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Three-Dimensional Optical Pulse Simulation
Using the FDTD Method

Dennis Sullivan Senior Member, IEEEJun Liu, and Mark Kuzyk

Abstract—As the use of optical waveguides expands, it would The FDTD method has been shown to be capable of sim-
be desirable to have an explicit three-dimensional simulation ylating dispersive and nonlinear EM phenomena of the type
method to analyze characteristics and develop new devices. Onefound in optical fibers [4], [5]. Such simulations have been car-
such method is the finite-difference time-domain (FDTD) method. . T . . .
The FDTD method requires a relatively high sampling density per rled_out_by several rgsearch groups, but three-dimensional sim-
wavelength, making simulation over distances of several wave- Ulation is problematic because of the computer resources re-
lengths difficult. Several techniques are described to make such a quired. The FDTD method requires from 10 to 30 points per
simulation possible with limited computer resources. Among them wavelength. Wavelengths in optical fibers tend to be on the order
is a moving problem space, which holds the pulse in the middle and of a micrometer. thus. simulation of more than a few microme-
moves the background medium past the pulse. Simultaneously, o . . .

Fourier and wavelet analyses are used to characterize the pulse. ters be_Come unW|eIc_iy when all three dlmen5|qns arg involved.

In this paper, a different approach to the simulation of op-
tical-fiber propagation is described: the propagating pulse is
held in the middle of the problem space. In effect, the frame
|. INTRODUCTION of reference of the simulation is moving with the propagating

NE OF THE most widely used methods of eIeCtro|_oulse. Propagation over relatively long distances can be simu-

. imulati s the finite-diff lated using a limited amount of computer resources.
time- drgiwgar:r?U?FD('lE'll\jﬂ)) n?g;}%gt'([)lnl Il?S tst(raengly?rl: el-iels elgerggf Since .the frame of reference is movin'g,_ methods are needed
- - ; i C ) Yo quantify the changes to the pulse as it is propagating. A fast
in its explicit nature: an implementation of the tlme'doma'ulavelet transform is used to record the changes to the shape

A : . NGk the pulse. This reduces the pulse to a small group of param-
than the finite differencing of the spatial and temporal derlV"’é'ters that can be used to resynthesize the pulse at a later time.

tives. However, this explicit nature is a drawback in simulatin owever, another method is needed to quantify macroscopic pa-

EM phen_omena atthe high frequencies of light. FDTD require meters, such as the speed of the pulse and its attenuation as it
many points per wavelength, and the small wavelengths of i opagates. This is accomplished by a running Fourier trans-

dictate a very dense sampling rate. This becomes particul m operating at the center frequency of the pulse.

d'f_fl'_f]lf'lt n threof dlm_Ens?nsh[Z_], [S]Ib hich EDTD b ection Il of this paper briefly reviews the FDTD method
'S Paper describes techniques by whic can be usg, emphasis on how it handles nonlinear and dispersive ma-

to simulate pulse propagation over relatively large diStanc?ﬁrial. Section Il describes things that are necessary to make

This could be of use in the simulation of numerous d|fferere ree-dimensional simulation a tractable problem. Besides the

optical waveguides or other devices. However, we will focus oving problem space, oblong cells are used to maximize res-

the simulation of nonlinear optical fibers to demonstrate the%?ution in the propagation direction and reduce the number of
methods.

. . . . . .1points in the transverse direction. Furthermore, the symmetry of

Itis expected that computer ar_nulaﬂon can contrlpute signiy gle-mode fibers is exploited to reduce the problem space by
cantly to the development of devices based on nonlinear Opt'8 qe—fourth. Section IV describes the analysis methods and how
fibers primarily for two reasons: 1) there is a greater need f

. X . ey are implemented in the moving problem space. Two exam-
explicit understanding of the nonlinear EM phenomena, pamﬁyes are given that illustrate these methods: one of propagation

ularly the phase information and 2) extremely complex physu:% dispersive media and one of propagation in nonlinear media.

