Fig. 4. Overall resonator quality factor as a function of transmission-line
length for a transmission-line quality factor of 1030.

TABLE I
RF TUNABLE FILTER FINGER DIMENSIONS

III. QUALITY FACTOR OF AVARACTOR-LOADED TRANSMISSIONLINE

The quality factor of the resonant fingers is a function of the intrinsic
impedance, line length, attenuation of the line, and series resistance of
the varactor. The resonator can be viewed as a short transmission line
in parallel with a varactor to ground, as in Fig. 3, whereRs is the series
resistance of the varactor and� is the loss of the transmission line. It
is necessary to define two different definitions for the quality factor;
namely, the transmission-line quality factor and the overall resonator
quality factor. The transmission-line quality factor is the unloadedQ
of the transmission line without the varactor loading. The overall res-
onator quality factor is the unloadedQ of the transmission line with
the varactor loading. The input impedance of the shorted transmission
line alone is

Zline = Zint

tanh(�l) + j tan(�l)

1 + j tan(�l) tanh(�l)
: (4)
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Fig. 5. RF varactor tuned bandpass filter.

The input impedance of the varactor alone including the series resis-
tance is

Zcap =
1

j!C
+Rs (5)

= � j
!0

!
Zint tan � +Rs: (6)

The total impedance can be found by taking the parallel combination.
The 3-dB bandwidth can be determined by finding the bandwidth
where the magnitude of the impedance falls by a factor of

p
2 giving

the reciprocal of the overall resonator unloaded quality factor. As
the filter tunes, the electrical length of the transmission line changes
altering the overall resonator quality factor. Fig. 4 shows the resulting
overall resonator quality factor as a function of resonator electrical
length and diode series resistance. As the transmission line becomes
electrically short, the transmission-line quality factor has a decreasing
effect. For wavelengths where the line is less than0:1�, the trans-
mission-line quality factor is not very significant, and the varactor
series resistance controls the overall resonator quality factor. As the
transmission-line portion becomes electrically longer, the overall
resonator quality factor is strongly dependent on the transmission-line
quality factor, showing the advantages of the suspended substrate
transmission lines. However, this comes at the expense of the tuning
range. Based on (3), the tuning range for a given capacitance ratio
decreases considerably with increasing electrical length.

IV. RF TUNABLE FILTER

The RF tunable filter was fabricated on 127-�m RT/Duroid1 with a
dielectric constant of 2.2. The circuit was suspended over an aluminum
cavity. The depth of the cavity was 4 mm with an attached 4-mm top
shielding cover. The finger length is0:13� at 1.25 GHz (3.1 cm) with
an internal impedance of 60
 and a filter bandwidth of 16% with a
ripple of 0.2 dB. The linewidths and gaps are summarized in the Table I
wherewk is the width of thekth filter finger andgk�1; k is the gap
between fingersk � 1 andk. The transmission-line quality factor for
this structure is 1030 at 1.25 GHz.

1Rogers Corporation, Rogers, CT.

(a)

(b)

Fig. 6. RF tunable filter, (a) measured insertion loss, and (b) return loss for
various bias levels.

Fig. 7. Measured center frequency and relative bandwidth as a function of bias
voltage.

The varactors are BB811 RF Variable Capacitance Diodes2 with a
series resistance of about 1
 and a junction capacitance from 1 to 8.8
pF over a 30-V bias range.3 The varactors are biased equally with a
75-pF capacitor from the bias line to ground to provide an RF short for

2Phillips Semiconductor, Sunnyville, CA.
3Device parameters based on manufacturer supplied data.
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TABLE II
INTERMODULATION MEASUREMENTS

the varactor and an open circuit for the bias (see Fig. 1). The predicted
tuning range is from 660 MHz to 1.6 GHz (83% tuning range) with all
varactors biased equally in parallel (Fig. 5).

