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Three-Dimensional Optical Pulse Simulation
Using the FDTD Method
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Abstract—As the use of optical waveguides expands, it would
be desirable to have an explicit three-dimensional simulation
method to analyze characteristics and develop new devices. One
such method is the finite-difference time-domain (FDTD) method.
The FDTD method requires a relatively high sampling density per
wavelength, making simulation over distances of several wave-
lengths difficult. Several techniques are described to make such a
simulation possible with limited computer resources. Among them
is a moving problem space, which holds the pulse in the middle and
moves the background medium past the pulse. Simultaneously,
Fourier and wavelet analyses are used to characterize the pulse.

Index Terms—Nonlinear, optical fiber, simulation.

I. INTRODUCTION

ONE OF THE most widely used methods of electro-
magnetic (EM) simulation is the finite-difference

time-domain (FDTD) method [1]. Its strength lies largely
in its explicit nature: an implementation of the time-domain
Maxwell’s equations, which makes no approximations other
than the finite differencing of the spatial and temporal deriva-
tives. However, this explicit nature is a drawback in simulating
EM phenomena at the high frequencies of light. FDTD requires
many points per wavelength, and the small wavelengths of light
dictate a very dense sampling rate. This becomes particularly
difficult in three dimensions [2], [3].

This paper describes techniques by which FDTD can be used
to simulate pulse propagation over relatively large distances.
This could be of use in the simulation of numerous different
optical waveguides or other devices. However, we will focus on
the simulation of nonlinear optical fibers to demonstrate these
methods.

It is expected that computer simulation can contribute signifi-
cantly to the development of devices based on nonlinear optical
fibers primarily for two reasons: 1) there is a greater need for
explicit understanding of the nonlinear EM phenomena, partic-
ularly the phase information and 2) extremely complex physical
models can be simulated and easily altered. This is an enormous
advantage over fabricating experimental models.
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The FDTD method has been shown to be capable of sim-
ulating dispersive and nonlinear EM phenomena of the type
found in optical fibers [4], [5]. Such simulations have been car-
ried out by several research groups, but three-dimensional sim-
ulation is problematic because of the computer resources re-
quired. The FDTD method requires from 10 to 30 points per
wavelength. Wavelengths in optical fibers tend to be on the order
of a micrometer, thus, simulation of more than a few microme-
ters become unwieldy when all three dimensions are involved.

In this paper, a different approach to the simulation of op-
tical-fiber propagation is described: the propagating pulse is
held in the middle of the problem space. In effect, the frame
of reference of the simulation is moving with the propagating
pulse. Propagation over relatively long distances can be simu-
lated using a limited amount of computer resources.

Since the frame of reference is moving, methods are needed
to quantify the changes to the pulse as it is propagating. A fast
wavelet transform is used to record the changes to the shape
of the pulse. This reduces the pulse to a small group of param-
eters that can be used to resynthesize the pulse at a later time.
However, another method is needed to quantify macroscopic pa-
rameters, such as the speed of the pulse and its attenuation as it
propagates. This is accomplished by a running Fourier trans-
form operating at the center frequency of the pulse.

Section II of this paper briefly reviews the FDTD method
with emphasis on how it handles nonlinear and dispersive ma-
terial. Section III describes things that are necessary to make
three-dimensional simulation a tractable problem. Besides the
moving problem space, oblong cells are used to maximize res-
olution in the propagation direction and reduce the number of
points in the transverse direction. Furthermore, the symmetry of
single-mode fibers is exploited to reduce the problem space by
one-fourth. Section IV describes the analysis methods and how
they are implemented in the moving problem space. Two exam-
ples are given that illustrate these methods: one of propagation
in dispersive media and one of propagation in nonlinear media.
In Section V, we demonstrate the flexibility of the method by
simulating the transition of a pulse from a linear to a nonlinear
fiber.

II. FDTD METHOD

The FDTD method implements the time-domain Maxwell’s
equations [6]

(1a)
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and

(1b)

(1c)

(The above uses normalized units [7].) Starting with two of the
individual equations described by the vectors in (1a) and (1c),
the difference equations can be developed as follows:

(2a)

(2b)

where is the cell size and is the time interval between
iterations. The position vectorhas been replaced by the posi-
tion parameters in the FDTD lattice.

It is the relationship among the electric field, the displace-
ment , and the polarizations , which defines the type of ma-
terial being simulated. Optical fibers often display dispersive
characteristics necessitating the linear polarization. In order to
simulate high-intensity laser light, it is necessary to include the
nonlinear polarization. The implementation of complex linear
and nonlinear polarizations into FDTD has been described else-
where [7], [8]. Two of the simpler examples will be reviewed
briefly.

