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Abstract—The highest short-term frequency-stable microwave
resonator oscillators utilize liquid-helium-cooled sapphire dielec-
tric resonators. The temperature coefficient of frequency of such
resonators is very small due to residual paramagnetic impurities
canceling the temperature coefficient of permittivity (TCP). At
higher temperatures, which are accessible in space or with liquid
nitrogen, the effect is too weak, and if extra impurities are added,
the loss introduced is too great. An alternative technique involves
using two low-loss dielectric materials with TCP of opposite sign.
Following this approach, a sapphire—rutile resonator was de-
signed with mode frequency-temperature turning points between
50-80 K, with Q@-factors of order 107. Previous designs used thin 50 mm
disks of rutile fixed to the ends of the sapphire cylinder. Due to
the high permittivity of rutile, such resonators have a high density Fig. 1. Sapphire resonator loaded in a metallic cavity, with rutile disks of
of spurious modes. By placing rings at the end faces instead thickness:, held to the end faces.
of disks, the majority of the spurious modes are raised above
the operation frequency and the requirement for thin disks is dependence annulled, as well as a higfiactor. The tempera-
removed. Finite-element analysis has been applied and compares; ;re coefficient of permittivity (TCP) for sapphire is quite large,

\évtggi|\i/tv3l/twf|ye-)\:\?heenerp'ec?stéi|Et]§rsa%$|gt%tﬁig ftrzqttr]:nfyeigﬂdg:d?%h and of the order of 10 ppm/K at 77 K. This mechanism allows
discussed. temperature fluctuations to transform to resonator frequency
fluctuations.

The usual electromagnetic technique of annulment is due to
the effect of paramagnetic impurities contributing an opposite
temperature coefficient (due to magnetic susceptibility) com-

. INTRODUCTION pared to the TCP. This technique has only been realized suc-

OW-NOISE high-stability resonator-oscillators based ofessfully in liquid-helium environments [6]-[8]. It is important

high-quality Q) sapphire whispering-gallery (WG)—modetO raise this temperature of compensation to 40-80 K if this
resonators have become important devices for telecommuigichnology is to be developed for space applications and for
cation, radar, and metrological applications. The extremé|9|wd—mtrogen—cooled devices. To raise the temperature of an-
high-Q factor of sapphire, of % 10° at room temperature, § nulment, large concentrations of paramagnetic impurities are re-
107 at liquid nitrogen temperature, and410° at liquid-helium guired, which, in turn, significantly degrades tQefactor [9].
temperature has enabled the lowest phase noise [1], [2] 4recently, a new technique incorporating dielectric compensa-
most frequency-stable [3]-[5] oscillators in the microwavon to @ WG sapphire resonator has been developed [10], [11].
regime. To create an oscillator with exceptional frequena;he method consists of placing two dielectric disks at the end

stability, the resonator must have the frequency-temperat@dhe sapphire cylinder, as shown in Fig. 1. A similar technique
has also been implemented to compensate low-order modes in

high-temperature superconducting resonators [12], [13]. A good
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Fig. 2. Magnitude of the mode electric-field density. @GEs, 0,0 mode.

(b) WGH0, 0,0 mode. The outer border shows the position of the metallisig. 3. Annulment temperature versus thickness for various modes. (a)

enclosure. WGH10,0,0 (N110) and WGH 14,9, 2 (IN210) modes with disks of rutile
fixed to the end faces. (BWGHiq.0,0 (V110) mode with rings rather than
disks fixed to the ends. (QVGEs, ¢, 0 (5S25) mode with disks of rutile fixed