The measured response of the filter showed a 60% tuning bandwidth
from 700 MHz to 1.33 GHz (Fig. 6). The measured center frequency
and bandwidth as a function of varactor bias voltage are shown in Fig. 7.
The filter input matching is good with a return loss of better than�10
dB over the tuning range up to 1.3 GHz. At center frequencies below
1 GHz, the bandwidth is reduced and the insertion loss increases. The
reduced bandwidth is due to the bandwidth of the impedance inverter
network of coupled lines at the input and output of the filter. The in-
crease in insertion loss at the low end of the tuning range is due to the
decrease in overall resonator quality factor as the electrical length of
the transmission-line portion becomes shorter.

The theoretical insertion loss, assuming a 16% bandwidth 0.2-dB-
ripple Chebyshev four-pole filter, was calculated based on the mod-
eled overall resonator quality factor with a varactor series resistance of
0.5 and 1
 from Fig. 4, and is plotted in Fig. 6(a). There is a good
agreement with measured and calculated insertion loss. For center fre-
quencies above 1 GHz, the insertion loss is less than 3 dB in the pass-
band. The series resistance of the varactor diode is the major limiting
factor in the filter insertion loss. Still, the tuned RF filter performance
is comparable to state-of-the-art YIG and mechanically tuned filters at
only a fraction of the material and assembly cost.

Finally, the filter was measured under large-signal tests. With a
single large-signal tone, the input power was increased to 20 dBm
without reaching a 1-dB compression point.

The third-order intermodulation intercept point was measured under
different bias conditions. In all cases, both signals and their associ-
ated third-order mixing products were within the passband of the filter
(two fundamentals separated by 2 MHz). This is a worst-case situa-
tion in that the filter has no effect on attenuating mixing products due
to the nonlinearities of the varactors. The results of this are shown in
Table II. In all cases, the input third-order intermodulation product in-
tercept point (IIP3) was better than 17 dBm.
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A Broad-Band Sleeve Monopole Integrated into
Parallel-Plate Waveguide

Zhi Ning Chen, Kazuhiro Hirasawa, and Ke Wu

Abstract—In this paper, a sleeve monopole is proposed and studied theo-
retically and experimentally. It consists of a resonant loading and a conven-
tional sleeve monopole vertically integrated in a parallel-plate waveguide.
A modal expansion technique is used to model the induced currents over
the monopole surface, and fields in the region of interest are character-
ized by cylindrical harmonic functions. A Fourier least-square integration
is applied to find the expansion coefficients by the boundary and continuity
conditions. A 5.8-GHz industrial-, scientific-, and medical-band example is
selected for the studies. It is found that the new monopole exhibits a large
bandwidth exceeding 37% for 10-dB return loss. Calculated results are
validated by the measurements.

Index Terms—Least-square integration, monopole, parallel-plate wave-
guide.

I. INTRODUCTION

Geometrical simplicity, modal purity, and cost effectiveness make
the coaxially fed monopoles a unique choice for a large variety of
microwave devices and communication antennas. Generally, a simple
coaxially fed monopole may be used as either an adapter or a feeder to a
waveguide, and this engineering subject has been studied for a number
of years [1]–[7]. If used as an adapter, the coaxially fed monopole real-
izes the transition from a coaxial line to other transmission-line systems
such as rectangular or parallel-plate waveguides [5]–[7]. As a feeder,
the monopole is useful for an antenna feeding network or a radial signal
dividing/combining network of power amplifiers, e.g., in the design of
direct broadcast satellite (DBS) planar receiving antennas [8], [9]. To
broaden the limited impedance bandwidth of a monopole, some loading
techniques were proposed, such as dielectric coatings [10], [11] and
disc-ended or top-hat structures [2], [6], [7].

In this paper, a monopole with double sleeves and dielectric loading
is presented for broad-band applications, integrated into a parallel-plate
waveguide. A modal expansion technique has been developed to in-
vestigate the proposed monopole [11], [12]. To begin with, the region
of interest between the parallel plates is divided into four subregions,
where electric- and magnetic-field components are formulated subject
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Fig. 1. Geometrical description and physical notation of the proposed
double-sleeve monopole housed in a parallel-plate waveguide.

to the boundary conditions. Applying the boundary and continuity con-
ditions with the field equations determines the expansion coefficients
via a Fourier least-square integration. Subsequently, the induced cur-
rents on the monopole can be calculated. This analysis is validated by
comparing results reported in [13] as well as our own experiments. In-
dustrial, scientific, and medical (ISM) examples operating at 5.8 GHz
are then selected to show the broadened impedance characteristics of
the proposed monopole in the parallel-plate waveguide.