models can be simulated and easily altered. Thisis an enormpug. . on V. we demonstrate the flexibility of the method by

advantage over fabricating experimental models. simulating the transition of a pulse from a linear to a nonlinear
fiber.
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and Finally, substituting this approximation f¢&™)? into (3), E™

can be determined by
D(x,t)=¢, E(xz, t)+ Pr(z, t) + Pnp(x, 1) (1b)

_ DM xV2- (B

E" . (5)
(3) n—132
- 3-(F
OH@ t) 1 o o 10 et 3 (BM)
ot /eoho x Bz, 7). Note that the new value &f(¢), £, is calculated from the new

_ _ , _ value of D(t), D™, and previous values &P (t) andE3(¢), i.e.,
(The above uses normalized units [7].) Starting with two of t n=1y2 and(En—1)3.

individual equations described by the vectors in (1a) and (1c),
the difference equations can be developed as follows: B. Formulation of the Linear Polarizatio#, (t)

DT/2(; 5 k+1/2) The linear polarization of (1b) is

_Ar ‘

Ax -\ /feomo Pr(t) =« / x Pt —71)- E(r)dr. (6)
0

(Hp+1/2, G k12— H (- 1/2, j, k+1/2)

= D7V, 4, k+1/2)+

xV is a second-order Lorentz linear dispersion, usually de-
—H (4, j4+1/2, k+1/2)+H (i, j—1/2, k+1/2)) scribed in the frequency domain as

(2a) (1) Es — €0
= . 7
X = 58 w/on) — (@fwr ) 0
Taking theZ transform of (6) and (7) gives [7], [8
2, 412 0 g (6) and (7) gives [7], [8]
. . AT PL(Z)
= H(i4+1/2, j+1/2, k)4 ———
( /2, 3%1/2, k) Ax - \/eglio = on(l)(z)-E(z)-At
(ERRGL, 12, )= BPRG, 1/2 K) —. yo-At-emor A sin(By - At)-z 7
0 ]_—2-6_‘1’1'At-COS(ﬁL-At)-Z_l Fe—2arAt =2
— BRI /2, 41, k)BT (i41/2, §, K)) CEB(»)
(2b)
where
whereAz is the cell size and\T is the time interval between
iterations. The position vectar has been replaced by the posi- ar =wr - 0L,
tion parameters, j, &, in the FDTD lattice. Br =wr, - 4/1 — &
It is the relationship among the electric field the displace- en— e0)
mentD, and the polarization®, which defines the type of ma- v = M
terial being simulated. Optical fibers often display dispersive V1-67

characteristics necessitating the linear polarization. In Orderlﬁ%fining the new variable
simulate high-intensity laser light, it is necessary to include the

nonlinear polarization. The implementation of complex linear Si(z) = 2Pr(z)

and nonlinear polarizations into FDTD has been described else- B e

\év::frls [7], [8]. Two of the simpler examples will be reVIeWEdand moving to the sampled time domaitjs determined by
n o__ n_ ¢gn—l1

A. Formulation of the Nonlinear Polarization Y =D" =5 (82)

The nonlinear polarization is formulated as an intensity-de-

pendent refractive index, i.e., the Kerr effect L )

T=cl- ST =257 +c3-E" (8b)
Pai(t) = x® E3(t). (3)
where
Start by taking a Taylor series expansionft(¢) around the e
pointt = ¢,_, and evaluating it at the point= ¢, cl =272 - cos(f - At)
d C2 :C—Q(YL-At
3 3 3
EP(tn) = E°(tn-1) + It (E (tnfl)) (tn — tn-1) 3=y - At- e A gin(F - At).

— . 2 . — . 3
=3 E(th—1)  E(tn) — 2 E°(th—1)- ) Combining this with the nonlinear polarization, thefield cal-

Naturally, it will be assumed that the times_; andt,, corre- culation now consists of
spond to times in the FDTD formulation, thus, (4) will be written o Dy X(()g)Z (En1y3 - 52_1

(E")® 223 (E"~1)? (E") — 2. (B"7')%, e+ x§)3 - (En1)?