A. Formulation of the Nonlinear Polarization

The nonlinear polarization is formulated as an intensity-de-
pendent refractive index, i.e., the Kerr effect

(3)

Start by taking a Taylor series expansion of around the
point and evaluating it at the point

(4)

Naturally, it will be assumed that the times and corre-
spond to times in the FDTD formulation, thus, (4) will be written

Finally, substituting this approximation for into (3),
can be determined by

(5)

Note that the new value of , , is calculated from the new
value of , , and previous values of and , i.e.,

and .

B. Formulation of the Linear Polarization

The linear polarization of (1b) is

(6)

is a second-order Lorentz linear dispersion, usually de-
scribed in the frequency domain as

(7)

Taking the transform of (6) and (7) gives [7], [8]

where

Defining the new variable

and moving to the sampled time domain,is determined by

(8a)

(8b)

where

Combining this with the nonlinear polarization, the-field cal-
culation now consists of

(9a)
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and

(9b)

Verification of the accuracy of these formulations has been de-
scribed in [7]–[9].

III. SIMULATION OF A THREE-DIMENSIONAL OPTICAL FIBER

This section describes the simulation of single-mode polymer
optical fibers [10]. The three-dimensional simulation of an op-
tical fiber via the FDTD method has some substantial logis-
tical problems stemming from the fact that light pulses consist
of very high-frequency EM energy. The high frequency means
very small wavelengths. As an example, an Nd : YAG laser pro-
duces light with a wavelength of 1.064m. The dielectric con-
stant being used is 2.19, thus, the wavelength in the fiber is ac-
tually 0.72 m. To accurately calculate phase shifts over long
distances, it is desirable to have 30 points per wavelength [11],
giving a cell size of 0.024m. A typical single-mode fiber might
have a core of 10m in diameter. It is not necessary to model the
entire cladding, but about 7m on each side is needed. A 10m
length of fiber results in a volume of 24m 24 m 10 m,
which requires a problem space of
million cells. This would overwhelm even today’s supercom-
puters.

Sections III-A-D discuss what can be done to make the sim-
ulation of an optical fiber a tractable problem.

A. Initializing in the Propagation Mode

When a laser pulse impinges on an optical fiber, it can take
a certain amount of time for the pulse to settle into one or
more of the propagating modes of the fiber. This may only
be a centimeter, but we cannot afford to model such a length
while waiting to establish the propagation mode. Therefore, it
is necessary that the incident wave be a propagating mode. This
is done by determining the relative amplitude distribution of
the -field at the incident plane. In single-mode propagation of
a step-indexed fiber, the amplitude profile of the predominant
electric field may be written as the Gaussian function [12]

(10)

where is the distance from the middle of the fiber andis the
“spot size” or radius of the fundamental mode. The spot size is
calculated from

where is the radius of the core of the fiber andis the nor-
malized frequency, which is calculated from

The free-space wavelength of the light is, and and
are the dielectric constants of the core and cladding.

B. Oblong Cells

To minimize the effects of dispersion, it is desirable to have
as many points per wavelength as possible in the direction of

Fig. 1. Diagram of the problem space for the FDTD simulation. A propagating
mode pulse is activated on the left-hand side. TheE-field is polarized in the
X-direction. Any time the pulse reaches the middle, all fields are shifted back
one cell, having the effect of holding the pulse in the middle of the problem
space. A wavelet analysis is done in the propagation direction at intervals of ten
cells in the transverse direction.

propagation [11]. We have chosen 30 points per wavelength.
However, the shape of the pulse in the transverse directions
changes relatively slowly. Therefore, we are using cells which
are 0.023 m in the direction of propagation and 0.138m in the
transverse direction, i.e., one-sixth as large in the propagation
direction as the transverse. This gives the desired accuracy in
the direction of propagation where the shape is changing rapidly,
but minimizes the number of cells in the transverse direction.

C. Use of Twofold Symmetry of the Transverse Field

The optical fibers we are simulating use single-mode propa-
gation [13]. The four quadrants in the transverse field are sym-
metric about their axes [12]. This symmetry can be exploited by
simulating only one quadrant in the FDTD simulation. Fig. 1 is
a diagram of the problem space used in the FDTD simulation.
The core has a 5-m radius with a dielectric constant of 2.1998
versus 2.19 in the cladding. Notice that 7.2m of cladding is
simulated, which is adequate for the pulse to die out in the trans-
verse direction. It is important that the pulse die out completely
to avoid “waveguiding” on the edge of the problem space.