these results to calculate the characteristics of a sapphire—rutifige end faces. (AVGEs, 0,0 (525) mode with rings rather than disks fixed
resonator as a function of temperature. Dielectric compensatiBi'® ends:
is achieved in a sapphire—rutile composite WG resonator with
measured)-factors of greater than 1@t 56 K and greater than temperature at intervals of 2.5 K between 20-62.5 K and
10° at 75 K. intervals of 10 K above 70 K. A polynomial fit was then applied
From this result and state-of-the-art frequency stabilizatiqs this data to find the annulment temperature. This procedure
circuitry, we demonstrate that current technology is suitable fasas carried out for rutile thickness between 0.03—1.0 mm, and
the construction of an ultra-stable oscillator with fractional frethe results of calculations are plotted in Fig. 3.
quency instability of order 10'*. This is the “fly-wheel” oscil- Al the frequencies of the analyzed modes were close to
lator requirement necessary for an atomic fountain or cold atorp GHz at cryogenic temperatures. The frequency of the same
clock to reach the performance set by the quantum limit [18hode in the composite resonator in comparison to the bare
Even though a liquid-helium-cooled clock has two orders @apphire resonator was higher for WGE modes as the axial
magnitude better stability [5], the liquid-nitrogen clock is mor@oundary condition at the sapphire—rutile interface causes the
easily transportable and much cheaper to maintain. The osciliatd to be squashed further into the sapphire (a Bragg effect).
tors based on composite dielectric resonators can also be cg@Bnversely, the frequency is lower in the WGH modes as the
sidered for use as fly-wheel oscillators for space applicatiogsial boundary conditions cause the field to be stretched by the
(such as the Atomic Clock Ensemble in Space (ACES) projagtiile disks due to the larger permittivity of rutile.
on board the International Space Station). State-of-the-art quartin general, for a small thickness of rutile.Q.03 mm) there
oscillators are an order of magnitude worsel0~*?) and limit  js not enough rutile to fully compensate the resonator. Instead,
the performance of an atomic clock due to the Dick effect [19%, point of inflection occurs at about 20-30 K for both WGE
[20]. and WGH modes. When the thickness gets large enough (see
Fig. 3), the inflection point turns into an annulment point and
Il. COMPOSITERESONATORPROPERTIES separates in two. At the point of separation, the second deriva-
tive is matched as well as the first and a flat annulment point
) ) ) of zero curvature is created. At larger values of thickness, ex-
'Rigorous analysis of 12-GHz modes in the structure (Sggss spurious modes exist due to modes mainly in the rutile. To
Fig. 1) was achieved by implementing finite-element softwajgssen the spurious-mode density, we introduced rings (with an
developed at the Research Institute on Microwave and Optiggher diameter of 23.6 mm) held to the ends. This had the effect
Communication (IRCOM), Limoges, France, specificallyf tyning the spurious rutile modes to higher frequencies with
designed to solve resonant anisotropic dielectric SVSte@%reSpondingly larger frequency separations, and reduced the
[21]. We analyzed the frequency-temperature behavior of thgect. However, the effect of the spurious modes on WGE and
WGH9,0,0 (0r N110) and theWGEs o, 0 (52s) modes. The \wGH modes are significantly different. Thus, we describe them
WG notation is the same as introduced at IRCOM [22], a”ﬁaparately in the Sections II-B and -C.
the N-S notation means nonsymmetric (or antisymmetric) and
symmetric magnetic field in the axial direction, respectivelyé3
and the following number denotes the ascending order in
frequency [17], [23]. The electric-field density plots are shown Fig. 3(c) and (d) shows the annulment temperature versus
in Fig. 2, and the annulment temperature versus thicknabgckness for theVGEg o o mode. The rutile acts to only per-
graphs are shown in Fig. 3. turb the resonant frequency when the thickness is less than about
To calculate the frequency-temperature dependence, th&2 mm. Thisisthe linear regime where the annulment temper-
anisotropic permittivity and expansion coefficients of sapphiwgure is proportional to the thickness. However, at about 0.12
and rutile need to be known as a function of temperature [1B3m in the disk structure and 0.15 mm in the ring structure, a
[17]. Using these values, an automatic program was writtepurious mode starts to interact with the sappfW&E; ¢ o
to calculate the frequency of the resonator as a function miode. This spurious mod&{GEs ¢ ¢ inrutile) interacts due to

A. Finite-Element Analysis

Temperature Characteristics for WGE Modes
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TABLE |
COMPARISON OFEXPERIMENTAL RESULTS WITH FINITE-ELEMENT CALCULATION

Mode | Measured Predicted Measured Predicted Measured Predicted Measured
frequency at| frequency at| annulment | annulment | curvature curvature Q-factor
annuiment | annulment temp. temp. [pprvK?} [ppm/K*] [10°]

temp. temp. [K] (K]
{GHz] [GHz]
WGE, 12.031 12.071 55 54 0.0365 0.0395 4

WGH, | 11916 11.947 72 76 0.44 0.37 6

the tangential boundary conditions, which require the transverséeven though we have not modeled the support system
electric field between the rutile and sapphire to be continuou$or the rutile rings, results of experiment and finite-element
After the thickness becomes large enough, the rutile modedeling are in good agreement. This shows that finite-el-
is tuned lower in frequency than tWWGEg o ¢ mode and the ement analysis is an excellent technique to design such a
annulment temperature starts to decrease in temperature. fidsonator for both WGE and WGH modes. This type of
rutile disks can support many WG modes, and in the rangereSonator is very difficult to model accurately with other
thickness from 0 to 1 mm, five more spurious-mode interactiotschniques. Also, it is important to note, if it was not for
exist. If we substitute the disk for a ring structure, the frequentiye ring structure (rather than a disk structure), the turning
and separation of these modes are raised high enough that @aint temperature for WGE modes could not have be de-
one spurious mode remains out of the five. signed accurately due to the large spurious-mode density
It is interesting to note if we ignore the interacting WQGwithout having extremely thin disks. For example, previous
modes in rutile, the temperature versus thickness characterisisults with 0.2-mm thin disks enabled the design of the
with the disk and ring in Fig. 3(c) and (d) are very similarturning-point temperature for WGH modes, but not WGE
The first resonance due to rutile occurs only at a slightipodes [26]. In the future, we will calculate complex fre-
different thickness, unlike the rutile WG modes, which arguencies to evaluate th@-factors of composite resonators.
shifted greatly. Also, a local minimum in the annulmenk should be noted here that the measurgdactor of the
temperature-thickness characteristic occurs in both cases clés€Es o ¢ mode is degraded due to the influence of a nearby
to 0.75 mm. This suggests an effect that is due to the boundapurious mode, which also slightly reduces the curvature.
condition of the WGE mode at the sapphire—rutile interfac8he WGEg ¢ o mode has been measured at 13 GHz (but
The WGE modes are quasi-TE and, hence, have the majoritynoft modeled) and also had a compensation point close to 55
the electric field tangential to this boundary. Thus, WGE modé&s with a Q-factor of 30 million. This result is evidence that
in the rutile and sapphire couple strongly. This phenomenontie Q-factor of the WGEg ¢ o mode should be of the order