II. THEORY AND FORMULATION

The geometry of the proposed sleeve monopole is described in
a cylindrical coordinate system(�; �; z), as shown in Fig. 1. The
spacing of the parallel plates ish and the length of the inner cylindrical
conductor isl. The radii of the probe and dielectric jacket are denoted
by r anda, respectively.b andw stand for the lengths of two metallic
sleeves whilet is the thickness of the two sleeves. The whole structure
is partitioned into four subregions marked by dielectric constants"n
with n = 1; 2; 3; 4 ("n = "rn"0). A small source region having its
heightd is designated with a uniform electric field, and its constant
voltage source isV0. Similar to the analytical procedure in [12], a
modal expansion technique is used to formulate and investigate char-
acteristics of the structure. For the sake of concision, this procedure
is not described here.

Electric and magnetic fields in each subregion can be formulated in
terms of an electric-type (TMz ) hertz potential [14]. Finite-series or
truncated modal field expansions are developed as follows by consid-
ering the boundary conditions. For example, inside subregion II (di-
electric jacket) withr � � � a and0 � z � h, the fields are given by
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The termsa1n andb1n are unknown field expansion coefficients. In the
above equations,Jm(�) andNm(�) are, respectively, Bessel functions
of the first and second kinds, having the orderm = 0 or 1.

To determine the coefficients of field expansions, the remaining
boundary and continuity conditions in connection with the tangential
fields should be fulfilled. Usual field Fourier matching is applied
by integration over the boundaries and interfaces of the regions. For
example, at the interface of subregions I and II, the perfect electrically
conducting (PEC) condition for electric fields (on the surface of the
monopole) and the continuity condition for both electric and magnetic
fields (on the remaining aperture) should be satisfied. As for the
source region, a uniform field was assumed, i.e.,EII

z (�; z) = �V0=d
for 0 � z � d. Similarly, by enforcing the conditions, a set of linear
equations can be set up. Combining the linear equations then leads to
a complex matrix system (2) of orderNt = 2�N2 + 2�N3, which
is readily solved for the expansion coefficients in subregions II and III
a2n, b2n, a3n, andb3n
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Once the coefficientsa2n andb2n become known, it can be straight-
forward to obtain the induced currents on the monopole through the
relationshipI(z) = 2�aJ = 2�aHII

� (a; z), such that
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In addition, the input impedance can easily be evaluated by usingZin =
V0=I(0) from (3).

III. D ESIGN, RESULTS, AND DISCUSSION

Some features of the proposed sleeve monopole structure will be
shown with an engineering design for 5.8-GHz ISM-band applications.
A monopole structure is first modeled numerically and optimized
such that a satisfactory impedance match can be obtained at the
operating frequency with a possible broad bandwidth. Subsequently,
the monopole is designed and fabricated in the consideration of an
SMA connector with a long thin dielectric (Teflon) jacket and also a
metallic tape sticking on a support (dielectric jacket). A 50-
 coaxial
line is used as a feeder. Two electrically large circular conducting
plates are used to form an approximate radial parallel-plate waveguide.
The lower sleeve is electrically connected to the bottom plate, while
the other is attached to the upper plate. The dielectric jacket is short
circuited at its ends by the plates. In our design, a large impedance
bandwidth with the possible best match characteristics at 5.8 GHz is
expected. With the SMA connector, the design freedom remains in
changing the size of the sleeves and the spacing between the parallel
plates. In fact, this consideration also simplifies the design procedure.
Optimized dimensions of the structure are listed in Table I.