(9a)
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and z
_ _ Pulse is initiated Once the propagating pulse reaches the
SE =cl- SE L. SE 2 +c3-E". (9b) in the propagating center of the problem space, it is held there.
mode at this end.
Verification of the accuracy of these formulations has been ¢ Y \ ‘ : 4
scribed in [7]-[9]. ‘
5 um
36 cells|

IIl. SIMULATION OF A THREE-DIMENSIONAL OPTICAL FIBER

12.5 um
This section describes the simulation of single-mode polym 90 cells

C . ) : ST N (Cladding = 219 ]
optical fibers [10]. The three-dimensional simulation of an of Amplitude distribution

_____ Lo

tical fiber via the FDTD method has some substantial logi: I‘j’fi‘;:gi‘}ﬂ;ﬁﬁ;“a _____ Lo

tical problems stemming from the fact that light pulses consi /: ————— +——-=—-- \
of very high-frequency EM energy. The high frequency meal  wavelet analysisat >

very small wavelengths. As an example, an Nd : YAG laser pr ~ these intervals 3 pm

duces light with a wavelength of 1.064n. The dielectric con- 130 cells

stant being used is 2.19, thus, the wavelength in the fiber is ac-

; ig. 1. Diagram of the problem space for the FDTD simulation. A propagating
tqa"y 0'72/fbr.n' To accurately CalCUIate. phase shifts over lorfe de pulse is activated on the left-hand side. Fhéield is polarized in the
distances, it is desirable to have 30 points per wavelength [11]girection. Any time the pulse reaches the middle, all fields are shifted back
giving a cell size of 0.024m. A typical single-mode fiber might one cell, having the effect of holding the pulse in the middle of the problem
have a core of 1@m in diameter. Itis not necessary to model théhace. A wavelet analysis is done in the propagation direction at intervals of ten

. . R cells in the transverse direction.
entire cladding, but about;#fm on each side is needed. A Afh

length of fiber results in a volume of 2dm x 24 m x 10 m, . .
which requires a problem space K00 x 1000 x 400 = 400 propagation [11]. We have chosen 30 points per wavelength.

million cells. This would overwhelm even today’s superconﬁowever’ the_shape of the pulse in the tranS\_/erse dlrect|_ons
puters. changes relatively slowly. Therefore, we are using cells which

Sections I1I-A-D discuss what can be done to make the sift’ 0.023:m i_n th? direption of prppagation anq 0.128in the .
ulation of an optical fiber a tractable problem. trgnsyerse direction, i.e., one—s'lxth' as large in Fhe propagauo_n
direction as the transverse. This gives the desired accuracy in
A. Initializing in the Propagation Mode the direction of propagation where the shape is changing rapidly,

L _ , . f()ut minimizes the number of cells in the transverse direction.
When a laser pulse impinges on an optical fiber, it can take

a certain amount of time for the pulse to settle into one @ yse of Twofold Symmetry of the Transverse Field

more of the propagating modes of the fiber. This may only . _ . . .

be a centimeter, but we cannot afford to model such a IengthT_he optical fibers we are 5|ml_JIat|ng use smgle-_mode propa-
while waiting to establish the propagation mode. Therefore,glfit'o_n [13]. The_four quadrants_ in the transverse field are sym-
is necessary that the incident wave be a propagating mode. Rric ":_lbOUt their axes [12]. Th's symmetry can be, explqlted .by
is done by determining the relative amplitude distribution (ﬁlrg'ulatlng O?I)rgone qu:adrant in the FdD?I'DhS|muIat|on.. F'gl' 1_'3
the E-field at the incident plane. In single-mode propagation & |agramho the pro d?m sparl]ce (l;-ST |n_t e FDTD sflrgulgggn.
a step-indexed fiber, the amplitude profile of the predominam1e core has a m radius with a dielectric constant of 2.