D. Moving Problem Space

As the pulse is propagating down the fiber, the mean position
is being calculated on the axis in the center of the core

(11)

where

(This is recognizable as the “expectation of the position” from
quantum mechanics.) When the value ofPosition reaches
one-half the length of the buffer, the program stops and moves
every - and -field values back one cell in the propagating
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(a)

(b)

Fig. 2. Time-domain propagating pulse. The pulse is a cosine function in a
Gaussian envelope of 10 fs. It is initiated on the left-hand side (a) and propagates
until it reached the middle of the problem space (b).

direction. The simulation is continued untilPosition again
reaches the halfway point, and the process is repeated. This has
the effect of holding the pulse in the middle of the problem
space.

Fig. 2 shows a simulation of a pulse propagating in the
problem space of Fig. 1. It uses the symmetries described above
and the oblong cells. Fig. 2(a) shows the pulse after 7 fs. It
was initiated in the propagating mode from the left-hand side.
The pulse is a cosine function at 282 THz inside a Gaussian
envelope of 10 fs. Each time step is .038 fs. After 15 fs [see
Fig. 2(b)], it has reached the center of the problem space and
will remain in this position relative to the total problem space.
However, it may substantially change in amplitude and shape
as it propagates along the fiber.

IV. A NALYSIS OF THE PULSE

Even though the pulse is being held in the middle of the
problem space, its characteristics are being analyzed to deter-
mine what changes are taking place as it propagates. This anal-
ysis is in two parts: a Fourier transform to determine the macro-

Fig. 3. Time-domain problem space is assumed to be moving along a fiber. The
discrete Fourier transform is being calculated and mapped to another domain. At
the same time, wavelet analysis is done at 0.5-�m intervals and the parameters
stored.

scopic properties of amplitude and phase and a wavelet decom-
position to record the shape of the pulse in the transverse and
propagating directions.

Fourier Transform: While the time-domain pulse is being
simulated, the Fourier transform of the pulse throughout the
problem space is being calculated at the center frequency of
282 THz. This is done through a “running Fourier transform,”
which allows the Fourier transform to be calculated while the
time-domain program is running [14]. However, the results of
this Fourier transform are mapped to a unique position in the
propagating direction that allows for the moving problem space
(Fig. 3). In this manner, the amplitude and phase of the propa-
gating pulse can be calculated over distances much larger than
the section of fiber being simulated.

Fig. 4(a) shows the resulting Fourier amplitude of the fiber
in Fig. 1 from a simulation carried out over a length of 10m.
The amplitude is displayed for the -plane, the -direction
being the direction of propagation; the-field is polarized in the

-direction. Notice that the profile has retained the Gaussian
shape, indicating that it has maintained a propagating mode.
Fig. 4(b) displays the phase along the center axis in the direc-
tion of propagation. (A two-dimensional display of the phase is
difficult to interpret.) Fig. 4(b) is actually the phase difference
between the phase of the propagating pulse, and the phase of a
plane wave propagating in a medium of cladding. (This is being
calculated by a one-dimensional FDTD simulation that takes
place simultaneously.) The linearly decreasing phase if Fig. 4(b)
means that the pulse propagating in the core is lagging behind
the plane-wave pulse in the cladding, which is to be expected.

A quantity of interest is the amount of phase shift that is in-
duced in a nonlinear material compared to the linear [2], [13].
The simulation is repeated for the same fiber with a nonlin-
earity of . The Fourier amplitude profile for the
nonlinear simulation is indistinguishable from Fig. 4(a). How-
ever, the phase down the center axis of the pulse is different for
the nonlinear case (Fig. 5). The phase difference between non-
linear and linear increases steadily with distance, as it should.
Over this short distance of 10m, there is a phase difference
of 0.00012. Researchers doing interferometric experiments are
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(a)

(b)

Fig. 4. Fourier analysis of a pulse which has propagated 10�m. The amplitude
(a) is a two-dimensional plot in theY Z-plane. The solid Gaussian shape of the
amplitude indicates that the pulse remained in the propagating mode. The phase
(b) is only displayed along the center propagation axis. The phase is actually the
difference between the phase of the propagating pulse in the fiber and the phase
of a plane wave propagating in cladding material.

interested in the distance it takes to obtain a phase shift of 180.
Based on the results of Fig. 5, it would require a distance of

m
m (12)

In a typical interferometric experiment, like those with a Sagnac
interferometer [13], a pulse is sent in two different directions
through a section of nonlinear optical fiber. In one direction,
the pulse has a large enough amplitude to induce the nonlin-
earity; in the other direction, it does not. At the end, the pulses
are recombined. The larger pulse sees a different index of refrac-
tion caused by the nonlinearity and, therefore, travels at a dif-
ferent speed. If enough phase shift between the two is induced,
this results in destructive interference, and the pulse propagates
no further. Therefore, the change in phase between linear and
nonlinear is the crucial parameter. Equation (12) agrees qualita-
tively with the experimental results of Garveyet al. [13].