a manifestation of the Bragg effect [24]. of 107 if the nearby mode did not degrade the performance.
o The mode is believed to be coupled to the support structure
C. Temperature Characteristics for WGH Modes and, with redesign, we anticipate an improv@dfactor for

WGH modes are quasi-TM, therefore, the majority of ththis mode.
electric field is normal to the sapphire—rutile boundary and the
modes do not couple strongly to the new Bragg modes. In-
specting Fig. 3(a) and (b) closely, small kinks at 0.12 mm in (a)
and 0.15 mm in (b) are present. This is due to the small hybrd _Stabilization of Frequency Variations Due to Electronic
TE component coupling to the new Bragg mode. The couplif¥pise
is too small to see the Bragg effect dominate due to the dom-t is customary to characterize the frequency instability of
inant TM structure. Thus, in general, as the rutile thicknessas oscillator by the square root of Allan variance (SRAN)
increased, so does the annulment temperature, as long as thi2ift. This is the primary measure of oscillator frequency insta-
teractions with spurious modes are ignored. When we replagigity in the time domain. Taking the minimum value @f and
the disk with the ring, three spurious rutile WG modes are renultiplying it by the resonato€)-factor, § = O—;ninQ, another

I1l. OSCILLATOR PERFORMANCE CONSIDERATIONS

duced to one, in the range of thickness from 0 to 1 mm. characteristic of an oscillator frequency stability, termed the line
, ) ) splitting factor, is defined. Assuming the oscillator is frequency
D. Comparison with Experiment stabilized with a frequency noise suppression system, the line

Two rutile rings 0.42-mm thick with an inner diameter ofplitting factor can be interpreted as fraction of the resonator
23.6 mm were held to the ends of the sapphire by sapphbandwidth within which the oscillator remains locked, with re-
holders incorporating a spring mechanism. Sapphire is the oslyect to the center of resonance.
material that we considered so that fefactor would not to  Our goal is to build a microwave oscillator with a short-term
be degraded. Measurements of frequency @nfiictor were frequency instability of order 1@*. This is a necessary require-
achieved using standard techniques, similar to those describeeht to achieve the potential of a typical atomic Cs fountain or
by Luitenet al. [25]. Experimental results and calculation areold atom frequency standard for space applications. The Uni-
compared in Table I. versity of Western Australia (UWA) sapphire clock has been
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locked with a line splitting factor of 1@ to obtain an insta-
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(71

bility of order 10716 [5]. The Jet Propulsion Laboratory (JPL)
87K mechanically temperature compensated clock also locked

with a line splitting factor of 167 to obtain a stability of 103

(8]

[28]. The voltage noise floor in an optimized Pound frequency

discriminator was measured and the SRAV calculated. For ares-
onance with aQ-factor of 10, the measurements translate to a [9] J. G. Hartnett, M. E. Tobar, A. G. Mann, E. N. Ivanov, J. Krupka, and R.
discriminator noise floor of 3¢ 10715 from 1 to 10 s of aver-
aging time, rising to 3x 10~1# at 100 s, which is suitable for

an atomic frequency standard.

(10]

B. Stabilization of Frequency Variations Due to Temperature

Changes

(11]

A copper cavity, in an evacuated can of a design similar to the
liquid helium clock, was cooled to 77 K by liquid nitrogen and 12]
fractional temperature fluctuations were measured. Based on t}[1e
results and the curvature at the annulment pointefiD—"/K?2,
the SRAV due to temperature fluctuations, was calculated to bﬁ3]
1.5x 10~* at 1 srising to 3 10~ '* at 30 s of averaging time.

This assumes a temperature control maintaining the resonator

within a 1004

K of the turning point, which is achievable [14]

with current temperature control technology. This calculation,
however, was without active temperature control, which, wheriis]
implemented, will even further reduce this source of noise.

[16]
IV. CONCLUSION

One would prefer the rutile to act solely perturbatively on they17)
sapphire resonator. Clearly this does not always occur. How-

ever,

our analysis clearly shows how to avoid resonant effects,

as well as furnish an understanding of the modes in such a strugs
ture. Specifically, we have shown, by holding rutile rings to the
end faces of a cylindrical sapphire resonator, good designability
of the annulment temperature above 30 K can be achieved wittg)
a low spurious-mode density. These temperatures are easily ac-

cessible by closed-cycle refrigerators, liquid nitrogen, and rap,

diative coolers for space applications. Also, we have shown that
a frequency-stabilized oscillator based on this resonator has the
potential to pump an atomic frequency standard at the quantu@l]

limit.
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