electric field may be written as the Gaussian function [12] Versus 2.19 in_ th_e cladding. Notice that 7.&h (_)f clad_ding is
simulated, which is adequate for the pulse to die outin the trans-

b= e/ (10) Vverse direction. It is important that the pulse die out completely

to avoid “waveguiding” on the edge of the problem space.
wherer is the distance from the middle of the fiber anglis the

“spot size” or radius of the fundamental mode. The spot sizeldls Moving Problem Space

calculated from As the pulse is propagating down the fiber, the mean position
wo = (0.65+ 1.619 - V=3/2 {2879 . V5.4 is being calculated on the axis in the center of the core

J g - B2 )

whereq is the radius of the core of the fiber ahdis the nor- Position = &4=L (11)
malized frequency, which is calculated from Erotal
I where

V=—a (ccore — ¢ ing)-
b\ ( core claddmg) j max

The free-space wavelength of the lightisande.... and Erotal = Z EQ(])'
Ecladding are the dielectric constants of the core and cladding. J=1
(This is recognizable as the “expectation of the position” from
B. Oblong Cells quantum mechanics.) When the value Rbsition reaches
To minimize the effects of dispersion, it is desirable to havene-half the length of the buffer, the program stops and moves
as many points per wavelength as possible in the directionefery £- and H-field values back one cell in the propagating
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Wavelet analysis takes place
every .5 um. The parameters

5 um are stored in a file.
WAVELET DOMAIN -

1.2+ Propagating I I | | | | | I
time domain | | I I |
1 pulse I I I
0.8~ 24 \
| AR sec | |
T o6 -"sgt\t\‘}%\\\\\ | TIME_ DOMAIN |
S 044 SN Y S
&5 Iﬁﬁﬁﬁﬁﬁilﬁﬁii::::[ﬁfﬁl \I:Iﬁ::,::ﬁ:cbﬁé:::ii:::
| PiSpagatin |
FREQUENCY DOMAIN L

Tiih

Fig.3. Time-domain problem space is assumed to be moving along afiber. The

(@) discrete Fourier transform is being calculated and mapped to another domain. At
the same time, wavelet analysis is done at/n®intervals and the parameters
stored.

scopic properties of amplitude and phase and a wavelet decom-

1.2+ Propagating position to record the shape of the pulse in the transverse and
14 pulse propagating directions.

0.8 15 556 Fourier Transform: While the time-domain pulse is being
0.6 D simulated, the Fourier transform of the pulse throughout the
3 LN . .
£ 044 ::tltttll\\t\ttl\‘i\\ problem space is being calculated at the center frequency of
= R
& 02- N

282 THz. This is done through a “running Fourier transform,”
which allows the Fourier transform to be calculated while the
time-domain program is running [14]. However, the results of
this Fourier transform are mapped to a unique position in the
propagating direction that allows for the moving problem space
(Fig. 3). In this manner, the amplitude and phase of the propa-
gating pulse can be calculated over distances much larger than
(b) the section of fiber being simulated.
Fig. 2. Time-domain propagating pulse. The pulse is a cosine function in aFig. 4(2) shows the resulting Fourier amplitude of the fiber
Gaussian envelope of 10fs. Itis initiated on the left-hand side (a) and propagated=ig. 1 from a simulation carried out over a length of /1.
until it reached the middle of the problem space (b). The amplitude is displayed for tHEZ-plane, theZ-direction
being the direction of propagation; ttefield is polarized in the
direction' The Simu'ation is Continued unﬂosition again X'direction. NOtice that the pI’Ofi|e haS retained the GaUSSian
reaches the halfway point, and the process is repeated. This $f2&pe, indicating that it has maintained a propagating mode.
the effect of holding the pulse in the middle of the problerhiid. 4(b) displays the phase along the center axis in the direc-
space. tion of propagation. (A two-dimensional display of the phase is
F|g 2 shows a simulation of a pu|se propagating in tH@ﬁlCUlt to interpret.) Flg 4(b) is actually the phase difference
problem space of Fig. 1. It uses the symmetries described abb@éveen the phase of the propagating pulse, and the phase of a
and the oblong cells. Fig. 2(a) shows the pulse after 7 fs.Ptane wave propagating in a medium of cladding. (This is being
was initiated in the propagating mode from the left-hand sidelculated by a one-dimensional FDTD simulation that takes
The pulse is a cosine function at 282 THz inside a GaussiBl&ce simultaneously.) The linearly decreasing phase if Fig. 4(b)
envelope of 10 fs. Each time step is .038 fs. After 15 fs [séBeans that the pulse propagating in the core is lagging behind
Fig. 2(b)], it has reached the center of the problem space dfg plane-wave pulse in the cladding, which is to be expected.
will remain in this position relative to the total problem space. A quantity of interest is the amount of phase shift that is in-
However, it may substantially change in amplitude and shagiced in a nonlinear material compared to the linear [2], [13].
as it propagates along the fiber. The simulation is repeated for the same fiber with a nonlin-
earity of x® = 10~7. The Fourier amplitude profile for the
nonlinear simulation is indistinguishable from Fig. 4(a). How-
ever, the phase down the center axis of the pulse is different for
Even though the pulse is being held in the middle of thide nonlinear case (Fig. 5). The phase difference between non-
problem space, its characteristics are being analyzed to detierear and linear increases steadily with distance, as it should.
mine what changes are taking place as it propagates. This afaler this short distance of 10m, there is a phase difference
ysis is in two parts: a Fourier transform to determine the macrof0.00012. Researchers doing interferometric experiments are