Wavelet Analysis:As the simulation is progressing, a
wavelet analysis of the propagating pulse takes place every
0.5 m (Fig. 1). The wavelet analysis allows the shape to be
stored with a minimum number of variables, which means
relatively long distances can be simulated without using exces-
sive storage. The ability to analyze the shape of the pulse is
important because Fourier analysis alone does not necessarily
document distortions that the pulse may have undergone.

Fig. 5. Phase difference between a nonlinear fiber withx = 10 and the
linear fiber of Fig. 4.

Fig. 6. Wavelet synthesis of the pulse in Fig. 2.

The wavelet analysis is done with a fifth-order fast wavelet
transform. The filters are a biorthogonal 9/7 pair [15]. The 130
cells in the direction of propagation can be represented by only
16 parameters after analysis.

The analysis is done on a two-dimensional cut of the prop-
agating pulse in the -plane, as shown in Fig. 1. It is not
necessary to do three-dimensional analysis because of the sym-
metry in the other transverse direction. The wavelet analysis is
done in the propagating direction only at intervals of ten cells
in the transverse direction. The data is stored as the analysis
is made, and then the pulse can be synthesized later. Synthesis
in only done in the propagation direction, with simple aver-
aging in the transverse direction. Fig. 6 was synthesized from
the analysis of the pulse in Fig. 2. However, the pulse in Fig. 2
required values. The synthesized pulse re-
quired parameters.

A simulation of a fiber similar to those described above was
made, except that the second-order Lorentz dispersion described
in Section II was added. The characteristics were ,

THz, and . Fig. 7 shows the pulse at
various times during the propagation as synthesized from the
wavelet parameters. The dispersion has resulted in substantial
distortion of the pulse as it propagates. This is not informa-
tion that would be available from Fourier analysis. In fact, the
Fourier amplitude is almost indistinguishable from Fig. 4(a).
This type of change is significant when propagation over long
distances is desirable.
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Fig. 7. Wavelet synthesis of the propagating pulse at various points along a
dispersive fiber.

Fig. 8. Time-domain problem space is assumed to be moving along a fiber as
before. After the pulse has propagated past the first five cells, a PML is activated.
A nonlinear core is moved into the problem space after the pulse has traveled
5 �m.

Fig. 9. Phase of the pulse, which begins propagating in a linear fiber and
encounters a nonlinear fiber with� = 10 after 5�m.

V. SIMULATION OF A CHANGE IN THE FIBER

As a final example, the simulation of a pulse encountering
a new core material will be described. Specifically, we simu-
late a propagating pulse in a linear fiber that suddenly encoun-
ters a nonlinear fiber. This is illustrated in Fig. 8, where a dif-
ferent core is moved into the problem space. The first part of
the fiber is the same as that used in Section III, i.e., the core is

with a cladding of . At 5 m, it
encounters a nonlinearity of (this is an unrealistically
large nonlinearity that is used for illustrative purposes). Since
there is a transition from one type of material to another, one
part of the pulse will be transmitted into the new material, and
another part will be reflected. While the vast majority of the en-
ergy will be transmitted in this case, some will be reflected. This

necessitates an absorbing boundary condition to keep the scat-
tered wave from being reflected back into the problem space.
This is accomplished by a perfectly matched layer (PML) [16],
which is implemented in the first five cells in the propagation di-
rection, but which is only activated after the propagating wave
has completely passed. (Fig. 8). If the scattering were more sub-
stantial, it would also have to be activated on the sides, but this
is probably not necessary for the present problem.

This new nonlinearity does not substantially affect the Fourier
amplitude or the time-domain pulse shape. However, as we saw
in the previous section, the nonlinearity does affect the phase.
Fig. 9 shows the results. At 5m, the rate of phase shift almost
doubles. Obviously, the same technique could be used to change
the dielectric constant, to add a linear polarization, or even to
change the size of the core.

VI. SUMMARY

In this paper, we have described techniques for a true
three-dimensional simulation of an optical fiber using the
FDTD method. This was accomplished partly by exploiting the
symmetry of the single-mode optical fiber and by using oblong
cells to obtain high resolution in the propagating direction.
However, most significant was the use of a moving problem
space, which limited the size of the actual time-domain calcu-
lation, but could simulate a pulse over relatively long distances.
Fourier and wavelet analysis were used to calculate important
parameters and characterize the pulse shape.

The programs described in Sections IV and V required 13.4
megawords of core memory in a Cray T90 supercomputer.
The simulation of a 20-m section of fiber requires 400
central processing unit (CPU) s. Simulations like this require
state-of-the-art computer resources, but not extraordinary
resources. They could easily be run on a high-end work station.

Although this paper focused on the simulation of optical
fibers, some or all of these techniques could be used to simulate
a pulse propagating in any electrically long object such as a
dielectric waveguide.
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