With reference to the criteria suggested in [12] and [13], we carry
out numerical experiments to assess the accuracy of the model and
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TABLE I
OPTIMIZED PARAMETERS AND GEOMETRICAL DIMENSIONS OF THESELECTED EXAMPLE FOR OUR THEORETICAL AND EXPERIMENTAL STUDIES

(a)

(b)

Fig. 2. Comparison of calculated and measured results of our 5.8-GHz
monopole example (see Table I and Fig. 1 for its dimensions and physical
description). (a) Input impedance. (b) Return lossS .

also to determine the number of modal expansions. As a result of the
tradeoff between modeling accuracy and computational time, it is rec-
ommended to use a limited number of modes in the modeling, although
results are, in principle, more accurate with more modes. Thus, the
number of expansion termsN = 60 are selected in our calculations.
The central processing unit (CPU) time at each frequency point is less
than 6 s on a PC Pentium II (400 MHz).

To validate our model, the input impedances of a simple monopole
(w! 0, b! 0, "r2 = 1:0, andh = 2:1�o) and a conventional sleeve
antenna (w ! 0, "r2 = 1:0, b = 0:25�o, andh = 2:1�o) are calcu-
lated and compared with the experimental and modeling results given
in [12] and [13], respectively. They agree very well for both of the spe-
cial cases. Further, the proposed sleeve monopole at 5.8 GHz is tested.
The calculated and measured input impedances and the return lossS11
are shown in Fig. 2. A good agreement is observed over 4–8 GHz, con-
sidering some mechanical tolerance. From Fig. 2(a), it is seen that a
resonant loading causes one parasitic resonance. Large reactance be-
tween two modes is effectively cancelled out when the parasitic mode
moves close to the first mode. Therefore, a 37% impedance bandwidth
for S11 < �10 dB has been achieved by exciting two adjacent modes,
as shown in Fig. 2(b).

(a)

(b)

Fig. 3. Calculated frequency responses of the proposed monopole for different
lengthw of the second sleeve (refer to Table I for other dimensions) with: (a)
input impedance and (b) return lossS .

As the second sleeve is the key ingredient in this new proposal, Fig. 3
shows calculated input impedance versus frequency in the presence of
the second sleeve with a different lengthw, where other dimensions
are fixed. The results show that the input resistance in the operating
range increases significantly as the lengthw is extended. The input
impedance in Fig. 3 demonstrates that the first resonance stems from
the conventional sleeve monopole and the second from the parasitic
sleeve. A modeling for the monopole without the second sleeve indi-
cates that the second resonance gradually disappears as the lengthw

tends to be zero. The calculatedS11 shows the significant influence of
the lengthw on the impedance match.

Fig. 4 displays frequency responses of the input impedance andS11
as a function of the spacingq. It can be seen that increasing the spacing
q pushes the second resonant frequency up; however, the first frequency
remains almost intact. The same reason as that for the lengthw is ap-
plied in this case. On the other hand, increasing the spacingq means
a reduction in the ratio of the radius to the height of the dielectric res-
onator, which usually leads to the increases in resonant frequency. This
suggests that the size of the jacket as well as the lengthw largely affect
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(a)

(b)

Fig. 4. Calculated frequency responses of the proposed monopole for different
spacingq (refer to Table I for other dimensions) with: (a) input impedance and
(b) return lossS .

characteristics of the second sleeve, which can be considered as part of
the dielectric jacket.

Besides the widthw and the spacingq, the parametrical studies on
other parameters including the radiusr of the sleeve, the sleeve length
b and thicknesst, and dielectric constant"r2 are also conducted. The
investigations show that the impedance characteristics of the proposed
monopole are sensitive to the geometric dimensions and electrical pa-
rameters.

IV. CONCLUSION

A novel sleeve monopole integrated into a parallel-plate waveguide
has been presented experimentally and investigated theoretically by a

modal expansion modeling technique. The analysis indicates that this
novel structure features a remarkably broad impedance bandwidth. A
design example of 5.8-GHz ISM-band applications is used to show-
case the underlying features of the proposed monopole. Our paper in-
dicates that the performance of the monopole can effectively be im-
proved by introducing the second sleeve that operates as a parasitic
resonant loading. The parasitic resonance due to the second sleeve re-
sults in better matching condition and broader impedance bandwidth.
Owing to its attractive technical merits, namely, simple geometry, low
cost, and good characteristics, this structure shows promising applica-
tions in the design of broad-band adapters and feeders for microwave
circuits and antennas.
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