IV. ANALYSIS OF THE PULSE
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) // ///////////////// ////////////////////////////////////////////// 3—0-6— P’\Taslg dlffeielpce
1+ /////////////////////// ///////////////////////// ////////////////////////// “ g-o8 (Nonlinear - linear)
ME WM%%W%WW I ]
£ 06 Yl /////////////////////////////////////// /////////////// ////, “/ “‘ : o 2 4 6 8 10 12 14 16 18 =20
% //////////////////////////////////////////////////// ////////////////////////////////////// /// " ", Propagation direction (um)
£0.4- //////////////////////////// ///////// //////////////// ///"/' " '
£ , %W///I//WWW%/// /// /////// /// NO"“‘,‘:“’ IFig. 5.f bPhafse difference between a nonlinear fiber with = 10~7 and the
o2+ W%%W%/ / s 0 inear fiber of Fig. 4.

um

Propagation direction (um)

@ 12 - Wavelet synthesized
: " pulse

15 fsec

Ex (V/im)
(=]
S
1

Phase shift

-6 0~
. 1 1 : ) . s : 1
0 1 2 3 4 5 6 7 8 9 10 -0.2
Propagation direction (um) I e
=04 T
(b)

Fig. 4. Fourier analysis of a pulse which has propagatedi0OThe amplitude
(a) is a two-dimensional plot in tHE Z-plane. The solid Gaussian shape of the o
amplitude indicates that the pulse remained in the propagating mode. The pha.. Propagation direction {um)

(b) is only displayed along the center propagation axis. The phase is actually the

difference between the phase of the propagating pulse in the fiber and the pHa8e6. Wavelet synthesis of the pulse in Fig. 2.
of a plane wave propagating in cladding material.

The wavelet analysis is done with a fifth-order fast wavelet
interested in the distance it takes to obtain a phase shift 6f 18@ansform. The filters are a biorthogonal 9/7 pair [15]. The 130

Based on the results of Fig. 5, it would require a distance of cells in the direction of propagation can be represented by only
16 parameters after analysis.
20 um . The analysis is done on a two-dimensional cut of the prop-
0.00012 X 1807 =30m. (12) agating pulse in th& Z-plane, as shown in Fig. 1. It is not
necessary to do three-dimensional analysis because of the sym-
In a typical interferometric experiment, like those with a Sagnametry in the other transverse direction. The wavelet analysis is
interferometer [13], a pulse is sent in two different directiondone in the propagating direction only at intervals of ten cells
through a section of nonlinear optical fiber. In one directiornn the transverse direction. The data is stored as the analysis
the pulse has a large enough amplitude to induce the nonligsimade, and then the pulse can be synthesized later. Synthesis
earity; in the other direction, it does not. At the end, the puls@s only done in the propagation direction, with simple aver-
are recombined. The larger pulse sees a different index of refraging in the transverse direction. Fig. 6 was synthesized from
tion caused by the nonlinearity and, therefore, travels at a difie analysis of the pulse in Fig. 2. However, the pulse in Fig. 2
ferent speed. If enough phase shift between the two is inducesfjuired90 x 130 = 11700 values. The synthesized pulse re-
this results in destructive interference, and the pulse propagajaged9 x 16 = 144 parameters.
no further. Therefore, the change in phase between linear ané simulation of a fiber similar to those described above was
nonlinear is the crucial parameter. Equation (12) agrees qualitaade, except that the second-order Lorentz dispersion described
tively with the experimental results of Garveyal.[13]. in Section Il was added. The characteristics wereé = 0.05,
Wavelet Analysis:As the simulation is progressing, awy = 140 THz, andé = 0.000025. Fig. 7 shows the pulse at

wavelet analysis of the propagating pulse takes place evegrious times during the propagation as synthesized from the
0.5 um (Fig. 1). The wavelet analysis allows the shape to heavelet parameters. The dispersion has resulted in substantial
stored with a minimum number of variables, which meardistortion of the pulse as it propagates. This is not informa-
relatively long distances can be simulated without using excd®n that would be available from Fourier analysis. In fact, the
sive storage. The ability to analyze the shape of the pulseFsurier amplitude is almost indistinguishable from Fig. 4(a).
important because Fourier analysis alone does not necessarhis type of change is significant when propagation over long
document distortions that the pulse may have undergone. distances is desirable.
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necessitates an absorbing boundary condition to keep the scat-
tered wave from being reflected back into the problem space.
This is accomplished by a perfectly matched layer (PML) [16],
which is implemented in the first five cells in the propagation di-
rection, but which is only activated after the propagating wave
has completely passed. (Fig. 8). If the scattering were more sub-
stantial, it would also have to be activated on the sides, but this
is probably not necessary for the present problem.

This new nonlinearity does not substantially affect the Fourier
amplitude or the time-domain pulse shape. However, as we saw
in the previous section, the nonlinearity does affect the phase.
Fig. 9 shows the results. At/om, the rate of phase shift almost
doubles. Obviously, the same technique could be used to change
the dielectric constant, to add a linear polarization, or even to
change the size of the core.

Fig. 7. Wavelet synthesis of the propagating pulse at various points along a

dispersive fiber.

TIME DOMAIN

Propagating pulse

Cladding

PML

VI. SUMMARY

In this paper, we have described techniques for a true
three-dimensional simulation of an optical fiber using the
FDTD method. This was accomplished partly by exploiting the
symmetry of the single-mode optical fiber and by using oblong
cells to obtain high resolution in the propagating direction.
However, most significant was the use of a moving problem
space, which limited the size of the actual time-domain calcu-
lation, but could simulate a pulse over relatively long distances.
Fourier and wavelet analysis were used to calculate important

Fig. 8. Time-domain problem space is assumed to be moving along a fibeqgsrameters and characterize the pulse shape.

before. After the pulse has propagated past the first five cells, a PML is activated..l.
A nonlinear core is moved into the problem space after the pulse has traveled

5pm.

-2

Linear core
~4|

-BF

Phase shift {(deg.)

-8l

_10 1 ) . . . | . 1 .
0 4 5 6 7 8 9

Propagation direction (um)

10

he programs described in Sections IV and V required 13.4
megawords of core memory in a Cray T90 supercomputer.
The simulation of a 2Q:m section of fiber requires 400
central processing unit (CPU) s. Simulations like this require
state-of-the-art computer resources, but not extraordinary
resources. They could easily be run on a high-end work station.

Although this paper focused on the simulation of optical
fibers, some or all of these techniques could be used to simulate
a pulse propagating in any electrically long object such as a
dielectric waveguide.
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